github.com/aigarnetwork/aigar@v0.0.0-20191115204914-d59a6eb70f8e/crypto/bn256/cloudflare/twist.go (about)

     1  //  Copyright 2018 The go-ethereum Authors
     2  //  Copyright 2019 The go-aigar Authors
     3  //  This file is part of the go-aigar library.
     4  //
     5  //  The go-aigar library is free software: you can redistribute it and/or modify
     6  //  it under the terms of the GNU Lesser General Public License as published by
     7  //  the Free Software Foundation, either version 3 of the License, or
     8  //  (at your option) any later version.
     9  //
    10  //  The go-aigar library is distributed in the hope that it will be useful,
    11  //  but WITHOUT ANY WARRANTY; without even the implied warranty of
    12  //  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    13  //  GNU Lesser General Public License for more details.
    14  //
    15  //  You should have received a copy of the GNU Lesser General Public License
    16  //  along with the go-aigar library. If not, see <http://www.gnu.org/licenses/>.
    17  
    18  package bn256
    19  
    20  import (
    21  	"math/big"
    22  )
    23  
    24  // twistPoint implements the elliptic curve y²=x³+3/ξ over GF(p²). Points are
    25  // kept in Jacobian form and t=z² when valid. The group G₂ is the set of
    26  // n-torsion points of this curve over GF(p²) (where n = Order)
    27  type twistPoint struct {
    28  	x, y, z, t gfP2
    29  }
    30  
    31  var twistB = &gfP2{
    32  	gfP{0x38e7ecccd1dcff67, 0x65f0b37d93ce0d3e, 0xd749d0dd22ac00aa, 0x0141b9ce4a688d4d},
    33  	gfP{0x3bf938e377b802a8, 0x020b1b273633535d, 0x26b7edf049755260, 0x2514c6324384a86d},
    34  }
    35  
    36  // twistGen is the generator of group G₂.
    37  var twistGen = &twistPoint{
    38  	gfP2{
    39  		gfP{0xafb4737da84c6140, 0x6043dd5a5802d8c4, 0x09e950fc52a02f86, 0x14fef0833aea7b6b},
    40  		gfP{0x8e83b5d102bc2026, 0xdceb1935497b0172, 0xfbb8264797811adf, 0x19573841af96503b},
    41  	},
    42  	gfP2{
    43  		gfP{0x64095b56c71856ee, 0xdc57f922327d3cbb, 0x55f935be33351076, 0x0da4a0e693fd6482},
    44  		gfP{0x619dfa9d886be9f6, 0xfe7fd297f59e9b78, 0xff9e1a62231b7dfe, 0x28fd7eebae9e4206},
    45  	},
    46  	gfP2{*newGFp(0), *newGFp(1)},
    47  	gfP2{*newGFp(0), *newGFp(1)},
    48  }
    49  
    50  func (c *twistPoint) String() string {
    51  	c.MakeAffine()
    52  	x, y := gfP2Decode(&c.x), gfP2Decode(&c.y)
    53  	return "(" + x.String() + ", " + y.String() + ")"
    54  }
    55  
    56  func (c *twistPoint) Set(a *twistPoint) {
    57  	c.x.Set(&a.x)
    58  	c.y.Set(&a.y)
    59  	c.z.Set(&a.z)
    60  	c.t.Set(&a.t)
    61  }
    62  
    63  // IsOnCurve returns true iff c is on the curve.
    64  func (c *twistPoint) IsOnCurve() bool {
    65  	c.MakeAffine()
    66  	if c.IsInfinity() {
    67  		return true
    68  	}
    69  
    70  	y2, x3 := &gfP2{}, &gfP2{}
    71  	y2.Square(&c.y)
    72  	x3.Square(&c.x).Mul(x3, &c.x).Add(x3, twistB)
    73  
    74  	if *y2 != *x3 {
    75  		return false
    76  	}
    77  	cneg := &twistPoint{}
    78  	cneg.Mul(c, Order)
    79  	return cneg.z.IsZero()
    80  }
    81  
    82  func (c *twistPoint) SetInfinity() {
    83  	c.x.SetZero()
    84  	c.y.SetOne()
    85  	c.z.SetZero()
    86  	c.t.SetZero()
    87  }
    88  
    89  func (c *twistPoint) IsInfinity() bool {
    90  	return c.z.IsZero()
    91  }
    92  
    93  func (c *twistPoint) Add(a, b *twistPoint) {
    94  	// For additional comments, see the same function in curve.go.
