github.com/aidoskuneen/adk-node@v0.0.0-20220315131952-2e32567cb7f4/core/tx_list.go (about)

     1  // Copyright 2021 The adkgo Authors
     2  // This file is part of the adkgo library (adapted for adkgo from go--ethereum v1.10.8).
     3  //
     4  // the adkgo library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // the adkgo library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the adkgo library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package core
    18  
    19  import (
    20  	"container/heap"
    21  	"math"
    22  	"math/big"
    23  	"sort"
    24  	"time"
    25  
    26  	"github.com/aidoskuneen/adk-node/common"
    27  	"github.com/aidoskuneen/adk-node/core/types"
    28  )
    29  
    30  // nonceHeap is a heap.Interface implementation over 64bit unsigned integers for
    31  // retrieving sorted transactions from the possibly gapped future queue.
    32  type nonceHeap []uint64
    33  
    34  func (h nonceHeap) Len() int           { return len(h) }
    35  func (h nonceHeap) Less(i, j int) bool { return h[i] < h[j] }
    36  func (h nonceHeap) Swap(i, j int)      { h[i], h[j] = h[j], h[i] }
    37  
    38  func (h *nonceHeap) Push(x interface{}) {
    39  	*h = append(*h, x.(uint64))
    40  }
    41  
    42  func (h *nonceHeap) Pop() interface{} {
    43  	old := *h
    44  	n := len(old)
    45  	x := old[n-1]
    46  	*h = old[0 : n-1]
    47  	return x
    48  }
    49  
    50  // txSortedMap is a nonce->transaction hash map with a heap based index to allow
    51  // iterating over the contents in a nonce-incrementing way.
    52  type txSortedMap struct {
    53  	items map[uint64]*types.Transaction // Hash map storing the transaction data
    54  	index *nonceHeap                    // Heap of nonces of all the stored transactions (non-strict mode)
    55  	cache types.Transactions            // Cache of the transactions already sorted
    56  }
    57  
    58  // newTxSortedMap creates a new nonce-sorted transaction map.
    59  func newTxSortedMap() *txSortedMap {
    60  	return &txSortedMap{
    61  		items: make(map[uint64]*types.Transaction),
    62  		index: new(nonceHeap),
    63  	}
    64  }
    65  
    66  // Get retrieves the current transactions associated with the given nonce.
    67  func (m *txSortedMap) Get(nonce uint64) *types.Transaction {
    68  	return m.items[nonce]
    69  }
    70  
    71  // Put inserts a new transaction into the map, also updating the map's nonce
    72  // index. If a transaction already exists with the same nonce, it's overwritten.
    73  func (m *txSortedMap) Put(tx *types.Transaction) {
    74  	nonce := tx.Nonce()
    75  	if m.items[nonce] == nil {
    76  		heap.Push(m.index, nonce)
    77  	}
    78  	m.items[nonce], m.cache = tx, nil
    79  }
    80  
    81  // Forward removes all transactions from the map with a nonce lower than the
    82  // provided threshold. Every removed transaction is returned for any post-removal
    83  // maintenance.
    84  func (m *txSortedMap) Forward(threshold uint64) types.Transactions {
    85  	var removed types.Transactions
    86  
    87  	// Pop off heap items until the threshold is reached
    88  	for m.index.Len() > 0 && (*m.index)[0] < threshold {
    89  		nonce := heap.Pop(m.index).(uint64)
    90  		removed = append(removed, m.items[nonce])
    91  		delete(m.items, nonce)
    92  	}
    93  	// If we had a cached order, shift the front
    94  	if m.cache != nil {
    95  		m.cache = m.cache[len(removed):]
    96  	}
    97  	return removed
    98  }
    99  
   100  // Filter iterates over the list of transactions and removes all of them for which
   101  // the specified function evaluates to true.
   102  // Filter, as opposed to 'filter', re-initialises the heap after the operation is done.
