github.com/aigarnetwork/aigar@v0.0.0-20191115204914-d59a6eb70f8e/p2p/discv5/node.go (about)

     1  //  Copyright 2018 The go-ethereum Authors
     2  //  Copyright 2019 The go-aigar Authors
     3  //  This file is part of the go-aigar library.
     4  //
     5  //  The go-aigar library is free software: you can redistribute it and/or modify
     6  //  it under the terms of the GNU Lesser General Public License as published by
     7  //  the Free Software Foundation, either version 3 of the License, or
     8  //  (at your option) any later version.
     9  //
    10  //  The go-aigar library is distributed in the hope that it will be useful,
    11  //  but WITHOUT ANY WARRANTY; without even the implied warranty of
    12  //  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    13  //  GNU Lesser General Public License for more details.
    14  //
    15  //  You should have received a copy of the GNU Lesser General Public License
    16  //  along with the go-aigar library. If not, see <http://www.gnu.org/licenses/>.
    17  
    18  package discv5
    19  
    20  import (
    21  	"crypto/ecdsa"
    22  	"crypto/elliptic"
    23  	"encoding/hex"
    24  	"errors"
    25  	"fmt"
    26  	"math/big"
    27  	"math/rand"
    28  	"net"
    29  	"net/url"
    30  	"regexp"
    31  	"strconv"
    32  	"strings"
    33  
    34  	"github.com/AigarNetwork/aigar/common"
    35  	"github.com/AigarNetwork/aigar/crypto"
    36  )
    37  
    38  // Node represents a host on the network.
    39  // The public fields of Node may not be modified.
    40  type Node struct {
    41  	IP       net.IP // len 4 for IPv4 or 16 for IPv6
    42  	UDP, TCP uint16 // port numbers
    43  	ID       NodeID // the node's public key
    44  
    45  	// Network-related fields are contained in nodeNetGuts.
    46  	// These fields are not supposed to be used off the
    47  	// Network.loop goroutine.
    48  	nodeNetGuts
    49  }
    50  
    51  // NewNode creates a new node. It is mostly meant to be used for
    52  // testing purposes.
    53  func NewNode(id NodeID, ip net.IP, udpPort, tcpPort uint16) *Node {
    54  	if ipv4 := ip.To4(); ipv4 != nil {
    55  		ip = ipv4
    56  	}
    57  	return &Node{
    58  		IP:          ip,
    59  		UDP:         udpPort,
    60  		TCP:         tcpPort,
    61  		ID:          id,
    62  		nodeNetGuts: nodeNetGuts{sha: crypto.Keccak256Hash(id[:])},
    63  	}
    64  }
    65  
    66  func (n *Node) addr() *net.UDPAddr {
    67  	return &net.UDPAddr{IP: n.IP, Port: int(n.UDP)}
    68  }
    69  
    70  func (n *Node) setAddr(a *net.UDPAddr) {
    71  	n.IP = a.IP
    72  	if ipv4 := a.IP.To4(); ipv4 != nil {
    73  		n.IP = ipv4
    74  	}
    75  	n.UDP = uint16(a.Port)
    76  }
    77  
    78  // compares the given address against the stored values.
    79  func (n *Node) addrEqual(a *net.UDPAddr) bool {
    80  	ip := a.IP
    81  	if ipv4 := a.IP.To4(); ipv4 != nil {
    82  		ip = ipv4
    83  	}
    84  	return n.UDP == uint16(a.Port) && n.IP.Equal(ip)
    85  }
    86  
    87  // Incomplete returns true for nodes with no IP address.
    88  func (n *Node) Incomplete() bool {
    89  	return n.IP == nil
    90  }
    91  
    92  // checks whether n is a valid complete node.
    93  func (n *Node) validateComplete() error {
    94  	if n.Incomplete() {
    95  		return errors.New("incomplete node")
    96  	}
    97  	if n.UDP == 0 {
    98  		return errors.New("missing UDP port")
    99  	}
   100  	if n.TCP == 0 {
   101  		return errors.New("missing TCP port")
   102  	}
   103  	if n.IP.IsMulticast() || n.IP.IsUnspecified() {
   104  		return errors.New("invalid IP (multicast/unspecified)")
   105  	}
   106  	_, err := n.ID.Pubkey() // validate the key (on curve, etc.)
   107  	return err
   108  }
   109  
   110  // The string representation of a Node is a URL.
   111  // Please see ParseNode for a description of the format.
