github.com/aidoskuneen/adk-node@v0.0.0-20220315131952-2e32567cb7f4/signer/core/signed_data.go (about)

     1  // Copyright 2021 The adkgo Authors
     2  // This file is part of the adkgo library (adapted for adkgo from go--ethereum v1.10.8).
     3  //
     4  // the adkgo library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // the adkgo library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the adkgo library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package core
    18  
    19  import (
    20  	"bytes"
    21  	"context"
    22  	"errors"
    23  	"fmt"
    24  	"math/big"
    25  	"mime"
    26  	"reflect"
    27  	"regexp"
    28  	"sort"
    29  	"strconv"
    30  	"strings"
    31  	"unicode"
    32  
    33  	"github.com/aidoskuneen/adk-node/accounts"
    34  	"github.com/aidoskuneen/adk-node/common"
    35  	"github.com/aidoskuneen/adk-node/common/hexutil"
    36  	"github.com/aidoskuneen/adk-node/common/math"
    37  	"github.com/aidoskuneen/adk-node/consensus/clique"
    38  	"github.com/aidoskuneen/adk-node/core/types"
    39  	"github.com/aidoskuneen/adk-node/crypto"
    40  	"github.com/aidoskuneen/adk-node/rlp"
    41  	"github.com/aidoskuneen/adk-node/signer/core/apitypes"
    42  )
    43  
    44  type SigFormat struct {
    45  	Mime        string
    46  	ByteVersion byte
    47  }
    48  
    49  var (
    50  	IntendedValidator = SigFormat{
    51  		accounts.MimetypeDataWithValidator,
    52  		0x00,
    53  	}
    54  	DataTyped = SigFormat{
    55  		accounts.MimetypeTypedData,
    56  		0x01,
    57  	}
    58  	ApplicationClique = SigFormat{
    59  		accounts.MimetypeClique,
    60  		0x02,
    61  	}
    62  	TextPlain = SigFormat{
    63  		accounts.MimetypeTextPlain,
    64  		0x45,
    65  	}
    66  )
    67  
    68  type ValidatorData struct {
    69  	Address common.Address
    70  	Message hexutil.Bytes
    71  }
    72  
    73  type TypedData struct {
    74  	Types       Types            `json:"types"`
    75  	PrimaryType string           `json:"primaryType"`
    76  	Domain      TypedDataDomain  `json:"domain"`
    77  	Message     TypedDataMessage `json:"message"`
    78  }
    79  
    80  type Type struct {
    81  	Name string `json:"name"`
    82  	Type string `json:"type"`
    83  }
    84  
    85  func (t *Type) isArray() bool {
    86  	return strings.HasSuffix(t.Type, "[]")
    87  }
    88  
    89  // typeName returns the canonical name of the type. If the type is 'Person[]', then
    90  // this method returns 'Person'
    91  func (t *Type) typeName() string {
    92  	if strings.HasSuffix(t.Type, "[]") {
    93  		return strings.TrimSuffix(t.Type, "[]")
    94  	}
    95  	return t.Type
    96  }
    97  
    98  func (t *Type) isReferenceType() bool {
    99  	if len(t.Type) == 0 {
   100  		return false
   101  	}
   102  	// Reference types must have a leading uppercase character
   103  	return unicode.IsUpper([]rune(t.Type)[0])
   104  }
   105  
   106  type Types map[string][]Type
   107  
   108  type TypePriority struct {
   109  	Type  string
   110  	Value uint
   111  }
   112  
   113  type TypedDataMessage = map[string]interface{}
   114  
   115  type TypedDataDomain struct {
   116  	Name              string                `json:"name"`
   117  	Version           string                `json:"version"`
   118  	ChainId           *math.HexOrDecimal256 `json:"chainId"`
   119  	VerifyingContract string                `json:"verifyingContract"`
   120  	Salt              string                `json:"salt"`
   121  }
   122  
   123  var typedDataReferenceTypeRegexp = regexp.MustCompile(`^[A-Z](\w*)(\[\])?$`)
   124  
   125  // sign receives a request and produces a signature
   126  //
   127  // Note, the produced signature conforms to the secp256k1 curve R, S and V values,
   128  // where the V value will be 27 or 28 for legacy reasons, if legacyV==true.
   129  func (api *SignerAPI) sign(req *SignDataRequest, legacyV bool) (hexutil.Bytes, error) {
   130  	// We make the request prior to looking up if we actually have the account, to prevent
   131  	// account-enumeration via the API
   132  	res, err := api.UI.ApproveSignData(req)
   133  	if err != nil {
   134  		return nil, err
   135  	}
   136  	if !res.Approved {
   137  		return nil, ErrRequestDenied
   138  	}
   139  	// Look up the wallet containing the requested signer
   140  	account := accounts.Account{Address: req.Address.Address()}
   141  	wallet, err := api.am.Find(account)
   142  	if err != nil {
   143  		return nil, err
   144  	}
   145  	pw, err := api.lookupOrQueryPassword(account.Address,
   146  		"Password for signing",
   147  		fmt.Sprintf("Please enter password for signing data with account %s", account.Address.Hex()))
   148  	if err != nil {
   149  		return nil, err
   150  	}
   151  	// Sign the data with the wallet
   152  	signature, err := wallet.SignDataWithPassphrase(account, pw, req.ContentType, req.Rawdata)
   153  	if err != nil {
   154  		return nil, err
   155  	}
   156  	if legacyV {
   157  		signature[64] += 27 // Transform V from 0/1 to 27/28 according to the yellow paper
   158  	}
   159  	return signature, nil
   160  }
   161  
   162  // SignData signs the hash of the provided data, but does so differently
   163  // depending on the content-type specified.