   103  // If you want to do several consecutive filterings, it's therefore better to first
   104  // do a .filter(func1) followed by .Filter(func2) or reheap()
   105  func (m *txSortedMap) Filter(filter func(*types.Transaction) bool) types.Transactions {
   106  	removed := m.filter(filter)
   107  	// If transactions were removed, the heap and cache are ruined
   108  	if len(removed) > 0 {
   109  		m.reheap()
   110  	}
   111  	return removed
   112  }
   113  
   114  func (m *txSortedMap) reheap() {
   115  	*m.index = make([]uint64, 0, len(m.items))
   116  	for nonce := range m.items {
   117  		*m.index = append(*m.index, nonce)
   118  	}
   119  	heap.Init(m.index)
   120  	m.cache = nil
   121  }
   122  
   123  // filter is identical to Filter, but **does not** regenerate the heap. This method
   124  // should only be used if followed immediately by a call to Filter or reheap()
   125  func (m *txSortedMap) filter(filter func(*types.Transaction) bool) types.Transactions {
   126  	var removed types.Transactions
   127  
   128  	// Collect all the transactions to filter out
   129  	for nonce, tx := range m.items {
   130  		if filter(tx) {
   131  			removed = append(removed, tx)
   132  			delete(m.items, nonce)
   133  		}
   134  	}
   135  	if len(removed) > 0 {
   136  		m.cache = nil
   137  	}
   138  	return removed
   139  }
   140  
   141  // Cap places a hard limit on the number of items, returning all transactions
   142  // exceeding that limit.
   143  func (m *txSortedMap) Cap(threshold int) types.Transactions {
   144  	// Short circuit if the number of items is under the limit
   145  	if len(m.items) <= threshold {
   146  		return nil
   147  	}
   148  	// Otherwise gather and drop the highest nonce'd transactions
   149  	var drops types.Transactions
   150  
   151  	sort.Sort(*m.index)
   152  	for size := len(m.items); size > threshold; size-- {
   153  		drops = append(drops, m.items[(*m.index)[size-1]])
   154  		delete(m.items, (*m.index)[size-1])
   155  	}
   156  	*m.index = (*m.index)[:threshold]
   157  	heap.Init(m.index)
   158  
   159  	// If we had a cache, shift the back
   160  	if m.cache != nil {
   161  		m.cache = m.cache[:len(m.cache)-len(drops)]
   162  	}
   163  	return drops
   164  }
   165  
   166  // Remove deletes a transaction from the maintained map, returning whether the
   167  // transaction was found.
   168  func (m *txSortedMap) Remove(nonce uint64) bool {
   169  	// Short circuit if no transaction is present
   170  	_, ok := m.items[nonce]
   171  	if !ok {
   172  		return false
   173  	}
   174  	// Otherwise delete the transaction and fix the heap index
   175  	for i := 0; i < m.index.Len(); i++ {
   176  		if (*m.index)[i] == nonce {
   177  			heap.Remove(m.index, i)
   178  			break
   179  		}
   180  	}
   181  	delete(m.items, nonce)
   182  	m.cache = nil
   183  
   184  	return true
   185  }
   186  
   187  // Ready retrieves a sequentially increasing list of transactions starting at the
   188  // provided nonce that is ready for processing. The returned transactions will be
   189  // removed from the list.
   190  //
   191  // Note, all transactions with nonces lower than start will also be returned to
   192  // prevent getting into and invalid state. This is not something that should ever
   193  // happen but better to be self correcting than failing!
   194  func (m *txSortedMap) Ready(start uint64) types.Transactions {
   195  	// Short circuit if no transactions are available
   196  	if m.index.Len() == 0 || (*m.index)[0] > start {
   197  		return nil
   198  	}
   199  	// Otherwise start accumulating incremental transactions
   200  	var ready types.Transactions
   201  	for next := (*m.index)[0]; m.index.Len() > 0 && (*m.index)[0] == next; next++ {
   202  		ready = append(ready, m.items[next])
   203  		delete(m.items, next)
   204  		heap.Pop(m.index)
   205  	}
   206  	m.cache = nil
   207  
   208  	return ready
   209  }
   210  
   211  // Len returns the length of the transaction map.
   212  func (m *txSortedMap) Len() int {
   213  	return len(m.items)
   214  }
   215  
   216  func (m *txSortedMap) flatten() types.Transactions {
   217  	// If the sorting was not cached yet, create and cache it
   218  	if m.cache == nil {
   219  		m.cache = make(types.Transactions, 0, len(m.items))
   220  		for _, tx := range m.items {
   221  			m.cache = append(m.cache, tx)
   222  		}
   223  		sort.Sort(types.TxByNonce(m.cache))
   224  	}
   225  	return m.cache
   226  }
   227  
   228  // Flatten creates a nonce-sorted slice of transactions based on the loosely
   229  // sorted internal representation. The result of the sorting is cached in case
   230  // it's requested again before any modifications are made to the contents.
