github.com/aigarnetwork/aigar@v0.0.0-20191115204914-d59a6eb70f8e/crypto/secp256k1/curve.go (about)

     1  //  Copyright 2018 The go-ethereum Authors
     2  //  Copyright 2019 The go-aigar Authors
     3  //  This file is part of the go-aigar library.
     4  //
     5  //  The go-aigar library is free software: you can redistribute it and/or modify
     6  //  it under the terms of the GNU Lesser General Public License as published by
     7  //  the Free Software Foundation, either version 3 of the License, or
     8  //  (at your option) any later version.
     9  //
    10  //  The go-aigar library is distributed in the hope that it will be useful,
    11  //  but WITHOUT ANY WARRANTY; without even the implied warranty of
    12  //  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    13  //  GNU Lesser General Public License for more details.
    14  //
    15  //  You should have received a copy of the GNU Lesser General Public License
    16  //  along with the go-aigar library. If not, see <http://www.gnu.org/licenses/>.
    17  
    18  package secp256k1
    19  
    20  import (
    21  	"crypto/elliptic"
    22  	"math/big"
    23  	"unsafe"
    24  )
    25  
    26  /*
    27  #include "libsecp256k1/include/secp256k1.h"
    28  extern int secp256k1_ext_scalar_mul(const secp256k1_context* ctx, const unsigned char *point, const unsigned char *scalar);
    29  */
    30  import "C"
    31  
    32  const (
    33  	// number of bits in a big.Word
    34  	wordBits = 32 << (uint64(^big.Word(0)) >> 63)
    35  	// number of bytes in a big.Word
    36  	wordBytes = wordBits / 8
    37  )
    38  
    39  // readBits encodes the absolute value of bigint as big-endian bytes. Callers
    40  // must ensure that buf has enough space. If buf is too short the result will
    41  // be incomplete.
    42  func readBits(bigint *big.Int, buf []byte) {
    43  	i := len(buf)
    44  	for _, d := range bigint.Bits() {
    45  		for j := 0; j < wordBytes && i > 0; j++ {
    46  			i--
    47  			buf[i] = byte(d)
    48  			d >>= 8
    49  		}
    50  	}
    51  }
    52  
    53  // This code is from https://github.com/ThePiachu/GoBit and implements
    54  // several Koblitz elliptic curves over prime fields.
    55  //
    56  // The curve methods, internally, on Jacobian coordinates. For a given
    57  // (x, y) position on the curve, the Jacobian coordinates are (x1, y1,
    58  // z1) where x = x1/z1² and y = y1/z1³. The greatest speedups come
    59  // when the whole calculation can be performed within the transform
    60  // (as in ScalarMult and ScalarBaseMult). But even for Add and Double,
    61  // it's faster to apply and reverse the transform than to operate in
    62  // affine coordinates.
    63  
    64  // A BitCurve represents a Koblitz Curve with a=0.
    65  // See http://www.hyperelliptic.org/EFD/g1p/auto-shortw.html
    66  type BitCurve struct {
    67  	P       *big.Int // the order of the underlying field
    68  	N       *big.Int // the order of the base point
    69  	B       *big.Int // the constant of the BitCurve equation
    70  	Gx, Gy  *big.Int // (x,y) of the base point
    71  	BitSize int      // the size of the underlying field
    72  }
    73  
    74  func (BitCurve *BitCurve) Params() *elliptic.CurveParams {
    75  	return &elliptic.CurveParams{
    76  		P:       BitCurve.P,
    77  		N:       BitCurve.N,
    78  		B:       BitCurve.B,
    79  		Gx:      BitCurve.Gx,
    80  		Gy:      BitCurve.Gy,
    81  		BitSize: BitCurve.BitSize,
    82  	}
    83  }
    84  
    85  // IsOnCurve returns true if the given (x,y) lies on the BitCurve.
    86  func (BitCurve *BitCurve) IsOnCurve(x, y *big.Int) bool {
    87  	// y² = x³ + b
    88  	y2 := new(big.Int).Mul(y, y) //y²
    89  	y2.Mod(y2, BitCurve.P)       //y²%P
    90  
    91  	x3 := new(big.Int).Mul(x, x) //x²
    92  	x3.Mul(x3, x)                //x³
    93  
    94  	x3.Add(x3, BitCurve.B) //x³+B
    95  	x3.Mod(x3, BitCurve.P) //(x³+B)%P
    96  
    97  	return x3.Cmp(y2) == 0
    98  }
    99  
   100  //TODO: double check if the function is okay
   101  // affineFromJacobian reverses the Jacobian transform. See the comment at the
   102  // top of the file.
