github.com/aigarnetwork/aigar@v0.0.0-20191115204914-d59a6eb70f8e/accounts/abi/bind/bind.go (about)

     1  //  Copyright 2018 The go-ethereum Authors
     2  //  Copyright 2019 The go-aigar Authors
     3  //  This file is part of the go-aigar library.
     4  //
     5  //  The go-aigar library is free software: you can redistribute it and/or modify
     6  //  it under the terms of the GNU Lesser General Public License as published by
     7  //  the Free Software Foundation, either version 3 of the License, or
     8  //  (at your option) any later version.
     9  //
    10  //  The go-aigar library is distributed in the hope that it will be useful,
    11  //  but WITHOUT ANY WARRANTY; without even the implied warranty of
    12  //  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    13  //  GNU Lesser General Public License for more details.
    14  //
    15  //  You should have received a copy of the GNU Lesser General Public License
    16  //  along with the go-aigar library. If not, see <http://www.gnu.org/licenses/>.
    17  
    18  // Package bind generates Ethereum contract Go bindings.
    19  //
    20  // Detailed usage document and tutorial available on the go-ethereum Wiki page:
    21  // https://github.com/AigarNetwork/aigar/wiki/Native-DApps:-Go-bindings-to-Ethereum-contracts
    22  package bind
    23  
    24  import (
    25  	"bytes"
    26  	"errors"
    27  	"fmt"
    28  	"go/format"
    29  	"regexp"
    30  	"strings"
    31  	"text/template"
    32  	"unicode"
    33  
    34  	"github.com/AigarNetwork/aigar/accounts/abi"
    35  	"github.com/AigarNetwork/aigar/log"
    36  )
    37  
    38  // Lang is a target programming language selector to generate bindings for.
    39  type Lang int
    40  
    41  const (
    42  	LangGo Lang = iota
    43  	LangJava
    44  	LangObjC
    45  )
    46  
    47  // Bind generates a Go wrapper around a contract ABI. This wrapper isn't meant
    48  // to be used as is in client code, but rather as an intermediate struct which
    49  // enforces compile time type safety and naming convention opposed to having to
    50  // manually maintain hard coded strings that break on runtime.
    51  func Bind(types []string, abis []string, bytecodes []string, fsigs []map[string]string, pkg string, lang Lang, libs map[string]string, aliases map[string]string) (string, error) {
    52  	// Process each individual contract requested binding
    53  	contracts := make(map[string]*tmplContract)
    54  
    55  	// Map used to flag each encountered library as such
    56  	isLib := make(map[string]struct{})
    57  
    58  	for i := 0; i < len(types); i++ {
    59  		// Parse the actual ABI to generate the binding for
    60  		evmABI, err := abi.JSON(strings.NewReader(abis[i]))
    61  		if err != nil {
    62  			return "", err
    63  		}
    64  		// Strip any whitespace from the JSON ABI
    65  		strippedABI := strings.Map(func(r rune) rune {
    66  			if unicode.IsSpace(r) {
    67  				return -1
    68  			}
    69  			return r
    70  		}, abis[i])
    71  
    72  		// Extract the call and transact methods; events, struct definitions; and sort them alphabetically
    73  		var (
    74  			calls     = make(map[string]*tmplMethod)
    75  			transacts = make(map[string]*tmplMethod)
    76  			events    = make(map[string]*tmplEvent)
    77  			structs   = make(map[string]*tmplStruct)
    78  
    79  			// identifiers are used to detect duplicated identifier of function
    80  			// and event. For all calls, transacts and events, abigen will generate
    81  			// corresponding bindings. However we have to ensure there is no
    82  			// identifier coliision in the bindings of these categories.