   164  //
   165  // Different types of validation occur.
   166  func (api *SignerAPI) SignData(ctx context.Context, contentType string, addr common.MixedcaseAddress, data interface{}) (hexutil.Bytes, error) {
   167  	var req, transformV, err = api.determineSignatureFormat(ctx, contentType, addr, data)
   168  	if err != nil {
   169  		return nil, err
   170  	}
   171  	signature, err := api.sign(req, transformV)
   172  	if err != nil {
   173  		api.UI.ShowError(err.Error())
   174  		return nil, err
   175  	}
   176  	return signature, nil
   177  }
   178  
   179  // determineSignatureFormat determines which signature method should be used based upon the mime type
   180  // In the cases where it matters ensure that the charset is handled. The charset
   181  // resides in the 'params' returned as the second returnvalue from mime.ParseMediaType
   182  // charset, ok := params["charset"]
   183  // As it is now, we accept any charset and just treat it as 'raw'.
   184  // This method returns the mimetype for signing along with the request
   185  func (api *SignerAPI) determineSignatureFormat(ctx context.Context, contentType string, addr common.MixedcaseAddress, data interface{}) (*SignDataRequest, bool, error) {
   186  	var (
   187  		req          *SignDataRequest
   188  		useEthereumV = true // Default to use V = 27 or 28, the legacy Ethereum format
   189  	)
   190  	mediaType, _, err := mime.ParseMediaType(contentType)
   191  	if err != nil {
   192  		return nil, useEthereumV, err
   193  	}
   194  
   195  	switch mediaType {
   196  	case IntendedValidator.Mime:
   197  		// Data with an intended validator
   198  		validatorData, err := UnmarshalValidatorData(data)
   199  		if err != nil {
   200  			return nil, useEthereumV, err
   201  		}
   202  		sighash, msg := SignTextValidator(validatorData)
   203  		messages := []*NameValueType{
   204  			{
   205  				Name:  "This is a request to sign data intended for a particular validator (see EIP 191 version 0)",
   206  				Typ:   "description",
   207  				Value: "",
   208  			},
   209  			{
   210  				Name:  "Intended validator address",
   211  				Typ:   "address",
   212  				Value: validatorData.Address.String(),
   213  			},
   214  			{
   215  				Name:  "Application-specific data",
   216  				Typ:   "hexdata",
   217  				Value: validatorData.Message,
   218  			},
   219  			{
   220  				Name:  "Full message for signing",
   221  				Typ:   "hexdata",
   222  				Value: fmt.Sprintf("0x%x", msg),
   223  			},
   224  		}
   225  		req = &SignDataRequest{ContentType: mediaType, Rawdata: []byte(msg), Messages: messages, Hash: sighash}
   226  	case ApplicationClique.Mime:
   227  		// Clique is the Ethereum PoA standard
   228  		stringData, ok := data.(string)
   229  		if !ok {
   230  			return nil, useEthereumV, fmt.Errorf("input for %v must be an hex-encoded string", ApplicationClique.Mime)
   231  		}
   232  		cliqueData, err := hexutil.Decode(stringData)
   233  		if err != nil {
   234  			return nil, useEthereumV, err
   235  		}
   236  		header := &types.Header{}
   237  		if err := rlp.DecodeBytes(cliqueData, header); err != nil {
   238  			return nil, useEthereumV, err
   239  		}
   240  		// The incoming clique header is already truncated, sent to us with a extradata already shortened
   241  		if len(header.Extra) < 65 {
   242  			// Need to add it back, to get a suitable length for hashing
   243  			newExtra := make([]byte, len(header.Extra)+65)
   244  			copy(newExtra, header.Extra)
   245  			header.Extra = newExtra
   246  		}
   247  		// Get back the rlp data, encoded by us
   248  		sighash, cliqueRlp, err := cliqueHeaderHashAndRlp(header)
   249  		if err != nil {
   250  			return nil, useEthereumV, err
   251  		}
   252  		messages := []*NameValueType{
   253  			{
   254  				Name:  "Clique header",
   255  				Typ:   "clique",
   256  				Value: fmt.Sprintf("clique header %d [0x%x]", header.Number, header.Hash()),
   257  			},
   258  		}
   259  		// Clique uses V on the form 0 or 1
   260  		useEthereumV = false
   261  		req = &SignDataRequest{ContentType: mediaType, Rawdata: cliqueRlp, Messages: messages, Hash: sighash}
   262  	default: // also case TextPlain.Mime:
   263  		// Calculates an Ethereum ECDSA signature for:
   264  		// hash = keccak256("\x19${byteVersion}Ethereum Signed Message:\n${message length}${message}")
   265  		// We expect it to be a string
   266  		if stringData, ok := data.(string); !ok {
   267  			return nil, useEthereumV, fmt.Errorf("input for text/plain must be an hex-encoded string")
   268  		} else {
   269  			if textData, err := hexutil.Decode(stringData); err != nil {
   270  				return nil, useEthereumV, err
   271  			} else {
   272  				sighash, msg := accounts.TextAndHash(textData)
   273  				messages := []*NameValueType{
   274  					{
   275  						Name:  "message",
   276  						Typ:   accounts.MimetypeTextPlain,
   277  						Value: msg,
   278  					},
   279  				}
   280  				req = &SignDataRequest{ContentType: mediaType, Rawdata: []byte(msg), Messages: messages, Hash: sighash}
   281  			}
   282  		}
   283  	}
   284  	req.Address = addr
   285  	req.Meta = MetadataFromContext(ctx)
   286  	return req, useEthereumV, nil
   287  }
   288  
   289  // SignTextWithValidator signs the given message which can be further recovered
   290  // with the given validator.