   231  func (m *txSortedMap) Flatten() types.Transactions {
   232  	// Copy the cache to prevent accidental modifications
   233  	cache := m.flatten()
   234  	txs := make(types.Transactions, len(cache))
   235  	copy(txs, cache)
   236  	return txs
   237  }
   238  
   239  // LastElement returns the last element of a flattened list, thus, the
   240  // transaction with the highest nonce
   241  func (m *txSortedMap) LastElement() *types.Transaction {
   242  	cache := m.flatten()
   243  	return cache[len(cache)-1]
   244  }
   245  
   246  // txList is a "list" of transactions belonging to an account, sorted by account
   247  // nonce. The same type can be used both for storing contiguous transactions for
   248  // the executable/pending queue; and for storing gapped transactions for the non-
   249  // executable/future queue, with minor behavioral changes.
   250  type txList struct {
   251  	strict bool         // Whether nonces are strictly continuous or not
   252  	txs    *txSortedMap // Heap indexed sorted hash map of the transactions
   253  
   254  	costcap *big.Int // Price of the highest costing transaction (reset only if exceeds balance)
   255  	gascap  uint64   // Gas limit of the highest spending transaction (reset only if exceeds block limit)
   256  }
   257  
   258  // newTxList create a new transaction list for maintaining nonce-indexable fast,
   259  // gapped, sortable transaction lists.
   260  func newTxList(strict bool) *txList {
   261  	return &txList{
   262  		strict:  strict,
   263  		txs:     newTxSortedMap(),
   264  		costcap: new(big.Int),
   265  	}
   266  }
   267  
   268  // Overlaps returns whether the transaction specified has the same nonce as one
   269  // already contained within the list.
   270  func (l *txList) Overlaps(tx *types.Transaction) bool {
   271  	return l.txs.Get(tx.Nonce()) != nil
   272  }
   273  
   274  // Add tries to insert a new transaction into the list, returning whether the
   275  // transaction was accepted, and if yes, any previous transaction it replaced.
   276  //
   277  // If the new transaction is accepted into the list, the lists' cost and gas
   278  // thresholds are also potentially updated.
   279  func (l *txList) Add(tx *types.Transaction, priceBump uint64) (bool, *types.Transaction) {
   280  	// If there's an older better transaction, abort
   281  	old := l.txs.Get(tx.Nonce())
   282  	if old != nil {
   283  		if old.GasFeeCapCmp(tx) >= 0 || old.GasTipCapCmp(tx) >= 0 {
   284  			return false, nil
   285  		}
   286  		// thresholdFeeCap = oldFC  * (100 + priceBump) / 100
   287  		a := big.NewInt(100 + int64(priceBump))
   288  		aFeeCap := new(big.Int).Mul(a, old.GasFeeCap())
   289  		aTip := a.Mul(a, old.GasTipCap())
   290  
   291  		// thresholdTip    = oldTip * (100 + priceBump) / 100
   292  		b := big.NewInt(100)
   293  		thresholdFeeCap := aFeeCap.Div(aFeeCap, b)
   294  		thresholdTip := aTip.Div(aTip, b)
   295  
   296  		// Have to ensure that either the new fee cap or tip is higher than the
   297  		// old ones as well as checking the percentage threshold to ensure that
   298  		// this is accurate for low (Wei-level) gas price replacements
   299  		if tx.GasFeeCapIntCmp(thresholdFeeCap) < 0 || tx.GasTipCapIntCmp(thresholdTip) < 0 {
   300  			return false, nil
   301  		}
   302  	}
   303  	// Otherwise overwrite the old transaction with the current one
   304  	l.txs.Put(tx)
   305  	if cost := tx.Cost(); l.costcap.Cmp(cost) < 0 {
   306  		l.costcap = cost
   307  	}
   308  	if gas := tx.Gas(); l.gascap < gas {
   309  		l.gascap = gas
   310  	}
   311  	return true, old
   312  }
   313  
   314  // Forward removes all transactions from the list with a nonce lower than the
   315  // provided threshold. Every removed transaction is returned for any post-removal
   316  // maintenance.
   317  func (l *txList) Forward(threshold uint64) types.Transactions {
   318  	return l.txs.Forward(threshold)
   319  }
   320  
   321  // Filter removes all transactions from the list with a cost or gas limit higher
   322  // than the provided thresholds. Every removed transaction is returned for any
   323  // post-removal maintenance. Strict-mode invalidated transactions are also
   324  // returned.
