github.com/aigarnetwork/aigar@v0.0.0-20191115204914-d59a6eb70f8e/p2p/discover/table.go (about)

     1  //  Copyright 2018 The go-ethereum Authors
     2  //  Copyright 2019 The go-aigar Authors
     3  //  This file is part of the go-aigar library.
     4  //
     5  //  The go-aigar library is free software: you can redistribute it and/or modify
     6  //  it under the terms of the GNU Lesser General Public License as published by
     7  //  the Free Software Foundation, either version 3 of the License, or
     8  //  (at your option) any later version.
     9  //
    10  //  The go-aigar library is distributed in the hope that it will be useful,
    11  //  but WITHOUT ANY WARRANTY; without even the implied warranty of
    12  //  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    13  //  GNU Lesser General Public License for more details.
    14  //
    15  //  You should have received a copy of the GNU Lesser General Public License
    16  //  along with the go-aigar library. If not, see <http://www.gnu.org/licenses/>.
    17  
    18  // Package discover implements the Node Discovery Protocol.
    19  //
    20  // The Node Discovery protocol provides a way to find RLPx nodes that
    21  // can be connected to. It uses a Kademlia-like protocol to maintain a
    22  // distributed database of the IDs and endpoints of all listening
    23  // nodes.
    24  package discover
    25  
    26  import (
    27  	crand "crypto/rand"
    28  	"encoding/binary"
    29  	"fmt"
    30  	mrand "math/rand"
    31  	"net"
    32  	"sort"
    33  	"sync"
    34  	"time"
    35  
    36  	"github.com/AigarNetwork/aigar/common"
    37  	"github.com/AigarNetwork/aigar/log"
    38  	"github.com/AigarNetwork/aigar/p2p/enode"
    39  	"github.com/AigarNetwork/aigar/p2p/netutil"
    40  )
    41  
    42  const (
    43  	alpha           = 3  // Kademlia concurrency factor
    44  	bucketSize      = 16 // Kademlia bucket size
    45  	maxReplacements = 10 // Size of per-bucket replacement list
    46  
    47  	// We keep buckets for the upper 1/15 of distances because
    48  	// it's very unlikely we'll ever encounter a node that's closer.
    49  	hashBits          = len(common.Hash{}) * 8
    50  	nBuckets          = hashBits / 15       // Number of buckets
    51  	bucketMinDistance = hashBits - nBuckets // Log distance of closest bucket
    52  
    53  	// IP address limits.
    54  	bucketIPLimit, bucketSubnet = 2, 24 // at most 2 addresses from the same /24
    55  	tableIPLimit, tableSubnet   = 10, 24
    56  
    57  	refreshInterval    = 30 * time.Minute
    58  	revalidateInterval = 10 * time.Second
    59  	copyNodesInterval  = 30 * time.Second
    60  	seedMinTableTime   = 5 * time.Minute
    61  	seedCount          = 30
    62  	seedMaxAge         = 5 * 24 * time.Hour
    63  )
    64  
    65  // Table is the 'node table', a Kademlia-like index of neighbor nodes. The table keeps
    66  // itself up-to-date by verifying the liveness of neighbors and requesting their node
    67  // records when announcements of a new record version are received.
    68  type Table struct {
    69  	mutex   sync.Mutex        // protects buckets, bucket content, nursery, rand
    70  	buckets [nBuckets]*bucket // index of known nodes by distance
    71  	nursery []*node           // bootstrap nodes
    72  	rand    *mrand.Rand       // source of randomness, periodically reseeded
    73  	ips     netutil.DistinctNetSet
    74  
    75  	log        log.Logger
    76  	db         *enode.DB // database of known nodes
    77  	net        transport
    78  	refreshReq chan chan struct{}
    79  	initDone   chan struct{}
    80  	closeReq   chan struct{}
    81  	closed     chan struct{}
    82  
    83  	nodeAddedHook func(*node) // for testing
    84  }
    85  
    86  // transport is implemented by the UDP transports.
    87  type transport interface {
    88  	Self() *enode.Node
    89  	RequestENR(*enode.Node) (*enode.Node, error)
    90  	lookupRandom() []*enode.Node
    91  	lookupSelf() []*enode.Node
    92  	ping(*enode.Node) (seq uint64, err error)
    93  }
    94  
    95  // bucket contains nodes, ordered by their last activity. the entry
    96  // that was most recently active is the first element in entries.