   291  // hash = keccak256("\x19\x00"${address}${data}).
   292  func SignTextValidator(validatorData ValidatorData) (hexutil.Bytes, string) {
   293  	msg := fmt.Sprintf("\x19\x00%s%s", string(validatorData.Address.Bytes()), string(validatorData.Message))
   294  	return crypto.Keccak256([]byte(msg)), msg
   295  }
   296  
   297  // cliqueHeaderHashAndRlp returns the hash which is used as input for the proof-of-authority
   298  // signing. It is the hash of the entire header apart from the 65 byte signature
   299  // contained at the end of the extra data.
   300  //
   301  // The method requires the extra data to be at least 65 bytes -- the original implementation
   302  // in clique.go panics if this is the case, thus it's been reimplemented here to avoid the panic
   303  // and simply return an error instead
   304  func cliqueHeaderHashAndRlp(header *types.Header) (hash, rlp []byte, err error) {
   305  	if len(header.Extra) < 65 {
   306  		err = fmt.Errorf("clique header extradata too short, %d < 65", len(header.Extra))
   307  		return
   308  	}
   309  	rlp = clique.CliqueRLP(header)
   310  	hash = clique.SealHash(header).Bytes()
   311  	return hash, rlp, err
   312  }
   313  
   314  // SignTypedData signs EIP-712 conformant typed data
   315  // hash = keccak256("\x19${byteVersion}${domainSeparator}${hashStruct(message)}")
   316  // It returns
   317  // - the signature,
   318  // - and/or any error
   319  func (api *SignerAPI) SignTypedData(ctx context.Context, addr common.MixedcaseAddress, typedData TypedData) (hexutil.Bytes, error) {
   320  	signature, _, err := api.signTypedData(ctx, addr, typedData, nil)
   321  	return signature, err
   322  }
   323  
   324  // signTypedData is identical to the capitalized version, except that it also returns the hash (preimage)
   325  // - the signature preimage (hash)
   326  func (api *SignerAPI) signTypedData(ctx context.Context, addr common.MixedcaseAddress,
   327  	typedData TypedData, validationMessages *apitypes.ValidationMessages) (hexutil.Bytes, hexutil.Bytes, error) {
   328  	domainSeparator, err := typedData.HashStruct("EIP712Domain", typedData.Domain.Map())
   329  	if err != nil {
   330  		return nil, nil, err
   331  	}
   332  	typedDataHash, err := typedData.HashStruct(typedData.PrimaryType, typedData.Message)
   333  	if err != nil {
   334  		return nil, nil, err
   335  	}
   336  	rawData := []byte(fmt.Sprintf("\x19\x01%s%s", string(domainSeparator), string(typedDataHash)))
   337  	sighash := crypto.Keccak256(rawData)
   338  	messages, err := typedData.Format()
   339  	if err != nil {
   340  		return nil, nil, err
   341  	}
   342  	req := &SignDataRequest{
   343  		ContentType: DataTyped.Mime,
   344  		Rawdata:     rawData,
   345  		Messages:    messages,
   346  		Hash:        sighash,
   347  		Address:     addr}
   348  	if validationMessages != nil {
   349  		req.Callinfo = validationMessages.Messages
   350  	}
   351  	signature, err := api.sign(req, true)
   352  	if err != nil {
   353  		api.UI.ShowError(err.Error())
   354  		return nil, nil, err
   355  	}
   356  	return signature, sighash, nil
   357  }
   358  
   359  // HashStruct generates a keccak256 hash of the encoding of the provided data
   360  func (typedData *TypedData) HashStruct(primaryType string, data TypedDataMessage) (hexutil.Bytes, error) {
   361  	encodedData, err := typedData.EncodeData(primaryType, data, 1)
   362  	if err != nil {
   363  		return nil, err
   364  	}
   365  	return crypto.Keccak256(encodedData), nil
   366  }
   367  
   368  // Dependencies returns an array of custom types ordered by their hierarchical reference tree
   369  func (typedData *TypedData) Dependencies(primaryType string, found []string) []string {
   370  	includes := func(arr []string, str string) bool {
   371  		for _, obj := range arr {
   372  			if obj == str {
   373  				return true
   374  			}
   375  		}
   376  		return false
   377  	}
   378  
   379  	if includes(found, primaryType) {
   380  		return found
   381  	}
   382  	if typedData.Types[primaryType] == nil {
   383  		return found
   384  	}
   385  	found = append(found, primaryType)
   386  	for _, field := range typedData.Types[primaryType] {
   387  		for _, dep := range typedData.Dependencies(field.Type, found) {
   388  			if !includes(found, dep) {
   389  				found = append(found, dep)
   390  			}
   391  		}
   392  	}
   393  	return found
   394  }
   395  
   396  // EncodeType generates the following encoding:
   397  // `name ‖ "(" ‖ member₁ ‖ "," ‖ member₂ ‖ "," ‖ … ‖ memberₙ ")"`
   398  //
   399  // each member is written as `type ‖ " " ‖ name` encodings cascade down and are sorted by name
   400  func (typedData *TypedData) EncodeType(primaryType string) hexutil.Bytes {
   401  	// Get dependencies primary first, then alphabetical
   402  	deps := typedData.Dependencies(primaryType, []string{})
   403  	if len(deps) > 0 {
   404  		slicedDeps := deps[1:]
   405  		sort.Strings(slicedDeps)
   406  		deps = append([]string{primaryType}, slicedDeps...)