   103  func (BitCurve *BitCurve) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) {
   104  	zinv := new(big.Int).ModInverse(z, BitCurve.P)
   105  	zinvsq := new(big.Int).Mul(zinv, zinv)
   106  
   107  	xOut = new(big.Int).Mul(x, zinvsq)
   108  	xOut.Mod(xOut, BitCurve.P)
   109  	zinvsq.Mul(zinvsq, zinv)
   110  	yOut = new(big.Int).Mul(y, zinvsq)
   111  	yOut.Mod(yOut, BitCurve.P)
   112  	return
   113  }
   114  
   115  // Add returns the sum of (x1,y1) and (x2,y2)
   116  func (BitCurve *BitCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
   117  	z := new(big.Int).SetInt64(1)
   118  	return BitCurve.affineFromJacobian(BitCurve.addJacobian(x1, y1, z, x2, y2, z))
   119  }
   120  
   121  // addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and
   122  // (x2, y2, z2) and returns their sum, also in Jacobian form.
   123  func (BitCurve *BitCurve) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) {
   124  	// See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
   125  	z1z1 := new(big.Int).Mul(z1, z1)
   126  	z1z1.Mod(z1z1, BitCurve.P)
   127  	z2z2 := new(big.Int).Mul(z2, z2)
   128  	z2z2.Mod(z2z2, BitCurve.P)
   129  
   130  	u1 := new(big.Int).Mul(x1, z2z2)
   131  	u1.Mod(u1, BitCurve.P)
   132  	u2 := new(big.Int).Mul(x2, z1z1)
   133  	u2.Mod(u2, BitCurve.P)
   134  	h := new(big.Int).Sub(u2, u1)
   135  	if h.Sign() == -1 {
   136  		h.Add(h, BitCurve.P)
   137  	}
   138  	i := new(big.Int).Lsh(h, 1)
   139  	i.Mul(i, i)
   140  	j := new(big.Int).Mul(h, i)
   141  
   142  	s1 := new(big.Int).Mul(y1, z2)
   143  	s1.Mul(s1, z2z2)
   144  	s1.Mod(s1, BitCurve.P)
   145  	s2 := new(big.Int).Mul(y2, z1)
   146  	s2.Mul(s2, z1z1)
   147  	s2.Mod(s2, BitCurve.P)
   148  	r := new(big.Int).Sub(s2, s1)
   149  	if r.Sign() == -1 {
   150  		r.Add(r, BitCurve.P)
   151  	}
   152  	r.Lsh(r, 1)
   153  	v := new(big.Int).Mul(u1, i)
   154  
   155  	x3 := new(big.Int).Set(r)
   156  	x3.Mul(x3, x3)
   157  	x3.Sub(x3, j)
   158  	x3.Sub(x3, v)
   159  	x3.Sub(x3, v)
   160  	x3.Mod(x3, BitCurve.P)
   161  
   162  	y3 := new(big.Int).Set(r)
   163  	v.Sub(v, x3)
   164  	y3.Mul(y3, v)
   165  	s1.Mul(s1, j)
   166  	s1.Lsh(s1, 1)
   167  	y3.Sub(y3, s1)
   168  	y3.Mod(y3, BitCurve.P)
   169  
   170  	z3 := new(big.Int).Add(z1, z2)
   171  	z3.Mul(z3, z3)
   172  	z3.Sub(z3, z1z1)
   173  	if z3.Sign() == -1 {
   174  		z3.Add(z3, BitCurve.P)
   175  	}
   176  	z3.Sub(z3, z2z2)
   177  	if z3.Sign() == -1 {
   178  		z3.Add(z3, BitCurve.P)
   179  	}
   180  	z3.Mul(z3, h)
   181  	z3.Mod(z3, BitCurve.P)
   182  
   183  	return x3, y3, z3
   184  }
   185  
   186  // Double returns 2*(x,y)
   187  func (BitCurve *BitCurve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
   188  	z1 := new(big.Int).SetInt64(1)
   189  	return BitCurve.affineFromJacobian(BitCurve.doubleJacobian(x1, y1, z1))
   190  }
   191  
   192  // doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and
   193  // returns its double, also in Jacobian form.