    97  type bucket struct {
    98  	entries      []*node // live entries, sorted by time of last contact
    99  	replacements []*node // recently seen nodes to be used if revalidation fails
   100  	ips          netutil.DistinctNetSet
   101  }
   102  
   103  func newTable(t transport, db *enode.DB, bootnodes []*enode.Node, log log.Logger) (*Table, error) {
   104  	tab := &Table{
   105  		net:        t,
   106  		db:         db,
   107  		refreshReq: make(chan chan struct{}),
   108  		initDone:   make(chan struct{}),
   109  		closeReq:   make(chan struct{}),
   110  		closed:     make(chan struct{}),
   111  		rand:       mrand.New(mrand.NewSource(0)),
   112  		ips:        netutil.DistinctNetSet{Subnet: tableSubnet, Limit: tableIPLimit},
   113  		log:        log,
   114  	}
   115  	if err := tab.setFallbackNodes(bootnodes); err != nil {
   116  		return nil, err
   117  	}
   118  	for i := range tab.buckets {
   119  		tab.buckets[i] = &bucket{
   120  			ips: netutil.DistinctNetSet{Subnet: bucketSubnet, Limit: bucketIPLimit},
   121  		}
   122  	}
   123  	tab.seedRand()
   124  	tab.loadSeedNodes()
   125  
   126  	return tab, nil
   127  }
   128  
   129  func (tab *Table) self() *enode.Node {
   130  	return tab.net.Self()
   131  }
   132  
   133  func (tab *Table) seedRand() {
   134  	var b [8]byte
   135  	crand.Read(b[:])
   136  
   137  	tab.mutex.Lock()
   138  	tab.rand.Seed(int64(binary.BigEndian.Uint64(b[:])))
   139  	tab.mutex.Unlock()
   140  }
   141  
   142  // ReadRandomNodes fills the given slice with random nodes from the table. The results
   143  // are guaranteed to be unique for a single invocation, no node will appear twice.
   144  func (tab *Table) ReadRandomNodes(buf []*enode.Node) (n int) {
   145  	if !tab.isInitDone() {
   146  		return 0
   147  	}
   148  	tab.mutex.Lock()
   149  	defer tab.mutex.Unlock()
   150  
   151  	var nodes []*enode.Node
   152  	for _, b := range &tab.buckets {
   153  		for _, n := range b.entries {
   154  			nodes = append(nodes, unwrapNode(n))
   155  		}
   156  	}
   157  	// Shuffle.
   158  	for i := 0; i < len(nodes); i++ {
   159  		j := tab.rand.Intn(len(nodes))
   160  		nodes[i], nodes[j] = nodes[j], nodes[i]
   161  	}
   162  	return copy(buf, nodes)
   163  }
   164  
   165  // getNode returns the node with the given ID or nil if it isn't in the table.
   166  func (tab *Table) getNode(id enode.ID) *enode.Node {
   167  	tab.mutex.Lock()
   168  	defer tab.mutex.Unlock()
   169  
   170  	b := tab.bucket(id)
   171  	for _, e := range b.entries {
   172  		if e.ID() == id {
   173  			return unwrapNode(e)
   174  		}
   175  	}
   176  	return nil
   177  }
   178  
   179  // close terminates the network listener and flushes the node database.
   180  func (tab *Table) close() {
   181  	close(tab.closeReq)
   182  	<-tab.closed
   183  }
   184  
   185  // setFallbackNodes sets the initial points of contact. These nodes
   186  // are used to connect to the network if the table is empty and there
   187  // are no known nodes in the database.
   188  func (tab *Table) setFallbackNodes(nodes []*enode.Node) error {
   189  	for _, n := range nodes {
   190  		if err := n.ValidateComplete(); err != nil {
   191  			return fmt.Errorf("bad bootstrap node %q: %v", n, err)
   192  		}
   193  	}
   194  	tab.nursery = wrapNodes(nodes)
   195  	return nil
   196  }
   197  
   198  // isInitDone returns whether the table's initial seeding procedure has completed.
   199  func (tab *Table) isInitDone() bool {
   200  	select {
   201  	case <-tab.initDone:
   202  		return true
   203  	default:
   204  		return false
   205  	}
   206  }
   207  
   208  func (tab *Table) refresh() <-chan struct{} {
   209  	done := make(chan struct{})
   210  	select {
   211  	case tab.refreshReq <- done:
   212  	case <-tab.closeReq:
   213  		close(done)
   214  	}
   215  	return done
   216  }
   217  
   218  // loop schedules runs of doRefresh, doRevalidate and copyLiveNodes.