    83  			callIdentifiers     = make(map[string]bool)
    84  			transactIdentifiers = make(map[string]bool)
    85  			eventIdentifiers    = make(map[string]bool)
    86  		)
    87  		for _, original := range evmABI.Methods {
    88  			// Normalize the method for capital cases and non-anonymous inputs/outputs
    89  			normalized := original
    90  			normalizedName := methodNormalizer[lang](alias(aliases, original.Name))
    91  			// Ensure there is no duplicated identifier
    92  			var identifiers = callIdentifiers
    93  			if !original.Const {
    94  				identifiers = transactIdentifiers
    95  			}
    96  			if identifiers[normalizedName] {
    97  				return "", fmt.Errorf("duplicated identifier \"%s\"(normalized \"%s\"), use --alias for renaming", original.Name, normalizedName)
    98  			}
    99  			identifiers[normalizedName] = true
   100  			normalized.Name = normalizedName
   101  			normalized.Inputs = make([]abi.Argument, len(original.Inputs))
   102  			copy(normalized.Inputs, original.Inputs)
   103  			for j, input := range normalized.Inputs {
   104  				if input.Name == "" {
   105  					normalized.Inputs[j].Name = fmt.Sprintf("arg%d", j)
   106  				}
   107  				if hasStruct(input.Type) {
   108  					bindStructType[lang](input.Type, structs)
   109  				}
   110  			}
   111  			normalized.Outputs = make([]abi.Argument, len(original.Outputs))
   112  			copy(normalized.Outputs, original.Outputs)
   113  			for j, output := range normalized.Outputs {
   114  				if output.Name != "" {
   115  					normalized.Outputs[j].Name = capitalise(output.Name)
   116  				}
   117  				if hasStruct(output.Type) {
   118  					bindStructType[lang](output.Type, structs)
   119  				}
   120  			}
   121  			// Append the methods to the call or transact lists
   122  			if original.Const {
   123  				calls[original.Name] = &tmplMethod{Original: original, Normalized: normalized, Structured: structured(original.Outputs)}
   124  			} else {
   125  				transacts[original.Name] = &tmplMethod{Original: original, Normalized: normalized, Structured: structured(original.Outputs)}
   126  			}
   127  		}
   128  		for _, original := range evmABI.Events {
   129  			// Skip anonymous events as they don't support explicit filtering
   130  			if original.Anonymous {
   131  				continue
   132  			}
   133  			// Normalize the event for capital cases and non-anonymous outputs
   134  			normalized := original
   135  
   136  			// Ensure there is no duplicated identifier
   137  			normalizedName := methodNormalizer[lang](alias(aliases, original.Name))
   138  			if eventIdentifiers[normalizedName] {
   139  				return "", fmt.Errorf("duplicated identifier \"%s\"(normalized \"%s\"), use --alias for renaming", original.Name, normalizedName)
   140  			}
   141  			eventIdentifiers[normalizedName] = true
   142  			normalized.Name = normalizedName
   143  
   144  			normalized.Inputs = make([]abi.Argument, len(original.Inputs))
   145  			copy(normalized.Inputs, original.Inputs)
   146  			for j, input := range normalized.Inputs {
   147  				if input.Name == "" {
   148  					normalized.Inputs[j].Name = fmt.Sprintf("arg%d", j)
   149  				}
   150  				if hasStruct(input.Type) {
   151  					bindStructType[lang](input.Type, structs)
   152  				}
   153  			}
   154  			// Append the event to the accumulator list
   155  			events[original.Name] = &tmplEvent{Original: original, Normalized: normalized}
   156  		}
   157  
   158  		// There is no easy way to pass arbitrary java objects to the Go side.
   159  		if len(structs) > 0 && lang == LangJava {
   160  			return "", errors.New("java binding for tuple arguments is not supported yet")
   161  		}
   162  
   163  		contracts[types[i]] = &tmplContract{
   164  			Type:        capitalise(types[i]),
   165  			InputABI:    strings.Replace(strippedABI, "\"", "\\\"", -1),
   166  			InputBin:    strings.TrimPrefix(strings.TrimSpace(bytecodes[i]), "0x"),
   167  			Constructor: evmABI.Constructor,
   168  			Calls:       calls,
   169  			Transacts:   transacts,
   170  			Events:      events,
   171  			Libraries:   make(map[string]string),
   172  			Structs:     structs,
   173  		}
   174  		// Function 4-byte signatures are stored in the same sequence
   175  		// as types, if available.
