github.com/aigarnetwork/aigar@v0.0.0-20191115204914-d59a6eb70f8e/crypto/bn256/cloudflare/curve.go (about) 1 // Copyright 2018 The go-ethereum Authors 2 // Copyright 2019 The go-aigar Authors 3 // This file is part of the go-aigar library. 4 // 5 // The go-aigar library is free software: you can redistribute it and/or modify 6 // it under the terms of the GNU Lesser General Public License as published by 7 // the Free Software Foundation, either version 3 of the License, or 8 // (at your option) any later version. 9 // 10 // The go-aigar library is distributed in the hope that it will be useful, 11 // but WITHOUT ANY WARRANTY; without even the implied warranty of 12 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 // GNU Lesser General Public License for more details. 14 // 15 // You should have received a copy of the GNU Lesser General Public License 16 // along with the go-aigar library. If not, see <http://www.gnu.org/licenses/>. 17 18 package bn256 19 20 import ( 21 "math/big" 22 ) 23 24 // curvePoint implements the elliptic curve y²=x³+3. Points are kept in Jacobian 25 // form and t=z² when valid. G₁ is the set of points of this curve on GF(p). 26 type curvePoint struct { 27 x, y, z, t gfP 28 } 29 30 var curveB = newGFp(3) 31 32 // curveGen is the generator of G₁. 33 var curveGen = &curvePoint{ 34 x: *newGFp(1), 35 y: *newGFp(2), 36 z: *newGFp(1), 37 t: *newGFp(1), 38 } 39 40 func (c *curvePoint) String() string { 41 c.MakeAffine() 42 x, y := &gfP{}, &gfP{} 43 montDecode(x, &c.x) 44 montDecode(y, &c.y) 45 return "(" + x.String() + ", " + y.String() + ")" 46 } 47 48 func (c *curvePoint) Set(a *curvePoint) { 49 c.x.Set(&a.x) 50 c.y.Set(&a.y) 51 c.z.Set(&a.z) 52 c.t.Set(&a.t) 53 } 54 55 // IsOnCurve returns true iff c is on the curve. 56 func (c *curvePoint) IsOnCurve() bool { 57 c.MakeAffine() 58 if c.IsInfinity() { 59 return true 60 } 61 62 y2, x3 := &gfP{}, &gfP{} 63 gfpMul(y2, &c.y, &c.y) 64 gfpMul(x3, &c.x, &c.x) 65 gfpMul(x3, x3, &c.x) 66 gfpAdd(x3, x3, curveB) 67 68 return *y2 == *x3 69 } 70 71 func (c *curvePoint) SetInfinity() { 72 c.x = gfP{0} 73 c.y = *newGFp(1) 74 c.z = gfP{0} 75 c.t = gfP{0} 76 } 77 78 func (c *curvePoint) IsInfinity() bool { 79 return c.z == gfP{0} 80 } 81 82 func (c *curvePoint) Add(a, b *curvePoint) { 83 if a.IsInfinity() { 84 c.Set(b) 85 return 86 } 87 if b.IsInfinity() { 88 c.Set(a) 89 return 90 } 91 92 // See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3 93 94 // Normalize the points by replacing a = [x1:y1:z1] and b = [x2:y2:z2] 95 // by [u1:s1:z1·z2] and [u2:s2:z1·z2] 96 // where u1 = x1·z2², s1 = y1·z2³ and u1 = x2·z1², s2 = y2·z1³ 97 z12, z22 := &gfP{}, &gfP{} 98 gfpMul(z12, &a.z, &a.z) 99 gfpMul(z22, &b.z, &b.z) 100 101 u1, u2 := &gfP{}, &gfP{} 102 gfpMul(u1, &a.x, z22) 103 gfpMul(u2, &b.x, z12) 104 105 t, s1 := &gfP{}, &gfP{} 106 gfpMul(t, &b.z, z22) 107 gfpMul(s1, &a.y, t) 108 109 s2 := &gfP{} 110 gfpMul(t, &a.z, z12) 111 gfpMul(s2, &b.y, t) 112 113 // Compute x = (2h)²(s²-u1-u2) 114 // where s = (s2-s1)/(u2-u1) is the slope of the line through 115 // (u1,s1) and (u2,s2). The extra factor 2h = 2(u2-u1) comes from the value of z below. 