   219  func (tab *Table) loop() {
   220  	var (
   221  		revalidate     = time.NewTimer(tab.nextRevalidateTime())
   222  		refresh        = time.NewTicker(refreshInterval)
   223  		copyNodes      = time.NewTicker(copyNodesInterval)
   224  		refreshDone    = make(chan struct{})           // where doRefresh reports completion
   225  		revalidateDone chan struct{}                   // where doRevalidate reports completion
   226  		waiting        = []chan struct{}{tab.initDone} // holds waiting callers while doRefresh runs
   227  	)
   228  	defer refresh.Stop()
   229  	defer revalidate.Stop()
   230  	defer copyNodes.Stop()
   231  
   232  	// Start initial refresh.
   233  	go tab.doRefresh(refreshDone)
   234  
   235  loop:
   236  	for {
   237  		select {
   238  		case <-refresh.C:
   239  			tab.seedRand()
   240  			if refreshDone == nil {
   241  				refreshDone = make(chan struct{})
   242  				go tab.doRefresh(refreshDone)
   243  			}
   244  		case req := <-tab.refreshReq:
   245  			waiting = append(waiting, req)
   246  			if refreshDone == nil {
   247  				refreshDone = make(chan struct{})
   248  				go tab.doRefresh(refreshDone)
   249  			}
   250  		case <-refreshDone:
   251  			for _, ch := range waiting {
   252  				close(ch)
   253  			}
   254  			waiting, refreshDone = nil, nil
   255  		case <-revalidate.C:
   256  			revalidateDone = make(chan struct{})
   257  			go tab.doRevalidate(revalidateDone)
   258  		case <-revalidateDone:
   259  			revalidate.Reset(tab.nextRevalidateTime())
   260  			revalidateDone = nil
   261  		case <-copyNodes.C:
   262  			go tab.copyLiveNodes()
   263  		case <-tab.closeReq:
   264  			break loop
   265  		}
   266  	}
   267  
   268  	if refreshDone != nil {
   269  		<-refreshDone
   270  	}
   271  	for _, ch := range waiting {
   272  		close(ch)
   273  	}
   274  	if revalidateDone != nil {
   275  		<-revalidateDone
   276  	}
   277  	close(tab.closed)
   278  }
   279  
   280  // doRefresh performs a lookup for a random target to keep buckets full. seed nodes are
   281  // inserted if the table is empty (initial bootstrap or discarded faulty peers).
   282  func (tab *Table) doRefresh(done chan struct{}) {
   283  	defer close(done)
   284  
   285  	// Load nodes from the database and insert
   286  	// them. This should yield a few previously seen nodes that are
   287  	// (hopefully) still alive.
   288  	tab.loadSeedNodes()
   289  
   290  	// Run self lookup to discover new neighbor nodes.
   291  	tab.net.lookupSelf()
   292  
   293  	// The Kademlia paper specifies that the bucket refresh should
   294  	// perform a lookup in the least recently used bucket. We cannot
   295  	// adhere to this because the findnode target is a 512bit value
   296  	// (not hash-sized) and it is not easily possible to generate a
   297  	// sha3 preimage that falls into a chosen bucket.
   298  	// We perform a few lookups with a random target instead.
   299  	for i := 0; i < 3; i++ {
   300  		tab.net.lookupRandom()
   301  	}
   302  }
   303  
   304  func (tab *Table) loadSeedNodes() {
   305  	seeds := wrapNodes(tab.db.QuerySeeds(seedCount, seedMaxAge))
   306  	seeds = append(seeds, tab.nursery...)
   307  	for i := range seeds {
   308  		seed := seeds[i]
   309  		age := log.Lazy{Fn: func() interface{} { return time.Since(tab.db.LastPongReceived(seed.ID(), seed.IP())) }}
   310  		tab.log.Trace("Found seed node in database", "id", seed.ID(), "addr", seed.addr(), "age", age)
   311  		tab.addSeenNode(seed)
   312  	}
   313  }
   314  
   315  // doRevalidate checks that the last node in a random bucket is still live and replaces or
   316  // deletes the node if it isn't.
   317  func (tab *Table) doRevalidate(done chan<- struct{}) {
   318  	defer func() { done <- struct{}{} }()
   319  
   320  	last, bi := tab.nodeToRevalidate()
   321  	if last == nil {
   322  		// No non-empty bucket found.