   112  func (n *Node) String() string {
   113  	u := url.URL{Scheme: "enode"}
   114  	if n.Incomplete() {
   115  		u.Host = fmt.Sprintf("%x", n.ID[:])
   116  	} else {
   117  		addr := net.TCPAddr{IP: n.IP, Port: int(n.TCP)}
   118  		u.User = url.User(fmt.Sprintf("%x", n.ID[:]))
   119  		u.Host = addr.String()
   120  		if n.UDP != n.TCP {
   121  			u.RawQuery = "discport=" + strconv.Itoa(int(n.UDP))
   122  		}
   123  	}
   124  	return u.String()
   125  }
   126  
   127  var incompleteNodeURL = regexp.MustCompile("(?i)^(?:enode://)?([0-9a-f]+)$")
   128  
   129  // ParseNode parses a node designator.
   130  //
   131  // There are two basic forms of node designators
   132  //   - incomplete nodes, which only have the public key (node ID)
   133  //   - complete nodes, which contain the public key and IP/Port information
   134  //
   135  // For incomplete nodes, the designator must look like one of these
   136  //
   137  //    enode://<hex node id>
   138  //    <hex node id>
   139  //
   140  // For complete nodes, the node ID is encoded in the username portion
   141  // of the URL, separated from the host by an @ sign. The hostname can
   142  // only be given as an IP address, DNS domain names are not allowed.
   143  // The port in the host name section is the TCP listening port. If the
   144  // TCP and UDP (discovery) ports differ, the UDP port is specified as
   145  // query parameter "discport".
   146  //
   147  // In the following example, the node URL describes
   148  // a node with IP address 10.3.58.6, TCP listening port 30303
   149  // and UDP discovery port 30301.
   150  //
   151  //    enode://<hex node id>@10.3.58.6:30303?discport=30301
   152  func ParseNode(rawurl string) (*Node, error) {
   153  	if m := incompleteNodeURL.FindStringSubmatch(rawurl); m != nil {
   154  		id, err := HexID(m[1])
   155  		if err != nil {
   156  			return nil, fmt.Errorf("invalid node ID (%v)", err)
   157  		}
   158  		return NewNode(id, nil, 0, 0), nil
   159  	}
   160  	return parseComplete(rawurl)
   161  }
   162  
   163  func parseComplete(rawurl string) (*Node, error) {
   164  	var (
   165  		id               NodeID
   166  		ip               net.IP
   167  		tcpPort, udpPort uint64
   168  	)
   169  	u, err := url.Parse(rawurl)
   170  	if err != nil {
   171  		return nil, err
   172  	}
   173  	if u.Scheme != "enode" {
   174  		return nil, errors.New("invalid URL scheme, want \"enode\"")
   175  	}
   176  	// Parse the Node ID from the user portion.
   177  	if u.User == nil {
   178  		return nil, errors.New("does not contain node ID")
   179  	}
   180  	if id, err = HexID(u.User.String()); err != nil {
   181  		return nil, fmt.Errorf("invalid node ID (%v)", err)
   182  	}
   183  	// Parse the IP address.
   184  	host, port, err := net.SplitHostPort(u.Host)
   185  	if err != nil {
   186  		return nil, fmt.Errorf("invalid host: %v", err)
   187  	}
   188  	if ip = net.ParseIP(host); ip == nil {
   189  		return nil, errors.New("invalid IP address")
   190  	}
   191  	// Ensure the IP is 4 bytes long for IPv4 addresses.
   192  	if ipv4 := ip.To4(); ipv4 != nil {
   193  		ip = ipv4
   194  	}
   195  	// Parse the port numbers.
   196  	if tcpPort, err = strconv.ParseUint(port, 10, 16); err != nil {
   197  		return nil, errors.New("invalid port")
   198  	}
   199  	udpPort = tcpPort
   200  	qv := u.Query()
   201  	if qv.Get("discport") != "" {
   202  		udpPort, err = strconv.ParseUint(qv.Get("discport"), 10, 16)
   203  		if err != nil {
   204  			return nil, errors.New("invalid discport in query")
   205  		}
   206  	}
   207  	return NewNode(id, ip, uint16(udpPort), uint16(tcpPort)), nil
   208  }
   209  
   210  // MustParseNode parses a node URL. It panics if the URL is not valid.
   211  func MustParseNode(rawurl string) *Node {
   212  	n, err := ParseNode(rawurl)
   213  	if err != nil {
   214  		panic("invalid node URL: " + err.Error())
   215  	}
   216  	return n
   217  }
   218  
   219  // MarshalText implements encoding.TextMarshaler.
   220  func (n *Node) MarshalText() ([]byte, error) {
   221  	return []byte(n.String()), nil
   222  }
   223  
   224  // UnmarshalText implements encoding.TextUnmarshaler.
