github.com/aigarnetwork/aigar@v0.0.0-20191115204914-d59a6eb70f8e/signer/core/signed_data.go (about)

     1  //  Copyright 2018 The go-ethereum Authors
     2  //  Copyright 2019 The go-aigar Authors
     3  //  This file is part of the go-aigar library.
     4  //
     5  //  The go-aigar library is free software: you can redistribute it and/or modify
     6  //  it under the terms of the GNU Lesser General Public License as published by
     7  //  the Free Software Foundation, either version 3 of the License, or
     8  //  (at your option) any later version.
     9  //
    10  //  The go-aigar library is distributed in the hope that it will be useful,
    11  //  but WITHOUT ANY WARRANTY; without even the implied warranty of
    12  //  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    13  //  GNU Lesser General Public License for more details.
    14  //
    15  //  You should have received a copy of the GNU Lesser General Public License
    16  //  along with the go-aigar library. If not, see <http://www.gnu.org/licenses/>.
    17  
    18  package core
    19  
    20  import (
    21  	"bytes"
    22  	"context"
    23  	"errors"
    24  	"fmt"
    25  	"math/big"
    26  	"mime"
    27  	"reflect"
    28  	"regexp"
    29  	"sort"
    30  	"strconv"
    31  	"strings"
    32  	"unicode"
    33  
    34  	"github.com/AigarNetwork/aigar/accounts"
    35  	"github.com/AigarNetwork/aigar/accounts/abi"
    36  	"github.com/AigarNetwork/aigar/common"
    37  	"github.com/AigarNetwork/aigar/common/hexutil"
    38  	"github.com/AigarNetwork/aigar/common/math"
    39  	"github.com/AigarNetwork/aigar/consensus/clique"
    40  	"github.com/AigarNetwork/aigar/core/types"
    41  	"github.com/AigarNetwork/aigar/crypto"
    42  	"github.com/AigarNetwork/aigar/rlp"
    43  )
    44  
    45  type SigFormat struct {
    46  	Mime        string
    47  	ByteVersion byte
    48  }
    49  
    50  var (
    51  	IntendedValidator = SigFormat{
    52  		accounts.MimetypeDataWithValidator,
    53  		0x00,
    54  	}
    55  	DataTyped = SigFormat{
    56  		accounts.MimetypeTypedData,
    57  		0x01,
    58  	}
    59  	ApplicationClique = SigFormat{
    60  		accounts.MimetypeClique,
    61  		0x02,
    62  	}
    63  	TextPlain = SigFormat{
    64  		accounts.MimetypeTextPlain,
    65  		0x45,
    66  	}
    67  )
    68  
    69  type ValidatorData struct {
    70  	Address common.Address
    71  	Message hexutil.Bytes
    72  }
    73  
    74  type TypedData struct {
    75  	Types       Types            `json:"types"`
    76  	PrimaryType string           `json:"primaryType"`
    77  	Domain      TypedDataDomain  `json:"domain"`
    78  	Message     TypedDataMessage `json:"message"`
    79  }
    80  
    81  type Type struct {
    82  	Name string `json:"name"`
    83  	Type string `json:"type"`
    84  }
    85  
    86  func (t *Type) isArray() bool {
    87  	return strings.HasSuffix(t.Type, "[]")
    88  }
    89  
    90  // typeName returns the canonical name of the type. If the type is 'Person[]', then
    91  // this method returns 'Person'
    92  func (t *Type) typeName() string {
    93  	if strings.HasSuffix(t.Type, "[]") {
    94  		return strings.TrimSuffix(t.Type, "[]")
    95  	}
    96  	return t.Type
    97  }
    98  
    99  func (t *Type) isReferenceType() bool {
   100  	if len(t.Type) == 0 {
   101  		return false
   102  	}
   103  	// Reference types must have a leading uppercase characer
   104  	return unicode.IsUpper([]rune(t.Type)[0])
   105  }
   106  
   107  type Types map[string][]Type
   108  
   109  type TypePriority struct {
   110  	Type  string
   111  	Value uint
   112  }
   113  
   114  type TypedDataMessage = map[string]interface{}
   115  
   116  type TypedDataDomain struct {
   117  	Name              string                `json:"name"`
   118  	Version           string                `json:"version"`
   119  	ChainId           *math.HexOrDecimal256 `json:"chainId"`
   120  	VerifyingContract string                `json:"verifyingContract"`
   121  	Salt              string                `json:"salt"`
   122  }
   123  
   124  var typedDataReferenceTypeRegexp = regexp.MustCompile(`^[A-Z](\w*)(\[\])?$`)
   125  
   126  // sign receives a request and produces a signature
   127  //
   128  // Note, the produced signature conforms to the secp256k1 curve R, S and V values,
   129  // where the V value will be 27 or 28 for legacy reasons, if legacyV==true.