   323  		return
   324  	}
   325  
   326  	// Ping the selected node and wait for a pong.
   327  	remoteSeq, err := tab.net.ping(unwrapNode(last))
   328  
   329  	// Also fetch record if the node replied and returned a higher sequence number.
   330  	if last.Seq() < remoteSeq {
   331  		n, err := tab.net.RequestENR(unwrapNode(last))
   332  		if err != nil {
   333  			tab.log.Debug("ENR request failed", "id", last.ID(), "addr", last.addr(), "err", err)
   334  		} else {
   335  			last = &node{Node: *n, addedAt: last.addedAt, livenessChecks: last.livenessChecks}
   336  		}
   337  	}
   338  
   339  	tab.mutex.Lock()
   340  	defer tab.mutex.Unlock()
   341  	b := tab.buckets[bi]
   342  	if err == nil {
   343  		// The node responded, move it to the front.
   344  		last.livenessChecks++
   345  		tab.log.Debug("Revalidated node", "b", bi, "id", last.ID(), "checks", last.livenessChecks)
   346  		tab.bumpInBucket(b, last)
   347  		return
   348  	}
   349  	// No reply received, pick a replacement or delete the node if there aren't
   350  	// any replacements.
   351  	if r := tab.replace(b, last); r != nil {
   352  		tab.log.Debug("Replaced dead node", "b", bi, "id", last.ID(), "ip", last.IP(), "checks", last.livenessChecks, "r", r.ID(), "rip", r.IP())
   353  	} else {
   354  		tab.log.Debug("Removed dead node", "b", bi, "id", last.ID(), "ip", last.IP(), "checks", last.livenessChecks)
   355  	}
   356  }
   357  
   358  // nodeToRevalidate returns the last node in a random, non-empty bucket.
   359  func (tab *Table) nodeToRevalidate() (n *node, bi int) {
   360  	tab.mutex.Lock()
   361  	defer tab.mutex.Unlock()
   362  
   363  	for _, bi = range tab.rand.Perm(len(tab.buckets)) {
   364  		b := tab.buckets[bi]
   365  		if len(b.entries) > 0 {
   366  			last := b.entries[len(b.entries)-1]
   367  			return last, bi
   368  		}
   369  	}
   370  	return nil, 0
   371  }
   372  
   373  func (tab *Table) nextRevalidateTime() time.Duration {
   374  	tab.mutex.Lock()
   375  	defer tab.mutex.Unlock()
   376  
   377  	return time.Duration(tab.rand.Int63n(int64(revalidateInterval)))
   378  }
   379  
   380  // copyLiveNodes adds nodes from the table to the database if they have been in the table
   381  // longer then minTableTime.
   382  func (tab *Table) copyLiveNodes() {
   383  	tab.mutex.Lock()
   384  	defer tab.mutex.Unlock()
   385  
   386  	now := time.Now()
   387  	for _, b := range &tab.buckets {
   388  		for _, n := range b.entries {
   389  			if n.livenessChecks > 0 && now.Sub(n.addedAt) >= seedMinTableTime {
   390  				tab.db.UpdateNode(unwrapNode(n))
   391  			}
   392  		}
   393  	}
   394  }
   395  
   396  // closest returns the n nodes in the table that are closest to the
   397  // given id. The caller must hold tab.mutex.
   398  func (tab *Table) closest(target enode.ID, nresults int, checklive bool) *nodesByDistance {
   399  	// This is a very wasteful way to find the closest nodes but
   400  	// obviously correct. I believe that tree-based buckets would make
   401  	// this easier to implement efficiently.
   402  	close := &nodesByDistance{target: target}
   403  	for _, b := range &tab.buckets {
   404  		for _, n := range b.entries {
   405  			if checklive && n.livenessChecks == 0 {
   406  				continue
   407  			}
   408  			close.push(n, nresults)
   409  		}
   410  	}
   411  	return close
   412  }
   413  
   414  // len returns the number of nodes in the table.
   415  func (tab *Table) len() (n int) {
   416  	tab.mutex.Lock()
   417  	defer tab.mutex.Unlock()
   418  
   419  	for _, b := range &tab.buckets {
   420  		n += len(b.entries)
   421  	}
   422  	return n
   423  }
   424  
   425  // bucket returns the bucket for the given node ID hash.