   325  //
   326  // This method uses the cached costcap and gascap to quickly decide if there's even
   327  // a point in calculating all the costs or if the balance covers all. If the threshold
   328  // is lower than the costgas cap, the caps will be reset to a new high after removing
   329  // the newly invalidated transactions.
   330  func (l *txList) Filter(costLimit *big.Int, gasLimit uint64) (types.Transactions, types.Transactions) {
   331  	// If all transactions are below the threshold, short circuit
   332  	if l.costcap.Cmp(costLimit) <= 0 && l.gascap <= gasLimit {
   333  		return nil, nil
   334  	}
   335  	l.costcap = new(big.Int).Set(costLimit) // Lower the caps to the thresholds
   336  	l.gascap = gasLimit
   337  
   338  	// Filter out all the transactions above the account's funds
   339  	removed := l.txs.Filter(func(tx *types.Transaction) bool {
   340  		return tx.Gas() > gasLimit || tx.Cost().Cmp(costLimit) > 0
   341  	})
   342  
   343  	if len(removed) == 0 {
   344  		return nil, nil
   345  	}
   346  	var invalids types.Transactions
   347  	// If the list was strict, filter anything above the lowest nonce
   348  	if l.strict {
   349  		lowest := uint64(math.MaxUint64)
   350  		for _, tx := range removed {
   351  			if nonce := tx.Nonce(); lowest > nonce {
   352  				lowest = nonce
   353  			}
   354  		}
   355  		invalids = l.txs.filter(func(tx *types.Transaction) bool { return tx.Nonce() > lowest })
   356  	}
   357  	l.txs.reheap()
   358  	return removed, invalids
   359  }
   360  
   361  // Cap places a hard limit on the number of items, returning all transactions
   362  // exceeding that limit.
   363  func (l *txList) Cap(threshold int) types.Transactions {
   364  	return l.txs.Cap(threshold)
   365  }
   366  
   367  // Remove deletes a transaction from the maintained list, returning whether the
   368  // transaction was found, and also returning any transaction invalidated due to
   369  // the deletion (strict mode only).
   370  func (l *txList) Remove(tx *types.Transaction) (bool, types.Transactions) {
   371  	// Remove the transaction from the set
   372  	nonce := tx.Nonce()
   373  	if removed := l.txs.Remove(nonce); !removed {
   374  		return false, nil
   375  	}
   376  	// In strict mode, filter out non-executable transactions
   377  	if l.strict {
   378  		return true, l.txs.Filter(func(tx *types.Transaction) bool { return tx.Nonce() > nonce })
   379  	}
   380  	return true, nil
   381  }
   382  
   383  // Ready retrieves a sequentially increasing list of transactions starting at the
   384  // provided nonce that is ready for processing. The returned transactions will be
   385  // removed from the list.
   386  //
   387  // Note, all transactions with nonces lower than start will also be returned to
   388  // prevent getting into and invalid state. This is not something that should ever
   389  // happen but better to be self correcting than failing!
   390  func (l *txList) Ready(start uint64) types.Transactions {
   391  	return l.txs.Ready(start)
   392  }
   393  
   394  // Len returns the length of the transaction list.
   395  func (l *txList) Len() int {
   396  	return l.txs.Len()
   397  }
   398  
   399  // Empty returns whether the list of transactions is empty or not.
   400  func (l *txList) Empty() bool {
   401  	return l.Len() == 0
   402  }
   403  
   404  // Flatten creates a nonce-sorted slice of transactions based on the loosely
   405  // sorted internal representation. The result of the sorting is cached in case
   406  // it's requested again before any modifications are made to the contents.
   407  func (l *txList) Flatten() types.Transactions {
   408  	return l.txs.Flatten()
   409  }
   410  
   411  // LastElement returns the last element of a flattened list, thus, the
   412  // transaction with the highest nonce
   413  func (l *txList) LastElement() *types.Transaction {
   414  	return l.txs.LastElement()
   415  }
   416  
   417  // priceHeap is a heap.Interface implementation over transactions for retrieving
   418  // price-sorted transactions to discard when the pool fills up. If baseFee is set
   419  // then the heap is sorted based on the effective tip based on the given base fee.
   420  // If baseFee is nil then the sorting is based on gasFeeCap.