   130  func (api *SignerAPI) sign(addr common.MixedcaseAddress, req *SignDataRequest, legacyV bool) (hexutil.Bytes, error) {
   131  	// We make the request prior to looking up if we actually have the account, to prevent
   132  	// account-enumeration via the API
   133  	res, err := api.UI.ApproveSignData(req)
   134  	if err != nil {
   135  		return nil, err
   136  	}
   137  	if !res.Approved {
   138  		return nil, ErrRequestDenied
   139  	}
   140  	// Look up the wallet containing the requested signer
   141  	account := accounts.Account{Address: addr.Address()}
   142  	wallet, err := api.am.Find(account)
   143  	if err != nil {
   144  		return nil, err
   145  	}
   146  	pw, err := api.lookupOrQueryPassword(account.Address,
   147  		"Password for signing",
   148  		fmt.Sprintf("Please enter password for signing data with account %s", account.Address.Hex()))
   149  	if err != nil {
   150  		return nil, err
   151  	}
   152  	// Sign the data with the wallet
   153  	signature, err := wallet.SignDataWithPassphrase(account, pw, req.ContentType, req.Rawdata)
   154  	if err != nil {
   155  		return nil, err
   156  	}
   157  	if legacyV {
   158  		signature[64] += 27 // Transform V from 0/1 to 27/28 according to the yellow paper
   159  	}
   160  	return signature, nil
   161  }
   162  
   163  // SignData signs the hash of the provided data, but does so differently
   164  // depending on the content-type specified.
   165  //
   166  // Different types of validation occur.
   167  func (api *SignerAPI) SignData(ctx context.Context, contentType string, addr common.MixedcaseAddress, data interface{}) (hexutil.Bytes, error) {
   168  	var req, transformV, err = api.determineSignatureFormat(ctx, contentType, addr, data)
   169  	if err != nil {
   170  		return nil, err
   171  	}
   172  	signature, err := api.sign(addr, req, transformV)
   173  	if err != nil {
   174  		api.UI.ShowError(err.Error())
   175  		return nil, err
   176  	}
   177  	return signature, nil
   178  }
   179  
   180  // determineSignatureFormat determines which signature method should be used based upon the mime type
   181  // In the cases where it matters ensure that the charset is handled. The charset
   182  // resides in the 'params' returned as the second returnvalue from mime.ParseMediaType
   183  // charset, ok := params["charset"]
   184  // As it is now, we accept any charset and just treat it as 'raw'.
   185  // This method returns the mimetype for signing along with the request
   186  func (api *SignerAPI) determineSignatureFormat(ctx context.Context, contentType string, addr common.MixedcaseAddress, data interface{}) (*SignDataRequest, bool, error) {
   187  	var (
   188  		req          *SignDataRequest
   189  		useEthereumV = true // Default to use V = 27 or 28, the legacy Ethereum format
   190  	)
   191  	mediaType, _, err := mime.ParseMediaType(contentType)
   192  	if err != nil {
   193  		return nil, useEthereumV, err
   194  	}
   195  
   196  	switch mediaType {
   197  	case IntendedValidator.Mime:
   198  		// Data with an intended validator
   199  		validatorData, err := UnmarshalValidatorData(data)
   200  		if err != nil {
   201  			return nil, useEthereumV, err
   202  		}
   203  		sighash, msg := SignTextValidator(validatorData)
   204  		messages := []*NameValueType{
   205  			{
   206  				Name:  "This is a request to sign data intended for a particular validator (see EIP 191 version 0)",
   207  				Typ:   "description",
   208  				Value: "",
   209  			},
   210  			{
   211  				Name:  "Intended validator address",
   212  				Typ:   "address",
   213  				Value: validatorData.Address.String(),
   214  			},
   215  			{
   216  				Name:  "Application-specific data",
   217  				Typ:   "hexdata",
   218  				Value: validatorData.Message,
   219  			},
   220  			{
   221  				Name:  "Full message for signing",
   222  				Typ:   "hexdata",
   223  				Value: fmt.Sprintf("0x%x", msg),
   224  			},
   225  		}
   226  		req = &SignDataRequest{ContentType: mediaType, Rawdata: []byte(msg), Messages: messages, Hash: sighash}
   227  	case ApplicationClique.Mime:
   228  		// Clique is the Ethereum PoA standard
   229  		stringData, ok := data.(string)
   230  		if !ok {
   231  			return nil, useEthereumV, fmt.Errorf("input for %v must be an hex-encoded string", ApplicationClique.Mime)
   232  		}
   233  		cliqueData, err := hexutil.Decode(stringData)
   234  		if err != nil {
   235  			return nil, useEthereumV, err
   236  		}
   237  		header := &types.Header{}
   238  		if err := rlp.DecodeBytes(cliqueData, header); err != nil {
   239  			return nil, useEthereumV, err
   240  		}
   241  		// The incoming clique header is already truncated, sent to us with a extradata already shortened
   242  		if len(header.Extra) < 65 {
   243  			// Need to add it back, to get a suitable length for hashing
   244  			newExtra := make([]byte, len(header.Extra)+65)
   245  			copy(newExtra, header.Extra)
   246  			header.Extra = newExtra
   247  		}
   248  		// Get back the rlp data, encoded by us
   249  		sighash, cliqueRlp, err := cliqueHeaderHashAndRlp(header)
   250  		if err != nil {
   251  			return nil, useEthereumV, err
   252  		}
   253  		messages := []*NameValueType{
   254  			{
   255  				Name:  "Clique header",
   256  				Typ:   "clique",
   257  				Value: fmt.Sprintf("clique header %d [0x%x]", header.Number, header.Hash()),
   258  			},
   259  		}
   260  		// Clique uses V on the form 0 or 1
   261  		useEthereumV = false
   262  		req = &SignDataRequest{ContentType: mediaType, Rawdata: cliqueRlp, Messages: messages, Hash: sighash}
   263  	default: // also case TextPlain.Mime:
   264  		// Calculates an Ethereum ECDSA signature for:
   265  		// hash = keccak256("\x19${byteVersion}Ethereum Signed Message:\n${message length}${message}")
   266  		// We expect it to be a string
   267  		if stringData, ok := data.(string); !ok {
   268  			return nil, useEthereumV, fmt.Errorf("input for text/plain must be an hex-encoded string")
   269  		} else {
   270  			if textData, err := hexutil.Decode(stringData); err != nil {
   271  				return nil, useEthereumV, err
   272  			} else {
   273  				sighash, msg := accounts.TextAndHash(textData)
   274  				messages := []*NameValueType{
   275  					{
   276  						Name:  "message",
   277  						Typ:   accounts.MimetypeTextPlain,
   278  						Value: msg,
   279  					},
   280  				}
   281  				req = &SignDataRequest{ContentType: mediaType, Rawdata: []byte(msg), Messages: messages, Hash: sighash}
   282  			}
   283  		}
   284  	}
   285  	req.Address = addr
   286  	req.Meta = MetadataFromContext(ctx)
   287  	return req, useEthereumV, nil
   288  }
   289  
   290  // SignTextWithValidator signs the given message which can be further recovered
   291  // with the given validator.
