github.com/aigarnetwork/aigar@v0.0.0-20191115204914-d59a6eb70f8e/accounts/abi/unpack.go (about)

     1  //  Copyright 2018 The go-ethereum Authors
     2  //  Copyright 2019 The go-aigar Authors
     3  //  This file is part of the go-aigar library.
     4  //
     5  //  The go-aigar library is free software: you can redistribute it and/or modify
     6  //  it under the terms of the GNU Lesser General Public License as published by
     7  //  the Free Software Foundation, either version 3 of the License, or
     8  //  (at your option) any later version.
     9  //
    10  //  The go-aigar library is distributed in the hope that it will be useful,
    11  //  but WITHOUT ANY WARRANTY; without even the implied warranty of
    12  //  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    13  //  GNU Lesser General Public License for more details.
    14  //
    15  //  You should have received a copy of the GNU Lesser General Public License
    16  //  along with the go-aigar library. If not, see <http://www.gnu.org/licenses/>.
    17  
    18  package abi
    19  
    20  import (
    21  	"encoding/binary"
    22  	"fmt"
    23  	"math/big"
    24  	"reflect"
    25  
    26  	"github.com/AigarNetwork/aigar/common"
    27  )
    28  
    29  var (
    30  	maxUint256 = big.NewInt(0).Add(
    31  		big.NewInt(0).Exp(big.NewInt(2), big.NewInt(256), nil),
    32  		big.NewInt(-1))
    33  	maxInt256 = big.NewInt(0).Add(
    34  		big.NewInt(0).Exp(big.NewInt(2), big.NewInt(255), nil),
    35  		big.NewInt(-1))
    36  )
    37  
    38  // reads the integer based on its kind
    39  func readInteger(typ byte, kind reflect.Kind, b []byte) interface{} {
    40  	switch kind {
    41  	case reflect.Uint8:
    42  		return b[len(b)-1]
    43  	case reflect.Uint16:
    44  		return binary.BigEndian.Uint16(b[len(b)-2:])
    45  	case reflect.Uint32:
    46  		return binary.BigEndian.Uint32(b[len(b)-4:])
    47  	case reflect.Uint64:
    48  		return binary.BigEndian.Uint64(b[len(b)-8:])
    49  	case reflect.Int8:
    50  		return int8(b[len(b)-1])
    51  	case reflect.Int16:
    52  		return int16(binary.BigEndian.Uint16(b[len(b)-2:]))
    53  	case reflect.Int32:
    54  		return int32(binary.BigEndian.Uint32(b[len(b)-4:]))
    55  	case reflect.Int64:
    56  		return int64(binary.BigEndian.Uint64(b[len(b)-8:]))
    57  	default:
    58  		// the only case lefts for integer is int256/uint256.
    59  		// big.SetBytes can't tell if a number is negative, positive on itself.
    60  		// On EVM, if the returned number > max int256, it is negative.
    61  		ret := new(big.Int).SetBytes(b)
    62  		if typ == UintTy {
    63  			return ret
    64  		}
    65  
    66  		if ret.Cmp(maxInt256) > 0 {
    67  			ret.Add(maxUint256, big.NewInt(0).Neg(ret))
    68  			ret.Add(ret, big.NewInt(1))
    69  			ret.Neg(ret)
    70  		}
    71  		return ret
    72  	}
    73  }
    74  
    75  // reads a bool
    76  func readBool(word []byte) (bool, error) {
    77  	for _, b := range word[:31] {
    78  		if b != 0 {
    79  			return false, errBadBool
    80  		}
    81  	}
    82  	switch word[31] {
    83  	case 0:
    84  		return false, nil
    85  	case 1:
    86  		return true, nil
    87  	default:
    88  		return false, errBadBool
    89  	}
    90  }
    91  
    92  // A function type is simply the address with the function selection signature at the end.