   407  	}
   408  
   409  	// Format as a string with fields
   410  	var buffer bytes.Buffer
   411  	for _, dep := range deps {
   412  		buffer.WriteString(dep)
   413  		buffer.WriteString("(")
   414  		for _, obj := range typedData.Types[dep] {
   415  			buffer.WriteString(obj.Type)
   416  			buffer.WriteString(" ")
   417  			buffer.WriteString(obj.Name)
   418  			buffer.WriteString(",")
   419  		}
   420  		buffer.Truncate(buffer.Len() - 1)
   421  		buffer.WriteString(")")
   422  	}
   423  	return buffer.Bytes()
   424  }
   425  
   426  // TypeHash creates the keccak256 hash  of the data
   427  func (typedData *TypedData) TypeHash(primaryType string) hexutil.Bytes {
   428  	return crypto.Keccak256(typedData.EncodeType(primaryType))
   429  }
   430  
   431  // EncodeData generates the following encoding:
   432  // `enc(value₁) ‖ enc(value₂) ‖ … ‖ enc(valueₙ)`
   433  //
   434  // each encoded member is 32-byte long
   435  func (typedData *TypedData) EncodeData(primaryType string, data map[string]interface{}, depth int) (hexutil.Bytes, error) {
   436  	if err := typedData.validate(); err != nil {
   437  		return nil, err
   438  	}
   439  
   440  	buffer := bytes.Buffer{}
   441  
   442  	// Verify extra data
   443  	if exp, got := len(typedData.Types[primaryType]), len(data); exp < got {
   444  		return nil, fmt.Errorf("there is extra data provided in the message (%d < %d)", exp, got)
   445  	}
   446  
   447  	// Add typehash
   448  	buffer.Write(typedData.TypeHash(primaryType))
   449  
   450  	// Add field contents. Structs and arrays have special handlers.
   451  	for _, field := range typedData.Types[primaryType] {
   452  		encType := field.Type
   453  		encValue := data[field.Name]
   454  		if encType[len(encType)-1:] == "]" {
   455  			arrayValue, ok := encValue.([]interface{})
   456  			if !ok {
   457  				return nil, dataMismatchError(encType, encValue)
   458  			}
   459  
   460  			arrayBuffer := bytes.Buffer{}
   461  			parsedType := strings.Split(encType, "[")[0]
   462  			for _, item := range arrayValue {
   463  				if typedData.Types[parsedType] != nil {
   464  					mapValue, ok := item.(map[string]interface{})
   465  					if !ok {
   466  						return nil, dataMismatchError(parsedType, item)
   467  					}
   468  					encodedData, err := typedData.EncodeData(parsedType, mapValue, depth+1)
   469  					if err != nil {
   470  						return nil, err
   471  					}
   472  					arrayBuffer.Write(encodedData)
   473  				} else {
   474  					bytesValue, err := typedData.EncodePrimitiveValue(parsedType, item, depth)
   475  					if err != nil {
   476  						return nil, err
   477  					}
   478  					arrayBuffer.Write(bytesValue)
   479  				}
   480  			}
   481  
   482  			buffer.Write(crypto.Keccak256(arrayBuffer.Bytes()))
   483  		} else if typedData.Types[field.Type] != nil {
   484  			mapValue, ok := encValue.(map[string]interface{})
   485  			if !ok {
   486  				return nil, dataMismatchError(encType, encValue)
   487  			}
   488  			encodedData, err := typedData.EncodeData(field.Type, mapValue, depth+1)
   489  			if err != nil {
   490  				return nil, err
   491  			}
   492  			buffer.Write(crypto.Keccak256(encodedData))
   493  		} else {
   494  			byteValue, err := typedData.EncodePrimitiveValue(encType, encValue, depth)
   495  			if err != nil {
   496  				return nil, err
   497  			}
   498  			buffer.Write(byteValue)
   499  		}
   500  	}
   501  	return buffer.Bytes(), nil
   502  }
   503  
   504  // Attempt to parse bytes in different formats: byte array, hex string, hexutil.Bytes.