   292  // hash = keccak256("\x19\x00"${address}${data}).
   293  func SignTextValidator(validatorData ValidatorData) (hexutil.Bytes, string) {
   294  	msg := fmt.Sprintf("\x19\x00%s%s", string(validatorData.Address.Bytes()), string(validatorData.Message))
   295  	return crypto.Keccak256([]byte(msg)), msg
   296  }
   297  
   298  // cliqueHeaderHashAndRlp returns the hash which is used as input for the proof-of-authority
   299  // signing. It is the hash of the entire header apart from the 65 byte signature
   300  // contained at the end of the extra data.
   301  //
   302  // The method requires the extra data to be at least 65 bytes -- the original implementation
   303  // in clique.go panics if this is the case, thus it's been reimplemented here to avoid the panic
   304  // and simply return an error instead
   305  func cliqueHeaderHashAndRlp(header *types.Header) (hash, rlp []byte, err error) {
   306  	if len(header.Extra) < 65 {
   307  		err = fmt.Errorf("clique header extradata too short, %d < 65", len(header.Extra))
   308  		return
   309  	}
   310  	rlp = clique.CliqueRLP(header)
   311  	hash = clique.SealHash(header).Bytes()
   312  	return hash, rlp, err
   313  }
   314  
   315  // SignTypedData signs EIP-712 conformant typed data
   316  // hash = keccak256("\x19${byteVersion}${domainSeparator}${hashStruct(message)}")
   317  func (api *SignerAPI) SignTypedData(ctx context.Context, addr common.MixedcaseAddress, typedData TypedData) (hexutil.Bytes, error) {
   318  	domainSeparator, err := typedData.HashStruct("EIP712Domain", typedData.Domain.Map())
   319  	if err != nil {
   320  		return nil, err
   321  	}
   322  	typedDataHash, err := typedData.HashStruct(typedData.PrimaryType, typedData.Message)
   323  	if err != nil {
   324  		return nil, err
   325  	}
   326  	rawData := []byte(fmt.Sprintf("\x19\x01%s%s", string(domainSeparator), string(typedDataHash)))
   327  	sighash := crypto.Keccak256(rawData)
   328  	messages, err := typedData.Format()
   329  	if err != nil {
   330  		return nil, err
   331  	}
   332  	req := &SignDataRequest{ContentType: DataTyped.Mime, Rawdata: rawData, Messages: messages, Hash: sighash}
   333  	signature, err := api.sign(addr, req, true)
   334  	if err != nil {
   335  		api.UI.ShowError(err.Error())
   336  		return nil, err
   337  	}
   338  	return signature, nil
   339  }
   340  
   341  // HashStruct generates a keccak256 hash of the encoding of the provided data
   342  func (typedData *TypedData) HashStruct(primaryType string, data TypedDataMessage) (hexutil.Bytes, error) {
   343  	encodedData, err := typedData.EncodeData(primaryType, data, 1)
   344  	if err != nil {
   345  		return nil, err
   346  	}
   347  	return crypto.Keccak256(encodedData), nil
   348  }
   349  
   350  // Dependencies returns an array of custom types ordered by their hierarchical reference tree
   351  func (typedData *TypedData) Dependencies(primaryType string, found []string) []string {
   352  	includes := func(arr []string, str string) bool {
   353  		for _, obj := range arr {
   354  			if obj == str {
   355  				return true
   356  			}
   357  		}
   358  		return false
   359  	}
   360  
   361  	if includes(found, primaryType) {
   362  		return found
   363  	}
   364  	if typedData.Types[primaryType] == nil {
   365  		return found
   366  	}
   367  	found = append(found, primaryType)
   368  	for _, field := range typedData.Types[primaryType] {
   369  		for _, dep := range typedData.Dependencies(field.Type, found) {
   370  			if !includes(found, dep) {
   371  				found = append(found, dep)
   372  			}
   373  		}
   374  	}
   375  	return found
   376  }
   377  
   378  // EncodeType generates the following encoding:
   379  // `name ‖ "(" ‖ member₁ ‖ "," ‖ member₂ ‖ "," ‖ … ‖ memberₙ ")"`
   380  //
   381  // each member is written as `type ‖ " " ‖ name` encodings cascade down and are sorted by name
   382  func (typedData *TypedData) EncodeType(primaryType string) hexutil.Bytes {
   383  	// Get dependencies primary first, then alphabetical
   384  	deps := typedData.Dependencies(primaryType, []string{})
   385  	if len(deps) > 0 {
   386  		slicedDeps := deps[1:]
   387  		sort.Strings(slicedDeps)
   388  		deps = append([]string{primaryType}, slicedDeps...)