   225  func (n *Node) UnmarshalText(text []byte) error {
   226  	dec, err := ParseNode(string(text))
   227  	if err == nil {
   228  		*n = *dec
   229  	}
   230  	return err
   231  }
   232  
   233  // type nodeQueue []*Node
   234  //
   235  // // pushNew adds n to the end if it is not present.
   236  // func (nl *nodeList) appendNew(n *Node) {
   237  // 	for _, entry := range n {
   238  // 		if entry == n {
   239  // 			return
   240  // 		}
   241  // 	}
   242  // 	*nq = append(*nq, n)
   243  // }
   244  //
   245  // // popRandom removes a random node. Nodes closer to
   246  // // to the head of the beginning of the have a slightly higher probability.
   247  // func (nl *nodeList) popRandom() *Node {
   248  // 	ix := rand.Intn(len(*nq))
   249  // 	//TODO: probability as mentioned above.
   250  // 	nl.removeIndex(ix)
   251  // }
   252  //
   253  // func (nl *nodeList) removeIndex(i int) *Node {
   254  // 	slice = *nl
   255  // 	if len(*slice) <= i {
   256  // 		return nil
   257  // 	}
   258  // 	*nl = append(slice[:i], slice[i+1:]...)
   259  // }
   260  
   261  const nodeIDBits = 512
   262  
   263  // NodeID is a unique identifier for each node.
   264  // The node identifier is a marshaled elliptic curve public key.
   265  type NodeID [nodeIDBits / 8]byte
   266  
   267  // NodeID prints as a long hexadecimal number.
   268  func (n NodeID) String() string {
   269  	return fmt.Sprintf("%x", n[:])
   270  }
   271  
   272  // The Go syntax representation of a NodeID is a call to HexID.
   273  func (n NodeID) GoString() string {
   274  	return fmt.Sprintf("discover.HexID(\"%x\")", n[:])
   275  }
   276  
   277  // TerminalString returns a shortened hex string for terminal logging.
   278  func (n NodeID) TerminalString() string {
   279  	return hex.EncodeToString(n[:8])
   280  }
   281  
   282  // HexID converts a hex string to a NodeID.
   283  // The string may be prefixed with 0x.
   284  func HexID(in string) (NodeID, error) {
   285  	var id NodeID
   286  	b, err := hex.DecodeString(strings.TrimPrefix(in, "0x"))
   287  	if err != nil {
   288  		return id, err
   289  	} else if len(b) != len(id) {
   290  		return id, fmt.Errorf("wrong length, want %d hex chars", len(id)*2)
   291  	}
   292  	copy(id[:], b)
   293  	return id, nil
   294  }
   295  
   296  // MustHexID converts a hex string to a NodeID.
   297  // It panics if the string is not a valid NodeID.
   298  func MustHexID(in string) NodeID {
   299  	id, err := HexID(in)
   300  	if err != nil {
   301  		panic(err)
   302  	}
   303  	return id
   304  }
   305  
   306  // PubkeyID returns a marshaled representation of the given public key.
   307  func PubkeyID(pub *ecdsa.PublicKey) NodeID {
   308  	var id NodeID
   309  	pbytes := elliptic.Marshal(pub.Curve, pub.X, pub.Y)
   310  	if len(pbytes)-1 != len(id) {
   311  		panic(fmt.Errorf("need %d bit pubkey, got %d bits", (len(id)+1)*8, len(pbytes)))
   312  	}
   313  	copy(id[:], pbytes[1:])
   314  	return id
   315  }
   316  
   317  // Pubkey returns the public key represented by the node ID.
   318  // It returns an error if the ID is not a point on the curve.
   319  func (n NodeID) Pubkey() (*ecdsa.PublicKey, error) {
   320  	p := &ecdsa.PublicKey{Curve: crypto.S256(), X: new(big.Int), Y: new(big.Int)}
   321  	half := len(n) / 2
   322  	p.X.SetBytes(n[:half])
   323  	p.Y.SetBytes(n[half:])
   324  	if !p.Curve.IsOnCurve(p.X, p.Y) {
   325  		return nil, errors.New("id is invalid secp256k1 curve point")
   326  	}
   327  	return p, nil
   328  }
   329  
   330  func (id NodeID) mustPubkey() ecdsa.PublicKey {
   331  	pk, err := id.Pubkey()
   332  	if err != nil {
   333  		panic(err)
   334  	}
   335  	return *pk
   336  }
   337  
   338  // recoverNodeID computes the public key used to sign the
   339  // given hash from the signature.