   176  		if len(fsigs) > i {
   177  			contracts[types[i]].FuncSigs = fsigs[i]
   178  		}
   179  		// Parse library references.
   180  		for pattern, name := range libs {
   181  			matched, err := regexp.Match("__\\$"+pattern+"\\$__", []byte(contracts[types[i]].InputBin))
   182  			if err != nil {
   183  				log.Error("Could not search for pattern", "pattern", pattern, "contract", contracts[types[i]], "err", err)
   184  			}
   185  			if matched {
   186  				contracts[types[i]].Libraries[pattern] = name
   187  				// keep track that this type is a library
   188  				if _, ok := isLib[name]; !ok {
   189  					isLib[name] = struct{}{}
   190  				}
   191  			}
   192  		}
   193  	}
   194  	// Check if that type has already been identified as a library
   195  	for i := 0; i < len(types); i++ {
   196  		_, ok := isLib[types[i]]
   197  		contracts[types[i]].Library = ok
   198  	}
   199  	// Generate the contract template data content and render it
   200  	data := &tmplData{
   201  		Package:   pkg,
   202  		Contracts: contracts,
   203  		Libraries: libs,
   204  	}
   205  	buffer := new(bytes.Buffer)
   206  
   207  	funcs := map[string]interface{}{
   208  		"bindtype":      bindType[lang],
   209  		"bindtopictype": bindTopicType[lang],
   210  		"namedtype":     namedType[lang],
   211  		"formatmethod":  formatMethod,
   212  		"formatevent":   formatEvent,
   213  		"capitalise":    capitalise,
   214  		"decapitalise":  decapitalise,
   215  	}
   216  	tmpl := template.Must(template.New("").Funcs(funcs).Parse(tmplSource[lang]))
   217  	if err := tmpl.Execute(buffer, data); err != nil {
   218  		return "", err
   219  	}
   220  	// For Go bindings pass the code through gofmt to clean it up
   221  	if lang == LangGo {
   222  		code, err := format.Source(buffer.Bytes())
   223  		if err != nil {
   224  			return "", fmt.Errorf("%v\n%s", err, buffer)
   225  		}
   226  		return string(code), nil
   227  	}
   228  	// For all others just return as is for now
   229  	return buffer.String(), nil
   230  }
   231  
   232  // bindType is a set of type binders that convert Solidity types to some supported
   233  // programming language types.
   234  var bindType = map[Lang]func(kind abi.Type, structs map[string]*tmplStruct) string{
   235  	LangGo:   bindTypeGo,
   236  	LangJava: bindTypeJava,
   237  }
   238  
   239  // bindBasicTypeGo converts basic solidity types(except array, slice and tuple) to Go one.
   240  func bindBasicTypeGo(kind abi.Type) string {
   241  	switch kind.T {
   242  	case abi.AddressTy:
   243  		return "common.Address"
   244  	case abi.IntTy, abi.UintTy:
   245  		parts := regexp.MustCompile(`(u)?int([0-9]*)`).FindStringSubmatch(kind.String())
   246  		switch parts[2] {
   247  		case "8", "16", "32", "64":
   248  			return fmt.Sprintf("%sint%s", parts[1], parts[2])
   249  		}
   250  		return "*big.Int"
   251  	case abi.FixedBytesTy:
   252  		return fmt.Sprintf("[%d]byte", kind.Size)
   253  	case abi.BytesTy:
   254  		return "[]byte"
   255  	case abi.FunctionTy:
   256  		return "[24]byte"
   257  	default:
   258  		// string, bool types
   259  		return kind.String()
   260  	}
   261  }
   262  
   263  // bindTypeGo converts solidity types to Go ones. Since there is no clear mapping
   264  // from all Solidity types to Go ones (e.g. uint17), those that cannot be exactly
   265  // mapped will use an upscaled type (e.g. BigDecimal).