   389  	}
   390  
   391  	// Format as a string with fields
   392  	var buffer bytes.Buffer
   393  	for _, dep := range deps {
   394  		buffer.WriteString(dep)
   395  		buffer.WriteString("(")
   396  		for _, obj := range typedData.Types[dep] {
   397  			buffer.WriteString(obj.Type)
   398  			buffer.WriteString(" ")
   399  			buffer.WriteString(obj.Name)
   400  			buffer.WriteString(",")
   401  		}
   402  		buffer.Truncate(buffer.Len() - 1)
   403  		buffer.WriteString(")")
   404  	}
   405  	return buffer.Bytes()
   406  }
   407  
   408  // TypeHash creates the keccak256 hash  of the data
   409  func (typedData *TypedData) TypeHash(primaryType string) hexutil.Bytes {
   410  	return crypto.Keccak256(typedData.EncodeType(primaryType))
   411  }
   412  
   413  // EncodeData generates the following encoding:
   414  // `enc(value₁) ‖ enc(value₂) ‖ … ‖ enc(valueₙ)`
   415  //
   416  // each encoded member is 32-byte long
   417  func (typedData *TypedData) EncodeData(primaryType string, data map[string]interface{}, depth int) (hexutil.Bytes, error) {
   418  	if err := typedData.validate(); err != nil {
   419  		return nil, err
   420  	}
   421  
   422  	buffer := bytes.Buffer{}
   423  
   424  	// Verify extra data
   425  	if len(typedData.Types[primaryType]) < len(data) {
   426  		return nil, errors.New("there is extra data provided in the message")
   427  	}
   428  
   429  	// Add typehash
   430  	buffer.Write(typedData.TypeHash(primaryType))
   431  
   432  	// Add field contents. Structs and arrays have special handlers.
   433  	for _, field := range typedData.Types[primaryType] {
   434  		encType := field.Type
   435  		encValue := data[field.Name]
   436  		if encType[len(encType)-1:] == "]" {
   437  			arrayValue, ok := encValue.([]interface{})
   438  			if !ok {
   439  				return nil, dataMismatchError(encType, encValue)
   440  			}
   441  
   442  			arrayBuffer := bytes.Buffer{}
   443  			parsedType := strings.Split(encType, "[")[0]
   444  			for _, item := range arrayValue {
   445  				if typedData.Types[parsedType] != nil {
   446  					mapValue, ok := item.(map[string]interface{})
   447  					if !ok {
   448  						return nil, dataMismatchError(parsedType, item)
   449  					}
   450  					encodedData, err := typedData.EncodeData(parsedType, mapValue, depth+1)
   451  					if err != nil {
   452  						return nil, err
   453  					}
   454  					arrayBuffer.Write(encodedData)
   455  				} else {
   456  					bytesValue, err := typedData.EncodePrimitiveValue(parsedType, item, depth)
   457  					if err != nil {
   458  						return nil, err
   459  					}
   460  					arrayBuffer.Write(bytesValue)
   461  				}
   462  			}
   463  
   464  			buffer.Write(crypto.Keccak256(arrayBuffer.Bytes()))
   465  		} else if typedData.Types[field.Type] != nil {
   466  			mapValue, ok := encValue.(map[string]interface{})
   467  			if !ok {
   468  				return nil, dataMismatchError(encType, encValue)
   469  			}
   470  			encodedData, err := typedData.EncodeData(field.Type, mapValue, depth+1)
   471  			if err != nil {
   472  				return nil, err
   473  			}
   474  			buffer.Write(crypto.Keccak256(encodedData))
   475  		} else {
   476  			byteValue, err := typedData.EncodePrimitiveValue(encType, encValue, depth)
   477  			if err != nil {
   478  				return nil, err
   479  			}
   480  			buffer.Write(byteValue)
   481  		}
   482  	}
   483  	return buffer.Bytes(), nil
   484  }
   485  
   486  func parseInteger(encType string, encValue interface{}) (*big.Int, error) {
   487  	var (
   488  		length int
   489  		signed = strings.HasPrefix(encType, "int")
   490  		b      *big.Int
   491  	)
   492  	if encType == "int" || encType == "uint" {
   493  		length = 256
   494  	} else {
   495  		lengthStr := ""
   496  		if strings.HasPrefix(encType, "uint") {
   497  			lengthStr = strings.TrimPrefix(encType, "uint")
   498  		} else {
   499  			lengthStr = strings.TrimPrefix(encType, "int")
   500  		}
   501  		atoiSize, err := strconv.Atoi(lengthStr)
   502  		if err != nil {
   503  			return nil, fmt.Errorf("invalid size on integer: %v", lengthStr)
   504  		}
   505  		length = atoiSize
   506  	}
   507  	switch v := encValue.(type) {
   508  	case *math.HexOrDecimal256:
   509  		b = (*big.Int)(v)
   510  	case string:
   511  		var hexIntValue math.HexOrDecimal256
   512  		if err := hexIntValue.UnmarshalText([]byte(v)); err != nil {
   513  			return nil, err
   514  		}
   515  		b = (*big.Int)(&hexIntValue)
   516  	case float64:
   517  		// JSON parses non-strings as float64. Fail if we cannot
   518  		// convert it losslessly
   519  		if float64(int64(v)) == v {
   520  			b = big.NewInt(int64(v))
   521  		} else {
   522  			return nil, fmt.Errorf("invalid float value %v for type %v", v, encType)
   523  		}
   524  	}
   525  	if b == nil {
   526  		return nil, fmt.Errorf("invalid integer value %v/%v for type %v", encValue, reflect.TypeOf(encValue), encType)
   527  	}
   528  	if b.BitLen() > length {
   529  		return nil, fmt.Errorf("integer larger than '%v'", encType)
   530  	}
   531  	if !signed && b.Sign() == -1 {
   532  		return nil, fmt.Errorf("invalid negative value for unsigned type %v", encType)
   533  	}
   534  	return b, nil
   535  }
   536  
   537  // EncodePrimitiveValue deals with the primitive values found
   538  // while searching through the typed data
   539  func (typedData *TypedData) EncodePrimitiveValue(encType string, encValue interface{}, depth int) ([]byte, error) {
   540  	switch encType {
   541  	case "address":
   542  		stringValue, ok := encValue.(string)
   543  		if !ok || !common.IsHexAddress(stringValue) {
   544  			return nil, dataMismatchError(encType, encValue)
   545  		}
   546  		retval := make([]byte, 32)
   547  		copy(retval[12:], common.HexToAddress(stringValue).Bytes())
   548  		return retval, nil
   549  	case "bool":
   550  		boolValue, ok := encValue.(bool)
   551  		if !ok {
   552  			return nil, dataMismatchError(encType, encValue)
   553  		}
   554  		if boolValue {
   555  			return math.PaddedBigBytes(common.Big1, 32), nil
   556  		}
   557  		return math.PaddedBigBytes(common.Big0, 32), nil
   558  	case "string":
   559  		strVal, ok := encValue.(string)
   560  		if !ok {
   561  			return nil, dataMismatchError(encType, encValue)
   562  		}
   563  		return crypto.Keccak256([]byte(strVal)), nil
   564  	case "bytes":
   565  		bytesValue, ok := encValue.([]byte)
   566  		if !ok {
   567  			return nil, dataMismatchError(encType, encValue)
   568  		}
   569  		return crypto.Keccak256(bytesValue), nil
   570  	}
   571  	if strings.HasPrefix(encType, "bytes") {
   572  		lengthStr := strings.TrimPrefix(encType, "bytes")
   573  		length, err := strconv.Atoi(lengthStr)
   574  		if err != nil {
   575  			return nil, fmt.Errorf("invalid size on bytes: %v", lengthStr)
   576  		}
   577  		if length < 0 || length > 32 {
   578  			return nil, fmt.Errorf("invalid size on bytes: %d", length)
   579  		}
   580  		if byteValue, ok := encValue.(hexutil.Bytes); !ok {
   581  			return nil, dataMismatchError(encType, encValue)
   582  		} else {
   583  			return math.PaddedBigBytes(new(big.Int).SetBytes(byteValue), 32), nil
   584  		}
   585  	}
   586  	if strings.HasPrefix(encType, "int") || strings.HasPrefix(encType, "uint") {
   587  		b, err := parseInteger(encType, encValue)
   588  		if err != nil {
   589  			return nil, err
   590  		}
   591  		return abi.U256(b), nil
   592  	}
   593  	return nil, fmt.Errorf("unrecognized type '%s'", encType)
   594  
   595  }
   596  
   597  // dataMismatchError generates an error for a mismatch between
   598  // the provided type and data
   599  func dataMismatchError(encType string, encValue interface{}) error {
   600  	return fmt.Errorf("provided data '%v' doesn't match type '%s'", encValue, encType)
   601  }
   602  
   603  // EcRecover recovers the address associated with the given sig.
   604  // Only compatible with `text/plain`
   605  func (api *SignerAPI) EcRecover(ctx context.Context, data hexutil.Bytes, sig hexutil.Bytes) (common.Address, error) {
   606  	// Returns the address for the Account that was used to create the signature.
   607  	//
   608  	// Note, this function is compatible with eth_sign and personal_sign. As such it recovers
   609  	// the address of:
   610  	// hash = keccak256("\x19${byteVersion}Ethereum Signed Message:\n${message length}${message}")
   611  	// addr = ecrecover(hash, signature)
   612  	//
   613  	// Note, the signature must conform to the secp256k1 curve R, S and V values, where
   614  	// the V value must be be 27 or 28 for legacy reasons.