   505  func parseBytes(encType interface{}) ([]byte, bool) {
   506  	switch v := encType.(type) {
   507  	case []byte:
   508  		return v, true
   509  	case hexutil.Bytes:
   510  		return v, true
   511  	case string:
   512  		bytes, err := hexutil.Decode(v)
   513  		if err != nil {
   514  			return nil, false
   515  		}
   516  		return bytes, true
   517  	default:
   518  		return nil, false
   519  	}
   520  }
   521  
   522  func parseInteger(encType string, encValue interface{}) (*big.Int, error) {
   523  	var (
   524  		length int
   525  		signed = strings.HasPrefix(encType, "int")
   526  		b      *big.Int
   527  	)
   528  	if encType == "int" || encType == "uint" {
   529  		length = 256
   530  	} else {
   531  		lengthStr := ""
   532  		if strings.HasPrefix(encType, "uint") {
   533  			lengthStr = strings.TrimPrefix(encType, "uint")
   534  		} else {
   535  			lengthStr = strings.TrimPrefix(encType, "int")
   536  		}
   537  		atoiSize, err := strconv.Atoi(lengthStr)
   538  		if err != nil {
   539  			return nil, fmt.Errorf("invalid size on integer: %v", lengthStr)
   540  		}
   541  		length = atoiSize
   542  	}
   543  	switch v := encValue.(type) {
   544  	case *math.HexOrDecimal256:
   545  		b = (*big.Int)(v)
   546  	case string:
   547  		var hexIntValue math.HexOrDecimal256
   548  		if err := hexIntValue.UnmarshalText([]byte(v)); err != nil {
   549  			return nil, err
   550  		}
   551  		b = (*big.Int)(&hexIntValue)
   552  	case float64:
   553  		// JSON parses non-strings as float64. Fail if we cannot
   554  		// convert it losslessly
   555  		if float64(int64(v)) == v {
   556  			b = big.NewInt(int64(v))
   557  		} else {
   558  			return nil, fmt.Errorf("invalid float value %v for type %v", v, encType)
   559  		}
   560  	}
   561  	if b == nil {
   562  		return nil, fmt.Errorf("invalid integer value %v/%v for type %v", encValue, reflect.TypeOf(encValue), encType)
   563  	}
   564  	if b.BitLen() > length {
   565  		return nil, fmt.Errorf("integer larger than '%v'", encType)
   566  	}
   567  	if !signed && b.Sign() == -1 {
   568  		return nil, fmt.Errorf("invalid negative value for unsigned type %v", encType)
   569  	}
   570  	return b, nil
   571  }
   572  
   573  // EncodePrimitiveValue deals with the primitive values found
   574  // while searching through the typed data
   575  func (typedData *TypedData) EncodePrimitiveValue(encType string, encValue interface{}, depth int) ([]byte, error) {
   576  	switch encType {
   577  	case "address":
   578  		stringValue, ok := encValue.(string)
   579  		if !ok || !common.IsHexAddress(stringValue) {
   580  			return nil, dataMismatchError(encType, encValue)
   581  		}
   582  		retval := make([]byte, 32)
   583  		copy(retval[12:], common.HexToAddress(stringValue).Bytes())
   584  		return retval, nil
   585  	case "bool":
   586  		boolValue, ok := encValue.(bool)
   587  		if !ok {
   588  			return nil, dataMismatchError(encType, encValue)
   589  		}
   590  		if boolValue {
   591  			return math.PaddedBigBytes(common.Big1, 32), nil
   592  		}
   593  		return math.PaddedBigBytes(common.Big0, 32), nil
   594  	case "string":
   595  		strVal, ok := encValue.(string)
   596  		if !ok {
   597  			return nil, dataMismatchError(encType, encValue)
   598  		}
   599  		return crypto.Keccak256([]byte(strVal)), nil
   600  	case "bytes":
   601  		bytesValue, ok := parseBytes(encValue)
   602  		if !ok {
   603  			return nil, dataMismatchError(encType, encValue)
   604  		}
   605  		return crypto.Keccak256(bytesValue), nil
   606  	}
   607  	if strings.HasPrefix(encType, "bytes") {
   608  		lengthStr := strings.TrimPrefix(encType, "bytes")
   609  		length, err := strconv.Atoi(lengthStr)
   610  		if err != nil {
   611  			return nil, fmt.Errorf("invalid size on bytes: %v", lengthStr)
   612  		}
   613  		if length < 0 || length > 32 {
   614  			return nil, fmt.Errorf("invalid size on bytes: %d", length)
   615  		}
   616  		if byteValue, ok := parseBytes(encValue); !ok || len(byteValue) != length {
   617  			return nil, dataMismatchError(encType, encValue)
   618  		} else {
   619  			// Right-pad the bits
   620  			dst := make([]byte, 32)
   621  			copy(dst, byteValue)
   622  			return dst, nil
   623  		}
   624  	}
   625  	if strings.HasPrefix(encType, "int") || strings.HasPrefix(encType, "uint") {
   626  		b, err := parseInteger(encType, encValue)
   627  		if err != nil {
   628  			return nil, err
   629  		}
   630  		return math.U256Bytes(b), nil
   631  	}
   632  	return nil, fmt.Errorf("unrecognized type '%s'", encType)
   633  
   634  }
   635  
   636  // dataMismatchError generates an error for a mismatch between
   637  // the provided type and data
   638  func dataMismatchError(encType string, encValue interface{}) error {
   639  	return fmt.Errorf("provided data '%v' doesn't match type '%s'", encValue, encType)
   640  }
   641  
   642  // EcRecover recovers the address associated with the given sig.
   643  // Only compatible with `text/plain`
   644  func (api *SignerAPI) EcRecover(ctx context.Context, data hexutil.Bytes, sig hexutil.Bytes) (common.Address, error) {
   645  	// Returns the address for the Account that was used to create the signature.
   646  	//
   647  	// Note, this function is compatible with eth_sign and personal_sign. As such it recovers
   648  	// the address of:
   649  	// hash = keccak256("\x19${byteVersion}Ethereum Signed Message:\n${message length}${message}")
   650  	// addr = ecrecover(hash, signature)
   651  	//
   652  	// Note, the signature must conform to the secp256k1 curve R, S and V values, where
   653  	// the V value must be be 27 or 28 for legacy reasons.