   426  func (tab *Table) bucket(id enode.ID) *bucket {
   427  	d := enode.LogDist(tab.self().ID(), id)
   428  	if d <= bucketMinDistance {
   429  		return tab.buckets[0]
   430  	}
   431  	return tab.buckets[d-bucketMinDistance-1]
   432  }
   433  
   434  // addSeenNode adds a node which may or may not be live to the end of a bucket. If the
   435  // bucket has space available, adding the node succeeds immediately. Otherwise, the node is
   436  // added to the replacements list.
   437  //
   438  // The caller must not hold tab.mutex.
   439  func (tab *Table) addSeenNode(n *node) {
   440  	if n.ID() == tab.self().ID() {
   441  		return
   442  	}
   443  
   444  	tab.mutex.Lock()
   445  	defer tab.mutex.Unlock()
   446  	b := tab.bucket(n.ID())
   447  	if contains(b.entries, n.ID()) {
   448  		// Already in bucket, don't add.
   449  		return
   450  	}
   451  	if len(b.entries) >= bucketSize {
   452  		// Bucket full, maybe add as replacement.
   453  		tab.addReplacement(b, n)
   454  		return
   455  	}
   456  	if !tab.addIP(b, n.IP()) {
   457  		// Can't add: IP limit reached.
   458  		return
   459  	}
   460  	// Add to end of bucket:
   461  	b.entries = append(b.entries, n)
   462  	b.replacements = deleteNode(b.replacements, n)
   463  	n.addedAt = time.Now()
   464  	if tab.nodeAddedHook != nil {
   465  		tab.nodeAddedHook(n)
   466  	}
   467  }
   468  
   469  // addVerifiedNode adds a node whose existence has been verified recently to the front of a
   470  // bucket. If the node is already in the bucket, it is moved to the front. If the bucket
   471  // has no space, the node is added to the replacements list.
   472  //
   473  // There is an additional safety measure: if the table is still initializing the node
   474  // is not added. This prevents an attack where the table could be filled by just sending
   475  // ping repeatedly.
   476  //
   477  // The caller must not hold tab.mutex.
   478  func (tab *Table) addVerifiedNode(n *node) {
   479  	if !tab.isInitDone() {
   480  		return
   481  	}
   482  	if n.ID() == tab.self().ID() {
   483  		return
   484  	}
   485  
   486  	tab.mutex.Lock()
   487  	defer tab.mutex.Unlock()
   488  	b := tab.bucket(n.ID())
   489  	if tab.bumpInBucket(b, n) {
   490  		// Already in bucket, moved to front.
   491  		return
   492  	}
   493  	if len(b.entries) >= bucketSize {
   494  		// Bucket full, maybe add as replacement.
   495  		tab.addReplacement(b, n)
   496  		return
   497  	}
   498  	if !tab.addIP(b, n.IP()) {
   499  		// Can't add: IP limit reached.
   500  		return
   501  	}
   502  	// Add to front of bucket.
   503  	b.entries, _ = pushNode(b.entries, n, bucketSize)
   504  	b.replacements = deleteNode(b.replacements, n)
   505  	n.addedAt = time.Now()
   506  	if tab.nodeAddedHook != nil {
   507  		tab.nodeAddedHook(n)
   508  	}
   509  }
   510  
   511  // delete removes an entry from the node table. It is used to evacuate dead nodes.
   512  func (tab *Table) delete(node *node) {
   513  	tab.mutex.Lock()
   514  	defer tab.mutex.Unlock()
   515  
   516  	tab.deleteInBucket(tab.bucket(node.ID()), node)
   517  }
   518  
   519  func (tab *Table) addIP(b *bucket, ip net.IP) bool {
   520  	if netutil.IsLAN(ip) {
   521  		return true
   522  	}
   523  	if !tab.ips.Add(ip) {
   524  		tab.log.Debug("IP exceeds table limit", "ip", ip)
   525  		return false
   526  	}
   527  	if !b.ips.Add(ip) {
   528  		tab.log.Debug("IP exceeds bucket limit", "ip", ip)
   529  		tab.ips.Remove(ip)
   530  		return false
   531  	}
   532  	return true
   533  }
   534  
   535  func (tab *Table) removeIP(b *bucket, ip net.IP) {
   536  	if netutil.IsLAN(ip) {
   537  		return
   538  	}
   539  	tab.ips.Remove(ip)
   540  	b.ips.Remove(ip)
   541  }
   542  
   543  func (tab *Table) addReplacement(b *bucket, n *node) {
   544  	for _, e := range b.replacements {
   545  		if e.ID() == n.ID() {
   546  			return // already in list
   547  		}
   548  	}
   549  	if !tab.addIP(b, n.IP()) {
   550  		return
   551  	}
   552  	var removed *node
   553  	b.replacements, removed = pushNode(b.replacements, n, maxReplacements)
   554  	if removed != nil {
   555  		tab.removeIP(b, removed.IP())
   556  	}
   557  }
   558  
   559  // replace removes n from the replacement list and replaces 'last' with it if it is the
   560  // last entry in the bucket. If 'last' isn't the last entry, it has either been replaced
   561  // with someone else or became active.