   615  	//
   616  	// https://github.com/AigarNetwork/aigar/wiki/Management-APIs#personal_ecRecover
   617  	if len(sig) != 65 {
   618  		return common.Address{}, fmt.Errorf("signature must be 65 bytes long")
   619  	}
   620  	if sig[64] != 27 && sig[64] != 28 {
   621  		return common.Address{}, fmt.Errorf("invalid Ethereum signature (V is not 27 or 28)")
   622  	}
   623  	sig[64] -= 27 // Transform yellow paper V from 27/28 to 0/1
   624  	hash := accounts.TextHash(data)
   625  	rpk, err := crypto.SigToPub(hash, sig)
   626  	if err != nil {
   627  		return common.Address{}, err
   628  	}
   629  	return crypto.PubkeyToAddress(*rpk), nil
   630  }
   631  
   632  // UnmarshalValidatorData converts the bytes input to typed data
   633  func UnmarshalValidatorData(data interface{}) (ValidatorData, error) {
   634  	raw, ok := data.(map[string]interface{})
   635  	if !ok {
   636  		return ValidatorData{}, errors.New("validator input is not a map[string]interface{}")
   637  	}
   638  	addr, ok := raw["address"].(string)
   639  	if !ok {
   640  		return ValidatorData{}, errors.New("validator address is not sent as a string")
   641  	}
   642  	addrBytes, err := hexutil.Decode(addr)
   643  	if err != nil {
   644  		return ValidatorData{}, err
   645  	}
   646  	if !ok || len(addrBytes) == 0 {
   647  		return ValidatorData{}, errors.New("validator address is undefined")
   648  	}
   649  
   650  	message, ok := raw["message"].(string)
   651  	if !ok {
   652  		return ValidatorData{}, errors.New("message is not sent as a string")
   653  	}
   654  	messageBytes, err := hexutil.Decode(message)
   655  	if err != nil {
   656  		return ValidatorData{}, err
   657  	}
   658  	if !ok || len(messageBytes) == 0 {
   659  		return ValidatorData{}, errors.New("message is undefined")
   660  	}
   661  
   662  	return ValidatorData{
   663  		Address: common.BytesToAddress(addrBytes),
   664  		Message: messageBytes,
   665  	}, nil
   666  }
   667  
   668  // validate makes sure the types are sound
   669  func (typedData *TypedData) validate() error {
   670  	if err := typedData.Types.validate(); err != nil {
   671  		return err
   672  	}
   673  	if err := typedData.Domain.validate(); err != nil {
   674  		return err
   675  	}
   676  	return nil
   677  }
   678  
   679  // Map generates a map version of the typed data
   680  func (typedData *TypedData) Map() map[string]interface{} {
   681  	dataMap := map[string]interface{}{
   682  		"types":       typedData.Types,
   683  		"domain":      typedData.Domain.Map(),
   684  		"primaryType": typedData.PrimaryType,
   685  		"message":     typedData.Message,
   686  	}
   687  	return dataMap
   688  }
   689  
   690  // Format returns a representation of typedData, which can be easily displayed by a user-interface
   691  // without in-depth knowledge about 712 rules
   692  func (typedData *TypedData) Format() ([]*NameValueType, error) {
   693  	domain, err := typedData.formatData("EIP712Domain", typedData.Domain.Map())
   694  	if err != nil {
   695  		return nil, err
   696  	}
   697  	ptype, err := typedData.formatData(typedData.PrimaryType, typedData.Message)
   698  	if err != nil {
   699  		return nil, err
   700  	}
   701  	var nvts []*NameValueType
   702  	nvts = append(nvts, &NameValueType{
   703  		Name:  "EIP712Domain",
   704  		Value: domain,
   705  		Typ:   "domain",
   706  	})
   707  	nvts = append(nvts, &NameValueType{
   708  		Name:  typedData.PrimaryType,
   709  		Value: ptype,
   710  		Typ:   "primary type",
   711  	})
   712  	return nvts, nil
   713  }
   714  
   715  func (typedData *TypedData) formatData(primaryType string, data map[string]interface{}) ([]*NameValueType, error) {
   716  	var output []*NameValueType
   717  
   718  	// Add field contents. Structs and arrays have special handlers.