   654  	//
   655  	// https://github.com/aidoskuneen/adk-node/wiki/Management-APIs#personal_ecRecover
   656  	if len(sig) != 65 {
   657  		return common.Address{}, fmt.Errorf("signature must be 65 bytes long")
   658  	}
   659  	if sig[64] != 27 && sig[64] != 28 {
   660  		return common.Address{}, fmt.Errorf("invalid Ethereum signature (V is not 27 or 28)")
   661  	}
   662  	sig[64] -= 27 // Transform yellow paper V from 27/28 to 0/1
   663  	hash := accounts.TextHash(data)
   664  	rpk, err := crypto.SigToPub(hash, sig)
   665  	if err != nil {
   666  		return common.Address{}, err
   667  	}
   668  	return crypto.PubkeyToAddress(*rpk), nil
   669  }
   670  
   671  // UnmarshalValidatorData converts the bytes input to typed data
   672  func UnmarshalValidatorData(data interface{}) (ValidatorData, error) {
   673  	raw, ok := data.(map[string]interface{})
   674  	if !ok {
   675  		return ValidatorData{}, errors.New("validator input is not a map[string]interface{}")
   676  	}
   677  	addr, ok := raw["address"].(string)
   678  	if !ok {
   679  		return ValidatorData{}, errors.New("validator address is not sent as a string")
   680  	}
   681  	addrBytes, err := hexutil.Decode(addr)
   682  	if err != nil {
   683  		return ValidatorData{}, err
   684  	}
   685  	if !ok || len(addrBytes) == 0 {
   686  		return ValidatorData{}, errors.New("validator address is undefined")
   687  	}
   688  
   689  	message, ok := raw["message"].(string)
   690  	if !ok {
   691  		return ValidatorData{}, errors.New("message is not sent as a string")
   692  	}
   693  	messageBytes, err := hexutil.Decode(message)
   694  	if err != nil {
   695  		return ValidatorData{}, err
   696  	}
   697  	if !ok || len(messageBytes) == 0 {
   698  		return ValidatorData{}, errors.New("message is undefined")
   699  	}
   700  
   701  	return ValidatorData{
   702  		Address: common.BytesToAddress(addrBytes),
   703  		Message: messageBytes,
   704  	}, nil
   705  }
   706  
   707  // validate makes sure the types are sound
   708  func (typedData *TypedData) validate() error {
   709  	if err := typedData.Types.validate(); err != nil {
   710  		return err
   711  	}
   712  	if err := typedData.Domain.validate(); err != nil {
   713  		return err
   714  	}
   715  	return nil
   716  }
   717  
   718  // Map generates a map version of the typed data
   719  func (typedData *TypedData) Map() map[string]interface{} {
   720  	dataMap := map[string]interface{}{
   721  		"types":       typedData.Types,
   722  		"domain":      typedData.Domain.Map(),
   723  		"primaryType": typedData.PrimaryType,
   724  		"message":     typedData.Message,
   725  	}
   726  	return dataMap
   727  }
   728  
   729  // Format returns a representation of typedData, which can be easily displayed by a user-interface
   730  // without in-depth knowledge about 712 rules
   731  func (typedData *TypedData) Format() ([]*NameValueType, error) {
   732  	domain, err := typedData.formatData("EIP712Domain", typedData.Domain.Map())
   733  	if err != nil {
   734  		return nil, err
   735  	}
   736  	ptype, err := typedData.formatData(typedData.PrimaryType, typedData.Message)
   737  	if err != nil {
   738  		return nil, err
   739  	}
   740  	var nvts []*NameValueType
   741  	nvts = append(nvts, &NameValueType{
   742  		Name:  "EIP712Domain",
   743  		Value: domain,
   744  		Typ:   "domain",
   745  	})
   746  	nvts = append(nvts, &NameValueType{
   747  		Name:  typedData.PrimaryType,
   748  		Value: ptype,
   749  		Typ:   "primary type",
   750  	})
   751  	return nvts, nil
   752  }
   753  
   754  func (typedData *TypedData) formatData(primaryType string, data map[string]interface{}) ([]*NameValueType, error) {
   755  	var output []*NameValueType
   756  
   757  	// Add field contents. Structs and arrays have special handlers.