   266  func bindTypeGo(kind abi.Type, structs map[string]*tmplStruct) string {
   267  	switch kind.T {
   268  	case abi.TupleTy:
   269  		return structs[kind.TupleRawName+kind.String()].Name
   270  	case abi.ArrayTy:
   271  		return fmt.Sprintf("[%d]", kind.Size) + bindTypeGo(*kind.Elem, structs)
   272  	case abi.SliceTy:
   273  		return "[]" + bindTypeGo(*kind.Elem, structs)
   274  	default:
   275  		return bindBasicTypeGo(kind)
   276  	}
   277  }
   278  
   279  // bindBasicTypeJava converts basic solidity types(except array, slice and tuple) to Java one.
   280  func bindBasicTypeJava(kind abi.Type) string {
   281  	switch kind.T {
   282  	case abi.AddressTy:
   283  		return "Address"
   284  	case abi.IntTy, abi.UintTy:
   285  		// Note that uint and int (without digits) are also matched,
   286  		// these are size 256, and will translate to BigInt (the default).
   287  		parts := regexp.MustCompile(`(u)?int([0-9]*)`).FindStringSubmatch(kind.String())
   288  		if len(parts) != 3 {
   289  			return kind.String()
   290  		}
   291  		// All unsigned integers should be translated to BigInt since gomobile doesn't
   292  		// support them.
   293  		if parts[1] == "u" {
   294  			return "BigInt"
   295  		}
   296  
   297  		namedSize := map[string]string{
   298  			"8":  "byte",
   299  			"16": "short",
   300  			"32": "int",
   301  			"64": "long",
   302  		}[parts[2]]
   303  
   304  		// default to BigInt
   305  		if namedSize == "" {
   306  			namedSize = "BigInt"
   307  		}
   308  		return namedSize
   309  	case abi.FixedBytesTy, abi.BytesTy:
   310  		return "byte[]"
   311  	case abi.BoolTy:
   312  		return "boolean"
   313  	case abi.StringTy:
   314  		return "String"
   315  	case abi.FunctionTy:
   316  		return "byte[24]"
   317  	default:
   318  		return kind.String()
   319  	}
   320  }
   321  
   322  // pluralizeJavaType explicitly converts multidimensional types to predefined
   323  // type in go side.
   324  func pluralizeJavaType(typ string) string {
   325  	switch typ {
   326  	case "boolean":
   327  		return "Bools"
   328  	case "String":
   329  		return "Strings"
   330  	case "Address":
   331  		return "Addresses"
   332  	case "byte[]":
   333  		return "Binaries"
   334  	case "BigInt":
   335  		return "BigInts"
   336  	}
   337  	return typ + "[]"
   338  }
   339  
   340  // bindTypeJava converts a Solidity type to a Java one. Since there is no clear mapping
   341  // from all Solidity types to Java ones (e.g. uint17), those that cannot be exactly
   342  // mapped will use an upscaled type (e.g. BigDecimal).
   343  func bindTypeJava(kind abi.Type, structs map[string]*tmplStruct) string {
   344  	switch kind.T {
   345  	case abi.TupleTy:
   346  		return structs[kind.TupleRawName+kind.String()].Name
   347  	case abi.ArrayTy, abi.SliceTy:
   348  		return pluralizeJavaType(bindTypeJava(*kind.Elem, structs))
   349  	default:
   350  		return bindBasicTypeJava(kind)
   351  	}
   352  }
   353  
   354  // bindTopicType is a set of type binders that convert Solidity types to some
   355  // supported programming language topic types.
   356  var bindTopicType = map[Lang]func(kind abi.Type, structs map[string]*tmplStruct) string{
   357  	LangGo:   bindTopicTypeGo,
   358  	LangJava: bindTopicTypeJava,
   359  }
   360  
   361  // bindTopicTypeGo converts a Solidity topic type to a Go one. It is almost the same
   362  // funcionality as for simple types, but dynamic types get converted to hashes.
