github.com/aigarnetwork/aigar@v0.0.0-20191115204914-d59a6eb70f8e/common/math/big.go (about)

     1  //  Copyright 2018 The go-ethereum Authors
     2  //  Copyright 2019 The go-aigar Authors
     3  //  This file is part of the go-aigar library.
     4  //
     5  //  The go-aigar library is free software: you can redistribute it and/or modify
     6  //  it under the terms of the GNU Lesser General Public License as published by
     7  //  the Free Software Foundation, either version 3 of the License, or
     8  //  (at your option) any later version.
     9  //
    10  //  The go-aigar library is distributed in the hope that it will be useful,
    11  //  but WITHOUT ANY WARRANTY; without even the implied warranty of
    12  //  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    13  //  GNU Lesser General Public License for more details.
    14  //
    15  //  You should have received a copy of the GNU Lesser General Public License
    16  //  along with the go-aigar library. If not, see <http://www.gnu.org/licenses/>.
    17  
    18  // Package math provides integer math utilities.
    19  package math
    20  
    21  import (
    22  	"fmt"
    23  	"math/big"
    24  )
    25  
    26  // Various big integer limit values.
    27  var (
    28  	tt255     = BigPow(2, 255)
    29  	tt256     = BigPow(2, 256)
    30  	tt256m1   = new(big.Int).Sub(tt256, big.NewInt(1))
    31  	tt63      = BigPow(2, 63)
    32  	MaxBig256 = new(big.Int).Set(tt256m1)
    33  	MaxBig63  = new(big.Int).Sub(tt63, big.NewInt(1))
    34  )
    35  
    36  const (
    37  	// number of bits in a big.Word
    38  	wordBits = 32 << (uint64(^big.Word(0)) >> 63)
    39  	// number of bytes in a big.Word
    40  	wordBytes = wordBits / 8
    41  )
    42  
    43  // HexOrDecimal256 marshals big.Int as hex or decimal.
    44  type HexOrDecimal256 big.Int
    45  
    46  // NewHexOrDecimal256 creates a new HexOrDecimal256
    47  func NewHexOrDecimal256(x int64) *HexOrDecimal256 {
    48  	b := big.NewInt(x)
    49  	h := HexOrDecimal256(*b)
    50  	return &h
    51  }
    52  
    53  // UnmarshalText implements encoding.TextUnmarshaler.
    54  func (i *HexOrDecimal256) UnmarshalText(input []byte) error {
    55  	bigint, ok := ParseBig256(string(input))
    56  	if !ok {
    57  		return fmt.Errorf("invalid hex or decimal integer %q", input)
    58  	}
    59  	*i = HexOrDecimal256(*bigint)
    60  	return nil
    61  }
    62  
    63  // MarshalText implements encoding.TextMarshaler.
    64  func (i *HexOrDecimal256) MarshalText() ([]byte, error) {
    65  	if i == nil {
    66  		return []byte("0x0"), nil
    67  	}
    68  	return []byte(fmt.Sprintf("%#x", (*big.Int)(i))), nil
    69  }
    70  
    71  // ParseBig256 parses s as a 256 bit integer in decimal or hexadecimal syntax.
    72  // Leading zeros are accepted. The empty string parses as zero.
    73  func ParseBig256(s string) (*big.Int, bool) {
    74  	if s == "" {
    75  		return new(big.Int), true
    76  	}
    77  	var bigint *big.Int
    78  	var ok bool
    79  	if len(s) >= 2 && (s[:2] == "0x" || s[:2] == "0X") {
    80  		bigint, ok = new(big.Int).SetString(s[2:], 16)
    81  	} else {
    82  		bigint, ok = new(big.Int).SetString(s, 10)
    83  	}
    84  	if ok && bigint.BitLen() > 256 {
    85  		bigint, ok = nil, false
    86  	}
    87  	return bigint, ok
    88  }
    89  
    90  // MustParseBig256 parses s as a 256 bit big integer and panics if the string is invalid.
    91  func MustParseBig256(s string) *big.Int {
    92  	v, ok := ParseBig256(s)
    93  	if !ok {
    94  		panic("invalid 256 bit integer: " + s)
    95  	}
    96  	return v
    97  }
    98  
    99  // BigPow returns a ** b as a big integer.