   758  	for _, field := range typedData.Types[primaryType] {
   759  		encName := field.Name
   760  		encValue := data[encName]
   761  		item := &NameValueType{
   762  			Name: encName,
   763  			Typ:  field.Type,
   764  		}
   765  		if field.isArray() {
   766  			arrayValue, _ := encValue.([]interface{})
   767  			parsedType := field.typeName()
   768  			for _, v := range arrayValue {
   769  				if typedData.Types[parsedType] != nil {
   770  					mapValue, _ := v.(map[string]interface{})
   771  					mapOutput, err := typedData.formatData(parsedType, mapValue)
   772  					if err != nil {
   773  						return nil, err
   774  					}
   775  					item.Value = mapOutput
   776  				} else {
   777  					primitiveOutput, err := formatPrimitiveValue(field.Type, encValue)
   778  					if err != nil {
   779  						return nil, err
   780  					}
   781  					item.Value = primitiveOutput
   782  				}
   783  			}
   784  		} else if typedData.Types[field.Type] != nil {
   785  			if mapValue, ok := encValue.(map[string]interface{}); ok {
   786  				mapOutput, err := typedData.formatData(field.Type, mapValue)
   787  				if err != nil {
   788  					return nil, err
   789  				}
   790  				item.Value = mapOutput
   791  			} else {
   792  				item.Value = "<nil>"
   793  			}
   794  		} else {
   795  			primitiveOutput, err := formatPrimitiveValue(field.Type, encValue)
   796  			if err != nil {
   797  				return nil, err
   798  			}
   799  			item.Value = primitiveOutput
   800  		}
   801  		output = append(output, item)
   802  	}
   803  	return output, nil
   804  }
   805  
   806  func formatPrimitiveValue(encType string, encValue interface{}) (string, error) {
   807  	switch encType {
   808  	case "address":
   809  		if stringValue, ok := encValue.(string); !ok {
   810  			return "", fmt.Errorf("could not format value %v as address", encValue)
   811  		} else {
   812  			return common.HexToAddress(stringValue).String(), nil
   813  		}
   814  	case "bool":
   815  		if boolValue, ok := encValue.(bool); !ok {
   816  			return "", fmt.Errorf("could not format value %v as bool", encValue)
   817  		} else {
   818  			return fmt.Sprintf("%t", boolValue), nil
   819  		}
   820  	case "bytes", "string":
   821  		return fmt.Sprintf("%s", encValue), nil
   822  	}
   823  	if strings.HasPrefix(encType, "bytes") {
   824  		return fmt.Sprintf("%s", encValue), nil
   825  
   826  	}
   827  	if strings.HasPrefix(encType, "uint") || strings.HasPrefix(encType, "int") {
   828  		if b, err := parseInteger(encType, encValue); err != nil {
   829  			return "", err
   830  		} else {
   831  			return fmt.Sprintf("%d (0x%x)", b, b), nil
   832  		}
   833  	}
   834  	return "", fmt.Errorf("unhandled type %v", encType)
   835  }
   836  
   837  // NameValueType is a very simple struct with Name, Value and Type. It's meant for simple
   838  // json structures used to communicate signing-info about typed data with the UI
   839  type NameValueType struct {
   840  	Name  string      `json:"name"`
   841  	Value interface{} `json:"value"`
   842  	Typ   string      `json:"type"`
   843  }
   844  
   845  // Pprint returns a pretty-printed version of nvt
   846  func (nvt *NameValueType) Pprint(depth int) string {
   847  	output := bytes.Buffer{}
   848  	output.WriteString(strings.Repeat("\u00a0", depth*2))
   849  	output.WriteString(fmt.Sprintf("%s [%s]: ", nvt.Name, nvt.Typ))
   850  	if nvts, ok := nvt.Value.([]*NameValueType); ok {
   851  		output.WriteString("\n")
   852  		for _, next := range nvts {
   853  			sublevel := next.Pprint(depth + 1)
   854  			output.WriteString(sublevel)
   855  		}
   856  	} else {
   857  		if nvt.Value != nil {
   858  			output.WriteString(fmt.Sprintf("%q\n", nvt.Value))
   859  		} else {
   860  			output.WriteString("\n")
   861  		}
   862  	}
   863  	return output.String()
   864  }
   865  
   866  // Validate checks if the types object is conformant to the specs
   867  func (t Types) validate() error {
   868  	for typeKey, typeArr := range t {
   869  		if len(typeKey) == 0 {
   870  			return fmt.Errorf("empty type key")
   871  		}
   872  		for i, typeObj := range typeArr {
   873  			if len(typeObj.Type) == 0 {
   874  				return fmt.Errorf("type %q:%d: empty Type", typeKey, i)
   875  			}
   876  			if len(typeObj.Name) == 0 {
   877  				return fmt.Errorf("type %q:%d: empty Name", typeKey, i)
   878  			}
   879  			if typeKey == typeObj.Type {
   880  				return fmt.Errorf("type %q cannot reference itself", typeObj.Type)
   881  			}
   882  			if typeObj.isReferenceType() {
   883  				if _, exist := t[typeObj.typeName()]; !exist {
   884  					return fmt.Errorf("reference type %q is undefined", typeObj.Type)
   885  				}
   886  				if !typedDataReferenceTypeRegexp.MatchString(typeObj.Type) {
   887  					return fmt.Errorf("unknown reference type %q", typeObj.Type)
   888  				}
   889  			} else if !isPrimitiveTypeValid(typeObj.Type) {
   890  				return fmt.Errorf("unknown type %q", typeObj.Type)
   891  			}
   892  		}
   893  	}
   894  	return nil
   895  }
   896  
   897  // Checks if the primitive value is valid
   898  func isPrimitiveTypeValid(primitiveType string) bool {
   899  	if primitiveType == "address" ||
   900  		primitiveType == "address[]" ||