   421  type priceHeap struct {
   422  	baseFee *big.Int // heap should always be re-sorted after baseFee is changed
   423  	list    []*types.Transaction
   424  }
   425  
   426  func (h *priceHeap) Len() int      { return len(h.list) }
   427  func (h *priceHeap) Swap(i, j int) { h.list[i], h.list[j] = h.list[j], h.list[i] }
   428  
   429  func (h *priceHeap) Less(i, j int) bool {
   430  	switch h.cmp(h.list[i], h.list[j]) {
   431  	case -1:
   432  		return true
   433  	case 1:
   434  		return false
   435  	default:
   436  		return h.list[i].Nonce() > h.list[j].Nonce()
   437  	}
   438  }
   439  
   440  func (h *priceHeap) cmp(a, b *types.Transaction) int {
   441  	if h.baseFee != nil {
   442  		// Compare effective tips if baseFee is specified
   443  		if c := a.EffectiveGasTipCmp(b, h.baseFee); c != 0 {
   444  			return c
   445  		}
   446  	}
   447  	// Compare fee caps if baseFee is not specified or effective tips are equal
   448  	if c := a.GasFeeCapCmp(b); c != 0 {
   449  		return c
   450  	}
   451  	// Compare tips if effective tips and fee caps are equal
   452  	return a.GasTipCapCmp(b)
   453  }
   454  
   455  func (h *priceHeap) Push(x interface{}) {
   456  	tx := x.(*types.Transaction)
   457  	h.list = append(h.list, tx)
   458  }
   459  
   460  func (h *priceHeap) Pop() interface{} {
   461  	old := h.list
   462  	n := len(old)
   463  	x := old[n-1]
   464  	old[n-1] = nil
   465  	h.list = old[0 : n-1]
   466  	return x
   467  }
   468  
   469  // txPricedList is a price-sorted heap to allow operating on transactions pool
   470  // contents in a price-incrementing way. It's built opon the all transactions
   471  // in txpool but only interested in the remote part. It means only remote transactions
   472  // will be considered for tracking, sorting, eviction, etc.
   473  //
   474  // Two heaps are used for sorting: the urgent heap (based on effective tip in the next
   475  // block) and the floating heap (based on gasFeeCap). Always the bigger heap is chosen for
   476  // eviction. Transactions evicted from the urgent heap are first demoted into the floating heap.
   477  // In some cases (during a congestion, when blocks are full) the urgent heap can provide
   478  // better candidates for inclusion while in other cases (at the top of the baseFee peak)
   479  // the floating heap is better. When baseFee is decreasing they behave similarly.
   480  type txPricedList struct {
   481  	all              *txLookup // Pointer to the map of all transactions
   482  	urgent, floating priceHeap // Heaps of prices of all the stored **remote** transactions
   483  	stales           int       // Number of stale price points to (re-heap trigger)
   484  }
   485  
   486  const (
   487  	// urgentRatio : floatingRatio is the capacity ratio of the two queues
   488  	urgentRatio   = 4
   489  	floatingRatio = 1
   490  )
   491  
   492  // newTxPricedList creates a new price-sorted transaction heap.
   493  func newTxPricedList(all *txLookup) *txPricedList {
   494  	return &txPricedList{
   495  		all: all,
   496  	}
   497  }
   498  
   499  // Put inserts a new transaction into the heap.
   500  func (l *txPricedList) Put(tx *types.Transaction, local bool) {
   501  	if local {
   502  		return
   503  	}
   504  	// Insert every new transaction to the urgent heap first; Discard will balance the heaps
   505  	heap.Push(&l.urgent, tx)
   506  }
   507  
   508  // Removed notifies the prices transaction list that an old transaction dropped
   509  // from the pool. The list will just keep a counter of stale objects and update
   510  // the heap if a large enough ratio of transactions go stale.
   511  func (l *txPricedList) Removed(count int) {
   512  	// Bump the stale counter, but exit if still too low (< 25%)
   513  	l.stales += count
   514  	if l.stales <= (len(l.urgent.list)+len(l.floating.list))/4 {
   515  		return
   516  	}
   517  	// Seems we've reached a critical number of stale transactions, reheap
   518  	l.Reheap()
   519  }
   520  
   521  // Underpriced checks whether a transaction is cheaper than (or as cheap as) the
   522  // lowest priced (remote) transaction currently being tracked.
   523  func (l *txPricedList) Underpriced(tx *types.Transaction) bool {
   524  	// Note: with two queues, being underpriced is defined as being worse than the worst item
   525  	// in all non-empty queues if there is any. If both queues are empty then nothing is underpriced.