    93  // This enforces that standard by always presenting it as a 24-array (address + sig = 24 bytes)
    94  func readFunctionType(t Type, word []byte) (funcTy [24]byte, err error) {
    95  	if t.T != FunctionTy {
    96  		return [24]byte{}, fmt.Errorf("abi: invalid type in call to make function type byte array")
    97  	}
    98  	if garbage := binary.BigEndian.Uint64(word[24:32]); garbage != 0 {
    99  		err = fmt.Errorf("abi: got improperly encoded function type, got %v", word)
   100  	} else {
   101  		copy(funcTy[:], word[0:24])
   102  	}
   103  	return
   104  }
   105  
   106  // through reflection, creates a fixed array to be read from
   107  func readFixedBytes(t Type, word []byte) (interface{}, error) {
   108  	if t.T != FixedBytesTy {
   109  		return nil, fmt.Errorf("abi: invalid type in call to make fixed byte array")
   110  	}
   111  	// convert
   112  	array := reflect.New(t.Type).Elem()
   113  
   114  	reflect.Copy(array, reflect.ValueOf(word[0:t.Size]))
   115  	return array.Interface(), nil
   116  
   117  }
   118  
   119  // iteratively unpack elements
   120  func forEachUnpack(t Type, output []byte, start, size int) (interface{}, error) {
   121  	if size < 0 {
   122  		return nil, fmt.Errorf("cannot marshal input to array, size is negative (%d)", size)
   123  	}
   124  	if start+32*size > len(output) {
   125  		return nil, fmt.Errorf("abi: cannot marshal in to go array: offset %d would go over slice boundary (len=%d)", len(output), start+32*size)
   126  	}
   127  
   128  	// this value will become our slice or our array, depending on the type
   129  	var refSlice reflect.Value
   130  
   131  	if t.T == SliceTy {
   132  		// declare our slice
   133  		refSlice = reflect.MakeSlice(t.Type, size, size)
   134  	} else if t.T == ArrayTy {
   135  		// declare our array
   136  		refSlice = reflect.New(t.Type).Elem()
   137  	} else {
   138  		return nil, fmt.Errorf("abi: invalid type in array/slice unpacking stage")
   139  	}
   140  
   141  	// Arrays have packed elements, resulting in longer unpack steps.
   142  	// Slices have just 32 bytes per element (pointing to the contents).
   143  	elemSize := getTypeSize(*t.Elem)
   144  
   145  	for i, j := start, 0; j < size; i, j = i+elemSize, j+1 {
   146  		inter, err := toGoType(i, *t.Elem, output)
   147  		if err != nil {
   148  			return nil, err
   149  		}
   150  
   151  		// append the item to our reflect slice
   152  		refSlice.Index(j).Set(reflect.ValueOf(inter))
   153  	}
   154  
   155  	// return the interface
   156  	return refSlice.Interface(), nil
   157  }
   158  
   159  func forTupleUnpack(t Type, output []byte) (interface{}, error) {
   160  	retval := reflect.New(t.Type).Elem()
   161  	virtualArgs := 0
   162  	for index, elem := range t.TupleElems {
   163  		marshalledValue, err := toGoType((index+virtualArgs)*32, *elem, output)
   164  		if elem.T == ArrayTy && !isDynamicType(*elem) {
   165  			// If we have a static array, like [3]uint256, these are coded as
   166  			// just like uint256,uint256,uint256.
   167  			// This means that we need to add two 'virtual' arguments when
   168  			// we count the index from now on.
   169  			//
   170  			// Array values nested multiple levels deep are also encoded inline:
   171  			// [2][3]uint256: uint256,uint256,uint256,uint256,uint256,uint256
   172  			//
   173  			// Calculate the full array size to get the correct offset for the next argument.
   174  			// Decrement it by 1, as the normal index increment is still applied.
   175  			virtualArgs += getTypeSize(*elem)/32 - 1
   176  		} else if elem.T == TupleTy && !isDynamicType(*elem) {
   177  			// If we have a static tuple, like (uint256, bool, uint256), these are
   178  			// coded as just like uint256,bool,uint256
   179  			virtualArgs += getTypeSize(*elem)/32 - 1
   180  		}
   181  		if err != nil {
   182  			return nil, err
   183  		}
   184  		retval.Field(index).Set(reflect.ValueOf(marshalledValue))
   185  	}
   186  	return retval.Interface(), nil
   187  }
   188  
   189  // toGoType parses the output bytes and recursively assigns the value of these bytes
   190  // into a go type with accordance with the ABI spec.
   191  func toGoType(index int, t Type, output []byte) (interface{}, error) {
   192  	if index+32 > len(output) {
   193  		return nil, fmt.Errorf("abi: cannot marshal in to go type: length insufficient %d require %d", len(output), index+32)
   194  	}
   195  
   196  	var (
   197  		returnOutput  []byte
   198  		begin, length int
   199  		err           error
   200  	)
   201  
   202  	// if we require a length prefix, find the beginning word and size returned.