   363  func bindTopicTypeGo(kind abi.Type, structs map[string]*tmplStruct) string {
   364  	bound := bindTypeGo(kind, structs)
   365  
   366  	// todo(rjl493456442) according solidity documentation, indexed event
   367  	// parameters that are not value types i.e. arrays and structs are not
   368  	// stored directly but instead a keccak256-hash of an encoding is stored.
   369  	//
   370  	// We only convert stringS and bytes to hash, still need to deal with
   371  	// array(both fixed-size and dynamic-size) and struct.
   372  	if bound == "string" || bound == "[]byte" {
   373  		bound = "common.Hash"
   374  	}
   375  	return bound
   376  }
   377  
   378  // bindTopicTypeJava converts a Solidity topic type to a Java one. It is almost the same
   379  // funcionality as for simple types, but dynamic types get converted to hashes.
   380  func bindTopicTypeJava(kind abi.Type, structs map[string]*tmplStruct) string {
   381  	bound := bindTypeJava(kind, structs)
   382  
   383  	// todo(rjl493456442) according solidity documentation, indexed event
   384  	// parameters that are not value types i.e. arrays and structs are not
   385  	// stored directly but instead a keccak256-hash of an encoding is stored.
   386  	//
   387  	// We only convert stringS and bytes to hash, still need to deal with
   388  	// array(both fixed-size and dynamic-size) and struct.
   389  	if bound == "String" || bound == "byte[]" {
   390  		bound = "Hash"
   391  	}
   392  	return bound
   393  }
   394  
   395  // bindStructType is a set of type binders that convert Solidity tuple types to some supported
   396  // programming language struct definition.
   397  var bindStructType = map[Lang]func(kind abi.Type, structs map[string]*tmplStruct) string{
   398  	LangGo:   bindStructTypeGo,
   399  	LangJava: bindStructTypeJava,
   400  }
   401  
   402  // bindStructTypeGo converts a Solidity tuple type to a Go one and records the mapping
   403  // in the given map.
   404  // Notably, this function will resolve and record nested struct recursively.
   405  func bindStructTypeGo(kind abi.Type, structs map[string]*tmplStruct) string {
   406  	switch kind.T {
   407  	case abi.TupleTy:
   408  		// We compose raw struct name and canonical parameter expression
   409  		// together here. The reason is before solidity v0.5.11, kind.TupleRawName
   410  		// is empty, so we use canonical parameter expression to distinguish
   411  		// different struct definition. From the consideration of backward
   412  		// compatibility, we concat these two together so that if kind.TupleRawName
   413  		// is not empty, it can have unique id.
   414  		id := kind.TupleRawName + kind.String()
   415  		if s, exist := structs[id]; exist {
   416  			return s.Name
   417  		}
   418  		var fields []*tmplField
   419  		for i, elem := range kind.TupleElems {
   420  			field := bindStructTypeGo(*elem, structs)
   421  			fields = append(fields, &tmplField{Type: field, Name: capitalise(kind.TupleRawNames[i]), SolKind: *elem})
   422  		}
   423  		name := kind.TupleRawName
   424  		if name == "" {
   425  			name = fmt.Sprintf("Struct%d", len(structs))
   426  		}
   427  		structs[id] = &tmplStruct{
   428  			Name:   name,
   429  			Fields: fields,
   430  		}
   431  		return name
   432  	case abi.ArrayTy:
   433  		return fmt.Sprintf("[%d]", kind.Size) + bindStructTypeGo(*kind.Elem, structs)
   434  	case abi.SliceTy:
   435  		return "[]" + bindStructTypeGo(*kind.Elem, structs)
   436  	default:
   437  		return bindBasicTypeGo(kind)
   438  	}
   439  }
   440  
   441  // bindStructTypeJava converts a Solidity tuple type to a Java one and records the mapping
   442  // in the given map.