   526  	return (l.underpricedFor(&l.urgent, tx) || len(l.urgent.list) == 0) &&
   527  		(l.underpricedFor(&l.floating, tx) || len(l.floating.list) == 0) &&
   528  		(len(l.urgent.list) != 0 || len(l.floating.list) != 0)
   529  }
   530  
   531  // underpricedFor checks whether a transaction is cheaper than (or as cheap as) the
   532  // lowest priced (remote) transaction in the given heap.
   533  func (l *txPricedList) underpricedFor(h *priceHeap, tx *types.Transaction) bool {
   534  	// Discard stale price points if found at the heap start
   535  	for len(h.list) > 0 {
   536  		head := h.list[0]
   537  		if l.all.GetRemote(head.Hash()) == nil { // Removed or migrated
   538  			l.stales--
   539  			heap.Pop(h)
   540  			continue
   541  		}
   542  		break
   543  	}
   544  	// Check if the transaction is underpriced or not
   545  	if len(h.list) == 0 {
   546  		return false // There is no remote transaction at all.
   547  	}
   548  	// If the remote transaction is even cheaper than the
   549  	// cheapest one tracked locally, reject it.
   550  	return h.cmp(h.list[0], tx) >= 0
   551  }
   552  
   553  // Discard finds a number of most underpriced transactions, removes them from the
   554  // priced list and returns them for further removal from the entire pool.
   555  //
   556  // Note local transaction won't be considered for eviction.
   557  func (l *txPricedList) Discard(slots int, force bool) (types.Transactions, bool) {
   558  	drop := make(types.Transactions, 0, slots) // Remote underpriced transactions to drop
   559  	for slots > 0 {
   560  		if len(l.urgent.list)*floatingRatio > len(l.floating.list)*urgentRatio || floatingRatio == 0 {
   561  			// Discard stale transactions if found during cleanup
   562  			tx := heap.Pop(&l.urgent).(*types.Transaction)
   563  			if l.all.GetRemote(tx.Hash()) == nil { // Removed or migrated
   564  				l.stales--
   565  				continue
   566  			}
   567  			// Non stale transaction found, move to floating heap
   568  			heap.Push(&l.floating, tx)
   569  		} else {
   570  			if len(l.floating.list) == 0 {
   571  				// Stop if both heaps are empty
   572  				break
   573  			}
   574  			// Discard stale transactions if found during cleanup
   575  			tx := heap.Pop(&l.floating).(*types.Transaction)
   576  			if l.all.GetRemote(tx.Hash()) == nil { // Removed or migrated
   577  				l.stales--
   578  				continue
   579  			}
   580  			// Non stale transaction found, discard it
   581  			drop = append(drop, tx)
   582  			slots -= numSlots(tx)
   583  		}
   584  	}
   585  	// If we still can't make enough room for the new transaction
   586  	if slots > 0 && !force {
   587  		for _, tx := range drop {
   588  			heap.Push(&l.urgent, tx)
   589  		}
   590  		return nil, false
   591  	}
   592  	return drop, true
   593  }
   594  
   595  // Reheap forcibly rebuilds the heap based on the current remote transaction set.
   596  func (l *txPricedList) Reheap() {
   597  	start := time.Now()
   598  	l.stales = 0
   599  	l.urgent.list = make([]*types.Transaction, 0, l.all.RemoteCount())
   600  	l.all.Range(func(hash common.Hash, tx *types.Transaction, local bool) bool {
   601  		l.urgent.list = append(l.urgent.list, tx)
   602  		return true
   603  	}, false, true) // Only iterate remotes
   604  	heap.Init(&l.urgent)
   605  
   606  	// balance out the two heaps by moving the worse half of transactions into the
   607  	// floating heap
   608  	// Note: Discard would also do this before the first eviction but Reheap can do
   609  	// is more efficiently. Also, Underpriced would work suboptimally the first time
   610  	// if the floating queue was empty.
   611  	floatingCount := len(l.urgent.list) * floatingRatio / (urgentRatio + floatingRatio)
   612  	l.floating.list = make([]*types.Transaction, floatingCount)
   613  	for i := 0; i < floatingCount; i++ {
   614  		l.floating.list[i] = heap.Pop(&l.urgent).(*types.Transaction)
   615  	}
   616  	heap.Init(&l.floating)
   617  	reheapTimer.Update(time.Since(start))
   618  }
   619  
   620  // SetBaseFee updates the base fee and triggers a re-heap. Note that Removed is not
   621  // necessary to call right before SetBaseFee when processing a new block.
   622  func (l *txPricedList) SetBaseFee(baseFee *big.Int) {
   623  	l.urgent.baseFee = baseFee
   624  	l.Reheap()
   625  }