   719  	for _, field := range typedData.Types[primaryType] {
   720  		encName := field.Name
   721  		encValue := data[encName]
   722  		item := &NameValueType{
   723  			Name: encName,
   724  			Typ:  field.Type,
   725  		}
   726  		if field.isArray() {
   727  			arrayValue, _ := encValue.([]interface{})
   728  			parsedType := field.typeName()
   729  			for _, v := range arrayValue {
   730  				if typedData.Types[parsedType] != nil {
   731  					mapValue, _ := v.(map[string]interface{})
   732  					mapOutput, err := typedData.formatData(parsedType, mapValue)
   733  					if err != nil {
   734  						return nil, err
   735  					}
   736  					item.Value = mapOutput
   737  				} else {
   738  					primitiveOutput, err := formatPrimitiveValue(field.Type, encValue)
   739  					if err != nil {
   740  						return nil, err
   741  					}
   742  					item.Value = primitiveOutput
   743  				}
   744  			}
   745  		} else if typedData.Types[field.Type] != nil {
   746  			if mapValue, ok := encValue.(map[string]interface{}); ok {
   747  				mapOutput, err := typedData.formatData(field.Type, mapValue)
   748  				if err != nil {
   749  					return nil, err
   750  				}
   751  				item.Value = mapOutput
   752  			} else {
   753  				item.Value = "<nil>"
   754  			}
   755  		} else {
   756  			primitiveOutput, err := formatPrimitiveValue(field.Type, encValue)
   757  			if err != nil {
   758  				return nil, err
   759  			}
   760  			item.Value = primitiveOutput
   761  		}
   762  		output = append(output, item)
   763  	}
   764  	return output, nil
   765  }
   766  
   767  func formatPrimitiveValue(encType string, encValue interface{}) (string, error) {
   768  	switch encType {
   769  	case "address":
   770  		if stringValue, ok := encValue.(string); !ok {
   771  			return "", fmt.Errorf("could not format value %v as address", encValue)
   772  		} else {
   773  			return common.HexToAddress(stringValue).String(), nil
   774  		}
   775  	case "bool":
   776  		if boolValue, ok := encValue.(bool); !ok {
   777  			return "", fmt.Errorf("could not format value %v as bool", encValue)
   778  		} else {
   779  			return fmt.Sprintf("%t", boolValue), nil
   780  		}
   781  	case "bytes", "string":
   782  		return fmt.Sprintf("%s", encValue), nil
   783  	}
   784  	if strings.HasPrefix(encType, "bytes") {
   785  		return fmt.Sprintf("%s", encValue), nil
   786  
   787  	}
   788  	if strings.HasPrefix(encType, "uint") || strings.HasPrefix(encType, "int") {
   789  		if b, err := parseInteger(encType, encValue); err != nil {
   790  			return "", err
   791  		} else {
   792  			return fmt.Sprintf("%d (0x%x)", b, b), nil
   793  		}
   794  	}
   795  	return "", fmt.Errorf("unhandled type %v", encType)
   796  }
   797  
   798  // NameValueType is a very simple struct with Name, Value and Type. It's meant for simple
   799  // json structures used to communicate signing-info about typed data with the UI
   800  type NameValueType struct {
   801  	Name  string      `json:"name"`
   802  	Value interface{} `json:"value"`
   803  	Typ   string      `json:"type"`
   804  }
   805  
   806  // Pprint returns a pretty-printed version of nvt
   807  func (nvt *NameValueType) Pprint(depth int) string {
   808  	output := bytes.Buffer{}
   809  	output.WriteString(strings.Repeat("\u00a0", depth*2))
   810  	output.WriteString(fmt.Sprintf("%s [%s]: ", nvt.Name, nvt.Typ))
   811  	if nvts, ok := nvt.Value.([]*NameValueType); ok {
   812  		output.WriteString("\n")
   813  		for _, next := range nvts {
   814  			sublevel := next.Pprint(depth + 1)
   815  			output.WriteString(sublevel)
   816  		}
   817  	} else {
   818  		output.WriteString(fmt.Sprintf("%q\n", nvt.Value))
   819  	}
   820  	return output.String()
   821  }
   822  
   823  // Validate checks if the types object is conformant to the specs
   824  func (t Types) validate() error {
   825  	for typeKey, typeArr := range t {
   826  		if len(typeKey) == 0 {
   827  			return fmt.Errorf("empty type key")
   828  		}
   829  		for i, typeObj := range typeArr {
   830  			if len(typeObj.Type) == 0 {
   831  				return fmt.Errorf("type %v:%d: empty Type", typeKey, i)
   832  			}
   833  			if len(typeObj.Name) == 0 {
   834  				return fmt.Errorf("type %v:%d: empty Name", typeKey, i)
   835  			}
   836  			if typeKey == typeObj.Type {
   837  				return fmt.Errorf("type '%s' cannot reference itself", typeObj.Type)
   838  			}
   839  			if typeObj.isReferenceType() {
   840  				if _, exist := t[typeObj.typeName()]; !exist {
   841  					return fmt.Errorf("reference type '%s' is undefined", typeObj.Type)
   842  				}
   843  				if !typedDataReferenceTypeRegexp.MatchString(typeObj.Type) {
   844  					return fmt.Errorf("unknown reference type '%s", typeObj.Type)
   845  				}
   846  			} else if !isPrimitiveTypeValid(typeObj.Type) {
   847  				return fmt.Errorf("unknown type '%s'", typeObj.Type)
   848  			}
   849  		}
   850  	}
   851  	return nil
   852  }
   853  
   854  // Checks if the primitive value is valid
   855  func isPrimitiveTypeValid(primitiveType string) bool {
   856  	if primitiveType == "address" ||
   857  		primitiveType == "address[]" ||
   858  		primitiveType == "bool" ||