   443  // Notably, this function will resolve and record nested struct recursively.
   444  func bindStructTypeJava(kind abi.Type, structs map[string]*tmplStruct) string {
   445  	switch kind.T {
   446  	case abi.TupleTy:
   447  		// We compose raw struct name and canonical parameter expression
   448  		// together here. The reason is before solidity v0.5.11, kind.TupleRawName
   449  		// is empty, so we use canonical parameter expression to distinguish
   450  		// different struct definition. From the consideration of backward
   451  		// compatibility, we concat these two together so that if kind.TupleRawName
   452  		// is not empty, it can have unique id.
   453  		id := kind.TupleRawName + kind.String()
   454  		if s, exist := structs[id]; exist {
   455  			return s.Name
   456  		}
   457  		var fields []*tmplField
   458  		for i, elem := range kind.TupleElems {
   459  			field := bindStructTypeJava(*elem, structs)
   460  			fields = append(fields, &tmplField{Type: field, Name: decapitalise(kind.TupleRawNames[i]), SolKind: *elem})
   461  		}
   462  		name := kind.TupleRawName
   463  		if name == "" {
   464  			name = fmt.Sprintf("Class%d", len(structs))
   465  		}
   466  		structs[id] = &tmplStruct{
   467  			Name:   name,
   468  			Fields: fields,
   469  		}
   470  		return name
   471  	case abi.ArrayTy, abi.SliceTy:
   472  		return pluralizeJavaType(bindStructTypeJava(*kind.Elem, structs))
   473  	default:
   474  		return bindBasicTypeJava(kind)
   475  	}
   476  }
   477  
   478  // namedType is a set of functions that transform language specific types to
   479  // named versions that my be used inside method names.
   480  var namedType = map[Lang]func(string, abi.Type) string{
   481  	LangGo:   func(string, abi.Type) string { panic("this shouldn't be needed") },
   482  	LangJava: namedTypeJava,
   483  }
   484  
   485  // namedTypeJava converts some primitive data types to named variants that can
   486  // be used as parts of method names.
   487  func namedTypeJava(javaKind string, solKind abi.Type) string {
   488  	switch javaKind {
   489  	case "byte[]":
   490  		return "Binary"
   491  	case "boolean":
   492  		return "Bool"
   493  	default:
   494  		parts := regexp.MustCompile(`(u)?int([0-9]*)(\[[0-9]*\])?`).FindStringSubmatch(solKind.String())
   495  		if len(parts) != 4 {
   496  			return javaKind
   497  		}
   498  		switch parts[2] {
   499  		case "8", "16", "32", "64":
   500  			if parts[3] == "" {
   501  				return capitalise(fmt.Sprintf("%sint%s", parts[1], parts[2]))
   502  			}
   503  			return capitalise(fmt.Sprintf("%sint%ss", parts[1], parts[2]))
   504  
   505  		default:
   506  			return javaKind
   507  		}
   508  	}
   509  }
   510  
   511  // alias returns an alias of the given string based on the aliasing rules
   512  // or returns itself if no rule is matched.
   513  func alias(aliases map[string]string, n string) string {
   514  	if alias, exist := aliases[n]; exist {
   515  		return alias
   516  	}
   517  	return n
   518  }
   519  
   520  // methodNormalizer is a name transformer that modifies Solidity method names to
   521  // conform to target language naming concentions.
   522  var methodNormalizer = map[Lang]func(string) string{
   523  	LangGo:   abi.ToCamelCase,
   524  	LangJava: decapitalise,
   525  }
   526  
   527  // capitalise makes a camel-case string which starts with an upper case character.
   528  func capitalise(input string) string {
   529  	return abi.ToCamelCase(input)
   530  }
   531  
   532  // decapitalise makes a camel-case string which starts with a lower case character.