116 // This is also: 117 // 4(s2-s1)² - 4h²(u1+u2) = 4(s2-s1)² - 4h³ - 4h²(2u1) 118 // = r² - j - 2v 119 // with the notations below. 120 h := &gfP{} 121 gfpSub(h, u2, u1) 122 xEqual := *h == gfP{0} 123 124 gfpAdd(t, h, h) 125 // i = 4h² 126 i := &gfP{} 127 gfpMul(i, t, t) 128 // j = 4h³ 129 j := &gfP{} 130 gfpMul(j, h, i) 131 132 gfpSub(t, s2, s1) 133 yEqual := *t == gfP{0} 134 if xEqual && yEqual { 135 c.Double(a) 136 return 137 } 138 r := &gfP{} 139 gfpAdd(r, t, t) 140 141 v := &gfP{} 142 gfpMul(v, u1, i) 143 144 // t4 = 4(s2-s1)² 145 t4, t6 := &gfP{}, &gfP{} 146 gfpMul(t4, r, r) 147 gfpAdd(t, v, v) 148 gfpSub(t6, t4, j) 149 150 gfpSub(&c.x, t6, t) 151 152 // Set y = -(2h)³(s1 + s*(x/4h²-u1)) 153 // This is also 154 // y = - 2·s1·j - (s2-s1)(2x - 2i·u1) = r(v-x) - 2·s1·j 155 gfpSub(t, v, &c.x) // t7 156 gfpMul(t4, s1, j) // t8 157 gfpAdd(t6, t4, t4) // t9 158 gfpMul(t4, r, t) // t10 159 gfpSub(&c.y, t4, t6) 160 161 // Set z = 2(u2-u1)·z1·z2 = 2h·z1·z2 162 gfpAdd(t, &a.z, &b.z) // t11 163 gfpMul(t4, t, t) // t12 164 gfpSub(t, t4, z12) // t13 165 gfpSub(t4, t, z22) // t14 166 gfpMul(&c.z, t4, h) 167 } 168 169 func (c *curvePoint) Double(a *curvePoint) { 170 // See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3 171 A, B, C := &gfP{}, &gfP{}, &gfP{} 172 gfpMul(A, &a.x, &a.x) 173 gfpMul(B, &a.y, &a.y) 174 gfpMul(C, B, B) 175 176 t, t2 := &gfP{}, &gfP{} 177 gfpAdd(t, &a.x, B) 178 gfpMul(t2, t, t) 179 gfpSub(t, t2, A) 180 gfpSub(t2, t, C) 181 182 d, e, f := &gfP{}, &gfP{}, &gfP{} 183 gfpAdd(d, t2, t2) 184 gfpAdd(t, A, A) 185 gfpAdd(e, t, A) 186 gfpMul(f, e, e) 187 188 gfpAdd(t, d, d) 189 gfpSub(&c.x, f, t) 190 191 gfpAdd(t, C, C) 192 gfpAdd(t2, t, t) 193 gfpAdd(t, t2, t2) 194 gfpSub(&c.y, d, &c.x) 195 gfpMul(t2, e, &c.y) 196 gfpSub(&c.y, t2, t) 197 198 gfpMul(t, &a.y, &a.z) 199 gfpAdd(&c.z, t, t) 200 } 201 202 func (c *curvePoint) Mul(a *curvePoint, scalar *big.Int) { 203 precomp := [1 << 2]*curvePoint{nil, {}, {}, {}} 204 precomp[1].Set(a) 205 precomp[2].Set(a) 206 gfpMul(&precomp[2].x, &precomp[2].x, xiTo2PSquaredMinus2Over3) 207 precomp[3].Add(precomp[1], precomp[2]) 208 209 multiScalar := curveLattice.Multi(scalar) 210 211 sum := &curvePoint{} 212 sum.SetInfinity() 213 t := &curvePoint{} 214 215 for i := len(multiScalar) - 1; i >= 0; i-- { 216 t.Double(sum) 217 if multiScalar[i] == 0 { 218 sum.Set(t) 219 } else { 220 sum.Add(t, precomp[multiScalar[i]]) 221 } 222 } 223 c.Set(sum) 224 } 225 226 func (c *curvePoint) MakeAffine() { 227 if c.z == *newGFp(1) { 228 return 229 } else if c.z == *newGFp(0) { 230 c.x = gfP{0} 231 c.y = *newGFp(1) 232 c.t = gfP{0} 233 return 234 } 235 236 zInv := &gfP{} 237 zInv.Invert(&c.z) 238 239 t, zInv2 := &gfP{}, &gfP{} 240 gfpMul(t, &c.y, zInv) 241 gfpMul(zInv2, zInv, zInv) 242 243 gfpMul(&c.x, &c.x, zInv2) 244 gfpMul(&c.y, t, zInv2) 245 246 c.z = *newGFp(1) 247 c.t = *newGFp(1) 248 } 249 250 func (c *curvePoint) Neg(a *curvePoint) { 251 c.x.Set(&a.x) 252 gfpNeg(&c.y, &a.y) 253 c.z.Set(&a.z) 254 c.t = gfP{0} 255 }