   859  		primitiveType == "bool[]" ||
   860  		primitiveType == "string" ||
   861  		primitiveType == "string[]" {
   862  		return true
   863  	}
   864  	if primitiveType == "bytes" ||
   865  		primitiveType == "bytes[]" ||
   866  		primitiveType == "bytes1" ||
   867  		primitiveType == "bytes1[]" ||
   868  		primitiveType == "bytes2" ||
   869  		primitiveType == "bytes2[]" ||
   870  		primitiveType == "bytes3" ||
   871  		primitiveType == "bytes3[]" ||
   872  		primitiveType == "bytes4" ||
   873  		primitiveType == "bytes4[]" ||
   874  		primitiveType == "bytes5" ||
   875  		primitiveType == "bytes5[]" ||
   876  		primitiveType == "bytes6" ||
   877  		primitiveType == "bytes6[]" ||
   878  		primitiveType == "bytes7" ||
   879  		primitiveType == "bytes7[]" ||
   880  		primitiveType == "bytes8" ||
   881  		primitiveType == "bytes8[]" ||
   882  		primitiveType == "bytes9" ||
   883  		primitiveType == "bytes9[]" ||
   884  		primitiveType == "bytes10" ||
   885  		primitiveType == "bytes10[]" ||
   886  		primitiveType == "bytes11" ||
   887  		primitiveType == "bytes11[]" ||
   888  		primitiveType == "bytes12" ||
   889  		primitiveType == "bytes12[]" ||
   890  		primitiveType == "bytes13" ||
   891  		primitiveType == "bytes13[]" ||
   892  		primitiveType == "bytes14" ||
   893  		primitiveType == "bytes14[]" ||
   894  		primitiveType == "bytes15" ||
   895  		primitiveType == "bytes15[]" ||
   896  		primitiveType == "bytes16" ||
   897  		primitiveType == "bytes16[]" ||
   898  		primitiveType == "bytes17" ||
   899  		primitiveType == "bytes17[]" ||
   900  		primitiveType == "bytes18" ||
   901  		primitiveType == "bytes18[]" ||
   902  		primitiveType == "bytes19" ||
   903  		primitiveType == "bytes19[]" ||
   904  		primitiveType == "bytes20" ||
   905  		primitiveType == "bytes20[]" ||
   906  		primitiveType == "bytes21" ||
   907  		primitiveType == "bytes21[]" ||
   908  		primitiveType == "bytes22" ||
   909  		primitiveType == "bytes22[]" ||
   910  		primitiveType == "bytes23" ||
   911  		primitiveType == "bytes23[]" ||
   912  		primitiveType == "bytes24" ||
   913  		primitiveType == "bytes24[]" ||
   914  		primitiveType == "bytes25" ||
   915  		primitiveType == "bytes25[]" ||
   916  		primitiveType == "bytes26" ||
   917  		primitiveType == "bytes26[]" ||
   918  		primitiveType == "bytes27" ||
   919  		primitiveType == "bytes27[]" ||
   920  		primitiveType == "bytes28" ||
   921  		primitiveType == "bytes28[]" ||
   922  		primitiveType == "bytes29" ||
   923  		primitiveType == "bytes29[]" ||
   924  		primitiveType == "bytes30" ||
   925  		primitiveType == "bytes30[]" ||
   926  		primitiveType == "bytes31" ||
   927  		primitiveType == "bytes31[]" {
   928  		return true
   929  	}
   930  	if primitiveType == "int" ||
   931  		primitiveType == "int[]" ||
   932  		primitiveType == "int8" ||
   933  		primitiveType == "int8[]" ||
   934  		primitiveType == "int16" ||
   935  		primitiveType == "int16[]" ||
   936  		primitiveType == "int32" ||
   937  		primitiveType == "int32[]" ||
   938  		primitiveType == "int64" ||
   939  		primitiveType == "int64[]" ||
   940  		primitiveType == "int128" ||
   941  		primitiveType == "int128[]" ||
   942  		primitiveType == "int256" ||
   943  		primitiveType == "int256[]" {
   944  		return true
   945  	}
   946  	if primitiveType == "uint" ||
   947  		primitiveType == "uint[]" ||
   948  		primitiveType == "uint8" ||
   949  		primitiveType == "uint8[]" ||
   950  		primitiveType == "uint16" ||
   951  		primitiveType == "uint16[]" ||
   952  		primitiveType == "uint32" ||
   953  		primitiveType == "uint32[]" ||
   954  		primitiveType == "uint64" ||
   955  		primitiveType == "uint64[]" ||
   956  		primitiveType == "uint128" ||
   957  		primitiveType == "uint128[]" ||
   958  		primitiveType == "uint256" ||
   959  		primitiveType == "uint256[]" {
   960  		return true
   961  	}
   962  	return false
   963  }
   964  
   965  // validate checks if the given domain is valid, i.e. contains at least
   966  // the minimum viable keys and values
   967  func (domain *TypedDataDomain) validate() error {
   968  	if domain.ChainId == nil {
   969  		return errors.New("chainId must be specified according to EIP-155")
   970  	}
   971  
   972  	if len(domain.Name) == 0 && len(domain.Version) == 0 && len(domain.VerifyingContract) == 0 && len(domain.Salt) == 0 {
   973  		return errors.New("domain is undefined")
   974  	}
   975  
   976  	return nil
   977  }
   978  
   979  // Map is a helper function to generate a map version of the domain
   980  func (domain *TypedDataDomain) Map() map[string]interface{} {
   981  	dataMap := map[string]interface{}{}
   982  
   983  	if domain.ChainId != nil {
   984  		dataMap["chainId"] = domain.ChainId
   985  	}
   986  
   987  	if len(domain.Name) > 0 {
   988  		dataMap["name"] = domain.Name
   989  	}
   990  
   991  	if len(domain.Version) > 0 {
   992  		dataMap["version"] = domain.Version
   993  	}
   994  
   995  	if len(domain.VerifyingContract) > 0 {
   996  		dataMap["verifyingContract"] = domain.VerifyingContract
   997  	}
   998  
   999  	if len(domain.Salt) > 0 {
  1000  		dataMap["salt"] = domain.Salt
  1001  	}
  1002  	return dataMap
  1003  }