   100  func BigPow(a, b int64) *big.Int {
   101  	r := big.NewInt(a)
   102  	return r.Exp(r, big.NewInt(b), nil)
   103  }
   104  
   105  // BigMax returns the larger of x or y.
   106  func BigMax(x, y *big.Int) *big.Int {
   107  	if x.Cmp(y) < 0 {
   108  		return y
   109  	}
   110  	return x
   111  }
   112  
   113  // BigMin returns the smaller of x or y.
   114  func BigMin(x, y *big.Int) *big.Int {
   115  	if x.Cmp(y) > 0 {
   116  		return y
   117  	}
   118  	return x
   119  }
   120  
   121  // FirstBitSet returns the index of the first 1 bit in v, counting from LSB.
   122  func FirstBitSet(v *big.Int) int {
   123  	for i := 0; i < v.BitLen(); i++ {
   124  		if v.Bit(i) > 0 {
   125  			return i
   126  		}
   127  	}
   128  	return v.BitLen()
   129  }
   130  
   131  // PaddedBigBytes encodes a big integer as a big-endian byte slice. The length
   132  // of the slice is at least n bytes.
   133  func PaddedBigBytes(bigint *big.Int, n int) []byte {
   134  	if bigint.BitLen()/8 >= n {
   135  		return bigint.Bytes()
   136  	}
   137  	ret := make([]byte, n)
   138  	ReadBits(bigint, ret)
   139  	return ret
   140  }
   141  
   142  // bigEndianByteAt returns the byte at position n,
   143  // in Big-Endian encoding
   144  // So n==0 returns the least significant byte
   145  func bigEndianByteAt(bigint *big.Int, n int) byte {
   146  	words := bigint.Bits()
   147  	// Check word-bucket the byte will reside in
   148  	i := n / wordBytes
   149  	if i >= len(words) {
   150  		return byte(0)
   151  	}
   152  	word := words[i]
   153  	// Offset of the byte
   154  	shift := 8 * uint(n%wordBytes)
   155  
   156  	return byte(word >> shift)
   157  }
   158  
   159  // Byte returns the byte at position n,
   160  // with the supplied padlength in Little-Endian encoding.
   161  // n==0 returns the MSB
   162  // Example: bigint '5', padlength 32, n=31 => 5
   163  func Byte(bigint *big.Int, padlength, n int) byte {
   164  	if n >= padlength {
   165  		return byte(0)
   166  	}
   167  	return bigEndianByteAt(bigint, padlength-1-n)
   168  }
   169  
   170  // ReadBits encodes the absolute value of bigint as big-endian bytes. Callers must ensure
   171  // that buf has enough space. If buf is too short the result will be incomplete.
   172  func ReadBits(bigint *big.Int, buf []byte) {
   173  	i := len(buf)
   174  	for _, d := range bigint.Bits() {
   175  		for j := 0; j < wordBytes && i > 0; j++ {
   176  			i--
   177  			buf[i] = byte(d)
   178  			d >>= 8
   179  		}
   180  	}
   181  }
   182  
   183  // U256 encodes as a 256 bit two's complement number. This operation is destructive.
   184  func U256(x *big.Int) *big.Int {
   185  	return x.And(x, tt256m1)
   186  }
   187  
   188  // S256 interprets x as a two's complement number.
   189  // x must not exceed 256 bits (the result is undefined if it does) and is not modified.
   190  //
   191  //   S256(0)        = 0
   192  //   S256(1)        = 1
   193  //   S256(2**255)   = -2**255
   194  //   S256(2**256-1) = -1
   195  func S256(x *big.Int) *big.Int {
   196  	if x.Cmp(tt255) < 0 {
   197  		return x
   198  	}
   199  	return new(big.Int).Sub(x, tt256)
   200  }
   201  
   202  // Exp implements exponentiation by squaring.
   203  // Exp returns a newly-allocated big integer and does not change
   204  // base or exponent. The result is truncated to 256 bits.
   205  //
   206  // Courtesy @karalabe and @chfast
   207  func Exp(base, exponent *big.Int) *big.Int {
   208  	result := big.NewInt(1)
   209  
   210  	for _, word := range exponent.Bits() {
   211  		for i := 0; i < wordBits; i++ {
   212  			if word&1 == 1 {
   213  				U256(result.Mul(result, base))
   214  			}
   215  			U256(base.Mul(base, base))
   216  			word >>= 1
   217  		}
   218  	}
   219  	return result
   220  }