   562  func (tab *Table) replace(b *bucket, last *node) *node {
   563  	if len(b.entries) == 0 || b.entries[len(b.entries)-1].ID() != last.ID() {
   564  		// Entry has moved, don't replace it.
   565  		return nil
   566  	}
   567  	// Still the last entry.
   568  	if len(b.replacements) == 0 {
   569  		tab.deleteInBucket(b, last)
   570  		return nil
   571  	}
   572  	r := b.replacements[tab.rand.Intn(len(b.replacements))]
   573  	b.replacements = deleteNode(b.replacements, r)
   574  	b.entries[len(b.entries)-1] = r
   575  	tab.removeIP(b, last.IP())
   576  	return r
   577  }
   578  
   579  // bumpInBucket moves the given node to the front of the bucket entry list
   580  // if it is contained in that list.
   581  func (tab *Table) bumpInBucket(b *bucket, n *node) bool {
   582  	for i := range b.entries {
   583  		if b.entries[i].ID() == n.ID() {
   584  			if !n.IP().Equal(b.entries[i].IP()) {
   585  				// Endpoint has changed, ensure that the new IP fits into table limits.
   586  				tab.removeIP(b, b.entries[i].IP())
   587  				if !tab.addIP(b, n.IP()) {
   588  					// It doesn't, put the previous one back.
   589  					tab.addIP(b, b.entries[i].IP())
   590  					return false
   591  				}
   592  			}
   593  			// Move it to the front.
   594  			copy(b.entries[1:], b.entries[:i])
   595  			b.entries[0] = n
   596  			return true
   597  		}
   598  	}
   599  	return false
   600  }
   601  
   602  func (tab *Table) deleteInBucket(b *bucket, n *node) {
   603  	b.entries = deleteNode(b.entries, n)
   604  	tab.removeIP(b, n.IP())
   605  }
   606  
   607  func contains(ns []*node, id enode.ID) bool {
   608  	for _, n := range ns {
   609  		if n.ID() == id {
   610  			return true
   611  		}
   612  	}
   613  	return false
   614  }
   615  
   616  // pushNode adds n to the front of list, keeping at most max items.
   617  func pushNode(list []*node, n *node, max int) ([]*node, *node) {
   618  	if len(list) < max {
   619  		list = append(list, nil)
   620  	}
   621  	removed := list[len(list)-1]
   622  	copy(list[1:], list)
   623  	list[0] = n
   624  	return list, removed
   625  }
   626  
   627  // deleteNode removes n from list.
   628  func deleteNode(list []*node, n *node) []*node {
   629  	for i := range list {
   630  		if list[i].ID() == n.ID() {
   631  			return append(list[:i], list[i+1:]...)
   632  		}
   633  	}
   634  	return list
   635  }
   636  
   637  // nodesByDistance is a list of nodes, ordered by distance to target.
   638  type nodesByDistance struct {
   639  	entries []*node
   640  	target  enode.ID
   641  }
   642  
   643  // push adds the given node to the list, keeping the total size below maxElems.
   644  func (h *nodesByDistance) push(n *node, maxElems int) {
   645  	ix := sort.Search(len(h.entries), func(i int) bool {
   646  		return enode.DistCmp(h.target, h.entries[i].ID(), n.ID()) > 0
   647  	})
   648  	if len(h.entries) < maxElems {
   649  		h.entries = append(h.entries, n)
   650  	}
   651  	if ix == len(h.entries) {
   652  		// farther away than all nodes we already have.
   653  		// if there was room for it, the node is now the last element.
   654  	} else {
   655  		// slide existing entries down to make room
   656  		// this will overwrite the entry we just appended.
   657  		copy(h.entries[ix+1:], h.entries[ix:])
   658  		h.entries[ix] = n
   659  	}
   660  }