   901  		primitiveType == "bool" ||
   902  		primitiveType == "bool[]" ||
   903  		primitiveType == "string" ||
   904  		primitiveType == "string[]" {
   905  		return true
   906  	}
   907  	if primitiveType == "bytes" ||
   908  		primitiveType == "bytes[]" ||
   909  		primitiveType == "bytes1" ||
   910  		primitiveType == "bytes1[]" ||
   911  		primitiveType == "bytes2" ||
   912  		primitiveType == "bytes2[]" ||
   913  		primitiveType == "bytes3" ||
   914  		primitiveType == "bytes3[]" ||
   915  		primitiveType == "bytes4" ||
   916  		primitiveType == "bytes4[]" ||
   917  		primitiveType == "bytes5" ||
   918  		primitiveType == "bytes5[]" ||
   919  		primitiveType == "bytes6" ||
   920  		primitiveType == "bytes6[]" ||
   921  		primitiveType == "bytes7" ||
   922  		primitiveType == "bytes7[]" ||
   923  		primitiveType == "bytes8" ||
   924  		primitiveType == "bytes8[]" ||
   925  		primitiveType == "bytes9" ||
   926  		primitiveType == "bytes9[]" ||
   927  		primitiveType == "bytes10" ||
   928  		primitiveType == "bytes10[]" ||
   929  		primitiveType == "bytes11" ||
   930  		primitiveType == "bytes11[]" ||
   931  		primitiveType == "bytes12" ||
   932  		primitiveType == "bytes12[]" ||
   933  		primitiveType == "bytes13" ||
   934  		primitiveType == "bytes13[]" ||
   935  		primitiveType == "bytes14" ||
   936  		primitiveType == "bytes14[]" ||
   937  		primitiveType == "bytes15" ||
   938  		primitiveType == "bytes15[]" ||
   939  		primitiveType == "bytes16" ||
   940  		primitiveType == "bytes16[]" ||
   941  		primitiveType == "bytes17" ||
   942  		primitiveType == "bytes17[]" ||
   943  		primitiveType == "bytes18" ||
   944  		primitiveType == "bytes18[]" ||
   945  		primitiveType == "bytes19" ||
   946  		primitiveType == "bytes19[]" ||
   947  		primitiveType == "bytes20" ||
   948  		primitiveType == "bytes20[]" ||
   949  		primitiveType == "bytes21" ||
   950  		primitiveType == "bytes21[]" ||
   951  		primitiveType == "bytes22" ||
   952  		primitiveType == "bytes22[]" ||
   953  		primitiveType == "bytes23" ||
   954  		primitiveType == "bytes23[]" ||
   955  		primitiveType == "bytes24" ||
   956  		primitiveType == "bytes24[]" ||
   957  		primitiveType == "bytes25" ||
   958  		primitiveType == "bytes25[]" ||
   959  		primitiveType == "bytes26" ||
   960  		primitiveType == "bytes26[]" ||
   961  		primitiveType == "bytes27" ||
   962  		primitiveType == "bytes27[]" ||
   963  		primitiveType == "bytes28" ||
   964  		primitiveType == "bytes28[]" ||
   965  		primitiveType == "bytes29" ||
   966  		primitiveType == "bytes29[]" ||
   967  		primitiveType == "bytes30" ||
   968  		primitiveType == "bytes30[]" ||
   969  		primitiveType == "bytes31" ||
   970  		primitiveType == "bytes31[]" ||
   971  		primitiveType == "bytes32" ||
   972  		primitiveType == "bytes32[]" {
   973  		return true
   974  	}
   975  	if primitiveType == "int" ||
   976  		primitiveType == "int[]" ||
   977  		primitiveType == "int8" ||
   978  		primitiveType == "int8[]" ||
   979  		primitiveType == "int16" ||
   980  		primitiveType == "int16[]" ||
   981  		primitiveType == "int32" ||
   982  		primitiveType == "int32[]" ||
   983  		primitiveType == "int64" ||
   984  		primitiveType == "int64[]" ||
   985  		primitiveType == "int128" ||
   986  		primitiveType == "int128[]" ||
   987  		primitiveType == "int256" ||
   988  		primitiveType == "int256[]" {
   989  		return true
   990  	}
   991  	if primitiveType == "uint" ||
   992  		primitiveType == "uint[]" ||
   993  		primitiveType == "uint8" ||
   994  		primitiveType == "uint8[]" ||
   995  		primitiveType == "uint16" ||
   996  		primitiveType == "uint16[]" ||
   997  		primitiveType == "uint32" ||
   998  		primitiveType == "uint32[]" ||
   999  		primitiveType == "uint64" ||
  1000  		primitiveType == "uint64[]" ||
  1001  		primitiveType == "uint128" ||
  1002  		primitiveType == "uint128[]" ||
  1003  		primitiveType == "uint256" ||
  1004  		primitiveType == "uint256[]" {
  1005  		return true
  1006  	}
  1007  	return false
  1008  }
  1009  
  1010  // validate checks if the given domain is valid, i.e. contains at least
  1011  // the minimum viable keys and values
  1012  func (domain *TypedDataDomain) validate() error {
  1013  	if domain.ChainId == nil && len(domain.Name) == 0 && len(domain.Version) == 0 && len(domain.VerifyingContract) == 0 && len(domain.Salt) == 0 {
  1014  		return errors.New("domain is undefined")
  1015  	}
  1016  
  1017  	return nil
  1018  }
  1019  
  1020  // Map is a helper function to generate a map version of the domain
  1021  func (domain *TypedDataDomain) Map() map[string]interface{} {
  1022  	dataMap := map[string]interface{}{}
  1023  
  1024  	if domain.ChainId != nil {
  1025  		dataMap["chainId"] = domain.ChainId
  1026  	}
  1027  
  1028  	if len(domain.Name) > 0 {
  1029  		dataMap["name"] = domain.Name
  1030  	}
  1031  
  1032  	if len(domain.Version) > 0 {
  1033  		dataMap["version"] = domain.Version
  1034  	}
  1035  
  1036  	if len(domain.VerifyingContract) > 0 {
  1037  		dataMap["verifyingContract"] = domain.VerifyingContract
  1038  	}
  1039  
  1040  	if len(domain.Salt) > 0 {
  1041  		dataMap["salt"] = domain.Salt
  1042  	}
  1043  	return dataMap
  1044  }