   533  func decapitalise(input string) string {
   534  	if len(input) == 0 {
   535  		return input
   536  	}
   537  
   538  	goForm := abi.ToCamelCase(input)
   539  	return strings.ToLower(goForm[:1]) + goForm[1:]
   540  }
   541  
   542  // structured checks whether a list of ABI data types has enough information to
   543  // operate through a proper Go struct or if flat returns are needed.
   544  func structured(args abi.Arguments) bool {
   545  	if len(args) < 2 {
   546  		return false
   547  	}
   548  	exists := make(map[string]bool)
   549  	for _, out := range args {
   550  		// If the name is anonymous, we can't organize into a struct
   551  		if out.Name == "" {
   552  			return false
   553  		}
   554  		// If the field name is empty when normalized or collides (var, Var, _var, _Var),
   555  		// we can't organize into a struct
   556  		field := capitalise(out.Name)
   557  		if field == "" || exists[field] {
   558  			return false
   559  		}
   560  		exists[field] = true
   561  	}
   562  	return true
   563  }
   564  
   565  // hasStruct returns an indicator whether the given type is struct, struct slice
   566  // or struct array.
   567  func hasStruct(t abi.Type) bool {
   568  	switch t.T {
   569  	case abi.SliceTy:
   570  		return hasStruct(*t.Elem)
   571  	case abi.ArrayTy:
   572  		return hasStruct(*t.Elem)
   573  	case abi.TupleTy:
   574  		return true
   575  	default:
   576  		return false
   577  	}
   578  }
   579  
   580  // resolveArgName converts a raw argument representation into a user friendly format.
   581  func resolveArgName(arg abi.Argument, structs map[string]*tmplStruct) string {
   582  	var (
   583  		prefix   string
   584  		embedded string
   585  		typ      = &arg.Type
   586  	)
   587  loop:
   588  	for {
   589  		switch typ.T {
   590  		case abi.SliceTy:
   591  			prefix += "[]"
   592  		case abi.ArrayTy:
   593  			prefix += fmt.Sprintf("[%d]", typ.Size)
   594  		default:
   595  			embedded = typ.TupleRawName + typ.String()
   596  			break loop
   597  		}
   598  		typ = typ.Elem
   599  	}
   600  	if s, exist := structs[embedded]; exist {
   601  		return prefix + s.Name
   602  	} else {
   603  		return arg.Type.String()
   604  	}
   605  }
   606  
   607  // formatMethod transforms raw method representation into a user friendly one.
   608  func formatMethod(method abi.Method, structs map[string]*tmplStruct) string {
   609  	inputs := make([]string, len(method.Inputs))
   610  	for i, input := range method.Inputs {
   611  		inputs[i] = fmt.Sprintf("%v %v", resolveArgName(input, structs), input.Name)
   612  	}
   613  	outputs := make([]string, len(method.Outputs))
   614  	for i, output := range method.Outputs {
   615  		outputs[i] = resolveArgName(output, structs)
   616  		if len(output.Name) > 0 {
   617  			outputs[i] += fmt.Sprintf(" %v", output.Name)
   618  		}
   619  	}
   620  	constant := ""
   621  	if method.Const {
   622  		constant = "constant "
   623  	}
   624  	return fmt.Sprintf("function %v(%v) %sreturns(%v)", method.RawName, strings.Join(inputs, ", "), constant, strings.Join(outputs, ", "))
   625  }
   626  
   627  // formatEvent transforms raw event representation into a user friendly one.
   628  func formatEvent(event abi.Event, structs map[string]*tmplStruct) string {
   629  	inputs := make([]string, len(event.Inputs))
   630  	for i, input := range event.Inputs {
   631  		if input.Indexed {
   632  			inputs[i] = fmt.Sprintf("%v indexed %v", resolveArgName(input, structs), input.Name)
   633  		} else {
   634  			inputs[i] = fmt.Sprintf("%v %v", resolveArgName(input, structs), input.Name)
   635  		}
   636  	}
   637  	return fmt.Sprintf("event %v(%v)", event.RawName, strings.Join(inputs, ", "))
   638  }