   340  func recoverNodeID(hash, sig []byte) (id NodeID, err error) {
   341  	pubkey, err := crypto.Ecrecover(hash, sig)
   342  	if err != nil {
   343  		return id, err
   344  	}
   345  	if len(pubkey)-1 != len(id) {
   346  		return id, fmt.Errorf("recovered pubkey has %d bits, want %d bits", len(pubkey)*8, (len(id)+1)*8)
   347  	}
   348  	for i := range id {
   349  		id[i] = pubkey[i+1]
   350  	}
   351  	return id, nil
   352  }
   353  
   354  // distcmp compares the distances a->target and b->target.
   355  // Returns -1 if a is closer to target, 1 if b is closer to target
   356  // and 0 if they are equal.
   357  func distcmp(target, a, b common.Hash) int {
   358  	for i := range target {
   359  		da := a[i] ^ target[i]
   360  		db := b[i] ^ target[i]
   361  		if da > db {
   362  			return 1
   363  		} else if da < db {
   364  			return -1
   365  		}
   366  	}
   367  	return 0
   368  }
   369  
   370  // table of leading zero counts for bytes [0..255]
   371  var lzcount = [256]int{
   372  	8, 7, 6, 6, 5, 5, 5, 5,
   373  	4, 4, 4, 4, 4, 4, 4, 4,
   374  	3, 3, 3, 3, 3, 3, 3, 3,
   375  	3, 3, 3, 3, 3, 3, 3, 3,
   376  	2, 2, 2, 2, 2, 2, 2, 2,
   377  	2, 2, 2, 2, 2, 2, 2, 2,
   378  	2, 2, 2, 2, 2, 2, 2, 2,
   379  	2, 2, 2, 2, 2, 2, 2, 2,
   380  	1, 1, 1, 1, 1, 1, 1, 1,
   381  	1, 1, 1, 1, 1, 1, 1, 1,
   382  	1, 1, 1, 1, 1, 1, 1, 1,
   383  	1, 1, 1, 1, 1, 1, 1, 1,
   384  	1, 1, 1, 1, 1, 1, 1, 1,
   385  	1, 1, 1, 1, 1, 1, 1, 1,
   386  	1, 1, 1, 1, 1, 1, 1, 1,
   387  	1, 1, 1, 1, 1, 1, 1, 1,
   388  	0, 0, 0, 0, 0, 0, 0, 0,
   389  	0, 0, 0, 0, 0, 0, 0, 0,
   390  	0, 0, 0, 0, 0, 0, 0, 0,
   391  	0, 0, 0, 0, 0, 0, 0, 0,
   392  	0, 0, 0, 0, 0, 0, 0, 0,
   393  	0, 0, 0, 0, 0, 0, 0, 0,
   394  	0, 0, 0, 0, 0, 0, 0, 0,
   395  	0, 0, 0, 0, 0, 0, 0, 0,
   396  	0, 0, 0, 0, 0, 0, 0, 0,
   397  	0, 0, 0, 0, 0, 0, 0, 0,
   398  	0, 0, 0, 0, 0, 0, 0, 0,
   399  	0, 0, 0, 0, 0, 0, 0, 0,
   400  	0, 0, 0, 0, 0, 0, 0, 0,
   401  	0, 0, 0, 0, 0, 0, 0, 0,
   402  	0, 0, 0, 0, 0, 0, 0, 0,
   403  	0, 0, 0, 0, 0, 0, 0, 0,
   404  }
   405  
   406  // logdist returns the logarithmic distance between a and b, log2(a ^ b).
   407  func logdist(a, b common.Hash) int {
   408  	lz := 0
   409  	for i := range a {
   410  		x := a[i] ^ b[i]
   411  		if x == 0 {
   412  			lz += 8
   413  		} else {
   414  			lz += lzcount[x]
   415  			break
   416  		}
   417  	}
   418  	return len(a)*8 - lz
   419  }
   420  
   421  // hashAtDistance returns a random hash such that logdist(a, b) == n
   422  func hashAtDistance(a common.Hash, n int) (b common.Hash) {
   423  	if n == 0 {
   424  		return a
   425  	}
   426  	// flip bit at position n, fill the rest with random bits
   427  	b = a
   428  	pos := len(a) - n/8 - 1
   429  	bit := byte(0x01) << (byte(n%8) - 1)
   430  	if bit == 0 {
   431  		pos++
   432  		bit = 0x80
   433  	}
   434  	b[pos] = a[pos]&^bit | ^a[pos]&bit // TODO: randomize end bits
   435  	for i := pos + 1; i < len(a); i++ {
   436  		b[i] = byte(rand.Intn(255))
   437  	}
   438  	return b
   439  }