   194  func (BitCurve *BitCurve) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) {
   195  	// See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
   196  
   197  	a := new(big.Int).Mul(x, x) //X1²
   198  	b := new(big.Int).Mul(y, y) //Y1²
   199  	c := new(big.Int).Mul(b, b) //B²
   200  
   201  	d := new(big.Int).Add(x, b) //X1+B
   202  	d.Mul(d, d)                 //(X1+B)²
   203  	d.Sub(d, a)                 //(X1+B)²-A
   204  	d.Sub(d, c)                 //(X1+B)²-A-C
   205  	d.Mul(d, big.NewInt(2))     //2*((X1+B)²-A-C)
   206  
   207  	e := new(big.Int).Mul(big.NewInt(3), a) //3*A
   208  	f := new(big.Int).Mul(e, e)             //E²
   209  
   210  	x3 := new(big.Int).Mul(big.NewInt(2), d) //2*D
   211  	x3.Sub(f, x3)                            //F-2*D
   212  	x3.Mod(x3, BitCurve.P)
   213  
   214  	y3 := new(big.Int).Sub(d, x3)                  //D-X3
   215  	y3.Mul(e, y3)                                  //E*(D-X3)
   216  	y3.Sub(y3, new(big.Int).Mul(big.NewInt(8), c)) //E*(D-X3)-8*C
   217  	y3.Mod(y3, BitCurve.P)
   218  
   219  	z3 := new(big.Int).Mul(y, z) //Y1*Z1
   220  	z3.Mul(big.NewInt(2), z3)    //3*Y1*Z1
   221  	z3.Mod(z3, BitCurve.P)
   222  
   223  	return x3, y3, z3
   224  }
   225  
   226  func (BitCurve *BitCurve) ScalarMult(Bx, By *big.Int, scalar []byte) (*big.Int, *big.Int) {
   227  	// Ensure scalar is exactly 32 bytes. We pad always, even if
   228  	// scalar is 32 bytes long, to avoid a timing side channel.
   229  	if len(scalar) > 32 {
   230  		panic("can't handle scalars > 256 bits")
   231  	}
   232  	// NOTE: potential timing issue
   233  	padded := make([]byte, 32)
   234  	copy(padded[32-len(scalar):], scalar)
   235  	scalar = padded
   236  
   237  	// Do the multiplication in C, updating point.
   238  	point := make([]byte, 64)
   239  	readBits(Bx, point[:32])
   240  	readBits(By, point[32:])
   241  
   242  	pointPtr := (*C.uchar)(unsafe.Pointer(&point[0]))
   243  	scalarPtr := (*C.uchar)(unsafe.Pointer(&scalar[0]))
   244  	res := C.secp256k1_ext_scalar_mul(context, pointPtr, scalarPtr)
   245  
   246  	// Unpack the result and clear temporaries.
   247  	x := new(big.Int).SetBytes(point[:32])
   248  	y := new(big.Int).SetBytes(point[32:])
   249  	for i := range point {
   250  		point[i] = 0
   251  	}
   252  	for i := range padded {
   253  		scalar[i] = 0
   254  	}
   255  	if res != 1 {
   256  		return nil, nil
   257  	}
   258  	return x, y
   259  }
   260  
   261  // ScalarBaseMult returns k*G, where G is the base point of the group and k is
   262  // an integer in big-endian form.
   263  func (BitCurve *BitCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) {
   264  	return BitCurve.ScalarMult(BitCurve.Gx, BitCurve.Gy, k)
   265  }
   266  
   267  // Marshal converts a point into the form specified in section 4.3.6 of ANSI
   268  // X9.62.
   269  func (BitCurve *BitCurve) Marshal(x, y *big.Int) []byte {
   270  	byteLen := (BitCurve.BitSize + 7) >> 3
   271  	ret := make([]byte, 1+2*byteLen)
   272  	ret[0] = 4 // uncompressed point flag
   273  	readBits(x, ret[1:1+byteLen])
   274  	readBits(y, ret[1+byteLen:])
   275  	return ret
   276  }
   277  
   278  // Unmarshal converts a point, serialised by Marshal, into an x, y pair. On
   279  // error, x = nil.
   280  func (BitCurve *BitCurve) Unmarshal(data []byte) (x, y *big.Int) {
   281  	byteLen := (BitCurve.BitSize + 7) >> 3
   282  	if len(data) != 1+2*byteLen {
   283  		return
   284  	}
   285  	if data[0] != 4 { // uncompressed form
   286  		return
   287  	}
   288  	x = new(big.Int).SetBytes(data[1 : 1+byteLen])
   289  	y = new(big.Int).SetBytes(data[1+byteLen:])
   290  	return
   291  }
   292  
   293  var theCurve = new(BitCurve)
   294  
   295  func init() {
   296  	// See SEC 2 section 2.7.1
   297  	// curve parameters taken from:
   298  	// http://www.secg.org/sec2-v2.pdf
   299  	theCurve.P, _ = new(big.Int).SetString("0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F", 0)
   300  	theCurve.N, _ = new(big.Int).SetString("0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141", 0)
   301  	theCurve.B, _ = new(big.Int).SetString("0x0000000000000000000000000000000000000000000000000000000000000007", 0)
   302  	theCurve.Gx, _ = new(big.Int).SetString("0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798", 0)
   303  	theCurve.Gy, _ = new(big.Int).SetString("0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8", 0)
   304  	theCurve.BitSize = 256
   305  }
   306  
   307  // S256 returns a BitCurve which implements secp256k1.
   308  func S256() *BitCurve {
   309  	return theCurve
   310  }