   203  	if t.requiresLengthPrefix() {
   204  		begin, length, err = lengthPrefixPointsTo(index, output)
   205  		if err != nil {
   206  			return nil, err
   207  		}
   208  	} else {
   209  		returnOutput = output[index : index+32]
   210  	}
   211  
   212  	switch t.T {
   213  	case TupleTy:
   214  		if isDynamicType(t) {
   215  			begin, err := tuplePointsTo(index, output)
   216  			if err != nil {
   217  				return nil, err
   218  			}
   219  			return forTupleUnpack(t, output[begin:])
   220  		} else {
   221  			return forTupleUnpack(t, output[index:])
   222  		}
   223  	case SliceTy:
   224  		return forEachUnpack(t, output[begin:], 0, length)
   225  	case ArrayTy:
   226  		if isDynamicType(*t.Elem) {
   227  			offset := int64(binary.BigEndian.Uint64(returnOutput[len(returnOutput)-8:]))
   228  			return forEachUnpack(t, output[offset:], 0, t.Size)
   229  		}
   230  		return forEachUnpack(t, output[index:], 0, t.Size)
   231  	case StringTy: // variable arrays are written at the end of the return bytes
   232  		return string(output[begin : begin+length]), nil
   233  	case IntTy, UintTy:
   234  		return readInteger(t.T, t.Kind, returnOutput), nil
   235  	case BoolTy:
   236  		return readBool(returnOutput)
   237  	case AddressTy:
   238  		return common.BytesToAddress(returnOutput), nil
   239  	case HashTy:
   240  		return common.BytesToHash(returnOutput), nil
   241  	case BytesTy:
   242  		return output[begin : begin+length], nil
   243  	case FixedBytesTy:
   244  		return readFixedBytes(t, returnOutput)
   245  	case FunctionTy:
   246  		return readFunctionType(t, returnOutput)
   247  	default:
   248  		return nil, fmt.Errorf("abi: unknown type %v", t.T)
   249  	}
   250  }
   251  
   252  // interprets a 32 byte slice as an offset and then determines which indice to look to decode the type.
   253  func lengthPrefixPointsTo(index int, output []byte) (start int, length int, err error) {
   254  	bigOffsetEnd := big.NewInt(0).SetBytes(output[index : index+32])
   255  	bigOffsetEnd.Add(bigOffsetEnd, common.Big32)
   256  	outputLength := big.NewInt(int64(len(output)))
   257  
   258  	if bigOffsetEnd.Cmp(outputLength) > 0 {
   259  		return 0, 0, fmt.Errorf("abi: cannot marshal in to go slice: offset %v would go over slice boundary (len=%v)", bigOffsetEnd, outputLength)
   260  	}
   261  
   262  	if bigOffsetEnd.BitLen() > 63 {
   263  		return 0, 0, fmt.Errorf("abi offset larger than int64: %v", bigOffsetEnd)
   264  	}
   265  
   266  	offsetEnd := int(bigOffsetEnd.Uint64())
   267  	lengthBig := big.NewInt(0).SetBytes(output[offsetEnd-32 : offsetEnd])
   268  
   269  	totalSize := big.NewInt(0)
   270  	totalSize.Add(totalSize, bigOffsetEnd)
   271  	totalSize.Add(totalSize, lengthBig)
   272  	if totalSize.BitLen() > 63 {
   273  		return 0, 0, fmt.Errorf("abi: length larger than int64: %v", totalSize)
   274  	}
   275  
   276  	if totalSize.Cmp(outputLength) > 0 {
   277  		return 0, 0, fmt.Errorf("abi: cannot marshal in to go type: length insufficient %v require %v", outputLength, totalSize)
   278  	}
   279  	start = int(bigOffsetEnd.Uint64())
   280  	length = int(lengthBig.Uint64())
   281  	return
   282  }
   283  
   284  // tuplePointsTo resolves the location reference for dynamic tuple.
   285  func tuplePointsTo(index int, output []byte) (start int, err error) {
   286  	offset := big.NewInt(0).SetBytes(output[index : index+32])
   287  	outputLen := big.NewInt(int64(len(output)))
   288  
   289  	if offset.Cmp(big.NewInt(int64(len(output)))) > 0 {
   290  		return 0, fmt.Errorf("abi: cannot marshal in to go slice: offset %v would go over slice boundary (len=%v)", offset, outputLen)
   291  	}
   292  	if offset.BitLen() > 63 {
   293  		return 0, fmt.Errorf("abi offset larger than int64: %v", offset)
   294  	}
   295  	return int(offset.Uint64()), nil
   296  }