    95  
    96  	if a.IsInfinity() {
    97  		c.Set(b)
    98  		return
    99  	}
   100  	if b.IsInfinity() {
   101  		c.Set(a)
   102  		return
   103  	}
   104  
   105  	// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3
   106  	z12 := (&gfP2{}).Square(&a.z)
   107  	z22 := (&gfP2{}).Square(&b.z)
   108  	u1 := (&gfP2{}).Mul(&a.x, z22)
   109  	u2 := (&gfP2{}).Mul(&b.x, z12)
   110  
   111  	t := (&gfP2{}).Mul(&b.z, z22)
   112  	s1 := (&gfP2{}).Mul(&a.y, t)
   113  
   114  	t.Mul(&a.z, z12)
   115  	s2 := (&gfP2{}).Mul(&b.y, t)
   116  
   117  	h := (&gfP2{}).Sub(u2, u1)
   118  	xEqual := h.IsZero()
   119  
   120  	t.Add(h, h)
   121  	i := (&gfP2{}).Square(t)
   122  	j := (&gfP2{}).Mul(h, i)
   123  
   124  	t.Sub(s2, s1)
   125  	yEqual := t.IsZero()
   126  	if xEqual && yEqual {
   127  		c.Double(a)
   128  		return
   129  	}
   130  	r := (&gfP2{}).Add(t, t)
   131  
   132  	v := (&gfP2{}).Mul(u1, i)
   133  
   134  	t4 := (&gfP2{}).Square(r)
   135  	t.Add(v, v)
   136  	t6 := (&gfP2{}).Sub(t4, j)
   137  	c.x.Sub(t6, t)
   138  
   139  	t.Sub(v, &c.x) // t7
   140  	t4.Mul(s1, j)  // t8
   141  	t6.Add(t4, t4) // t9
   142  	t4.Mul(r, t)   // t10
   143  	c.y.Sub(t4, t6)
   144  
   145  	t.Add(&a.z, &b.z) // t11
   146  	t4.Square(t)      // t12
   147  	t.Sub(t4, z12)    // t13
   148  	t4.Sub(t, z22)    // t14
   149  	c.z.Mul(t4, h)
   150  }
   151  
   152  func (c *twistPoint) Double(a *twistPoint) {
   153  	// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3
   154  	A := (&gfP2{}).Square(&a.x)
   155  	B := (&gfP2{}).Square(&a.y)
   156  	C := (&gfP2{}).Square(B)
   157  
   158  	t := (&gfP2{}).Add(&a.x, B)
   159  	t2 := (&gfP2{}).Square(t)
   160  	t.Sub(t2, A)
   161  	t2.Sub(t, C)
   162  	d := (&gfP2{}).Add(t2, t2)
   163  	t.Add(A, A)
   164  	e := (&gfP2{}).Add(t, A)
   165  	f := (&gfP2{}).Square(e)
   166  
   167  	t.Add(d, d)
   168  	c.x.Sub(f, t)
   169  
   170  	t.Add(C, C)
   171  	t2.Add(t, t)
   172  	t.Add(t2, t2)
   173  	c.y.Sub(d, &c.x)
   174  	t2.Mul(e, &c.y)
   175  	c.y.Sub(t2, t)
   176  
   177  	t.Mul(&a.y, &a.z)
   178  	c.z.Add(t, t)
   179  }
   180  
   181  func (c *twistPoint) Mul(a *twistPoint, scalar *big.Int) {
   182  	sum, t := &twistPoint{}, &twistPoint{}
   183  
   184  	for i := scalar.BitLen(); i >= 0; i-- {
   185  		t.Double(sum)
   186  		if scalar.Bit(i) != 0 {
   187  			sum.Add(t, a)
   188  		} else {
   189  			sum.Set(t)
   190  		}
   191  	}
   192  
   193  	c.Set(sum)
   194  }
   195  
   196  func (c *twistPoint) MakeAffine() {
   197  	if c.z.IsOne() {
   198  		return
   199  	} else if c.z.IsZero() {
   200  		c.x.SetZero()
   201  		c.y.SetOne()
   202  		c.t.SetZero()
   203  		return
   204  	}
   205  
   206  	zInv := (&gfP2{}).Invert(&c.z)
   207  	t := (&gfP2{}).Mul(&c.y, zInv)
   208  	zInv2 := (&gfP2{}).Square(zInv)
   209  	c.y.Mul(t, zInv2)
   210  	t.Mul(&c.x, zInv2)
   211  	c.x.Set(t)
   212  	c.z.SetOne()
   213  	c.t.SetOne()
   214  }
   215  
   216  func (c *twistPoint) Neg(a *twistPoint) {
   217  	c.x.Set(&a.x)
   218  	c.y.Neg(&a.y)
   219  	c.z.Set(&a.z)
   220  	c.t.SetZero()
   221  }