github.com/aigarnetwork/aigar@v0.0.0-20191115204914-d59a6eb70f8e/trie/database.go (about)

     1  //  Copyright 2018 The go-ethereum Authors
     2  //  Copyright 2019 The go-aigar Authors
     3  //  This file is part of the go-aigar library.
     4  //
     5  //  The go-aigar library is free software: you can redistribute it and/or modify
     6  //  it under the terms of the GNU Lesser General Public License as published by
     7  //  the Free Software Foundation, either version 3 of the License, or
     8  //  (at your option) any later version.
     9  //
    10  //  The go-aigar library is distributed in the hope that it will be useful,
    11  //  but WITHOUT ANY WARRANTY; without even the implied warranty of
    12  //  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    13  //  GNU Lesser General Public License for more details.
    14  //
    15  //  You should have received a copy of the GNU Lesser General Public License
    16  //  along with the go-aigar library. If not, see <http://www.gnu.org/licenses/>.
    17  
    18  package trie
    19  
    20  import (
    21  	"encoding/binary"
    22  	"errors"
    23  	"fmt"
    24  	"io"
    25  	"reflect"
    26  	"sync"
    27  	"time"
    28  
    29  	"github.com/AigarNetwork/aigar/common"
    30  	"github.com/AigarNetwork/aigar/ethdb"
    31  	"github.com/AigarNetwork/aigar/log"
    32  	"github.com/AigarNetwork/aigar/metrics"
    33  	"github.com/AigarNetwork/aigar/rlp"
    34  	"github.com/allegro/bigcache"
    35  )
    36  
    37  var (
    38  	memcacheCleanHitMeter   = metrics.NewRegisteredMeter("trie/memcache/clean/hit", nil)
    39  	memcacheCleanMissMeter  = metrics.NewRegisteredMeter("trie/memcache/clean/miss", nil)
    40  	memcacheCleanReadMeter  = metrics.NewRegisteredMeter("trie/memcache/clean/read", nil)
    41  	memcacheCleanWriteMeter = metrics.NewRegisteredMeter("trie/memcache/clean/write", nil)
    42  
    43  	memcacheFlushTimeTimer  = metrics.NewRegisteredResettingTimer("trie/memcache/flush/time", nil)
    44  	memcacheFlushNodesMeter = metrics.NewRegisteredMeter("trie/memcache/flush/nodes", nil)
    45  	memcacheFlushSizeMeter  = metrics.NewRegisteredMeter("trie/memcache/flush/size", nil)
    46  
    47  	memcacheGCTimeTimer  = metrics.NewRegisteredResettingTimer("trie/memcache/gc/time", nil)
    48  	memcacheGCNodesMeter = metrics.NewRegisteredMeter("trie/memcache/gc/nodes", nil)
    49  	memcacheGCSizeMeter  = metrics.NewRegisteredMeter("trie/memcache/gc/size", nil)
    50  
    51  	memcacheCommitTimeTimer  = metrics.NewRegisteredResettingTimer("trie/memcache/commit/time", nil)
    52  	memcacheCommitNodesMeter = metrics.NewRegisteredMeter("trie/memcache/commit/nodes", nil)
    53  	memcacheCommitSizeMeter  = metrics.NewRegisteredMeter("trie/memcache/commit/size", nil)
    54  )
    55  
    56  // secureKeyPrefix is the database key prefix used to store trie node preimages.
    57  var secureKeyPrefix = []byte("secure-key-")
    58  
    59  // secureKeyLength is the length of the above prefix + 32byte hash.
    60  const secureKeyLength = 11 + 32
    61  
    62  // Database is an intermediate write layer between the trie data structures and
    63  // the disk database. The aim is to accumulate trie writes in-memory and only
    64  // periodically flush a couple tries to disk, garbage collecting the remainder.
    65  //
    66  // Note, the trie Database is **not** thread safe in its mutations, but it **is**
    67  // thread safe in providing individual, independent node access. The rationale
    68  // behind this split design is to provide read access to RPC handlers and sync
    69  // servers even while the trie is executing expensive garbage collection.
    70  type Database struct {
    71  	diskdb ethdb.KeyValueStore // Persistent storage for matured trie nodes
    72  
    73  	cleans  *bigcache.BigCache          // GC friendly memory cache of clean node RLPs
    74  	dirties map[common.Hash]*cachedNode // Data and references relationships of dirty nodes
    75  	oldest  common.Hash                 // Oldest tracked node, flush-list head
    76  	newest  common.Hash                 // Newest tracked node, flush-list tail
    77  
    78  	preimages map[common.Hash][]byte // Preimages of nodes from the secure trie
    79  	seckeybuf [secureKeyLength]byte  // Ephemeral buffer for calculating preimage keys
    80  
    81  	gctime  time.Duration      // Time spent on garbage collection since last commit
    82  	gcnodes uint64             // Nodes garbage collected since last commit
    83  	gcsize  common.StorageSize // Data storage garbage collected since last commit
    84  
    85  	flushtime  time.Duration      // Time spent on data flushing since last commit
    86  	flushnodes uint64             // Nodes flushed since last commit
    87  	flushsize  common.StorageSize // Data storage flushed since last commit
    88  
    89  	dirtiesSize   common.StorageSize // Storage size of the dirty node cache (exc. metadata)
    90  	childrenSize  common.StorageSize // Storage size of the external children tracking
    91  	preimagesSize common.StorageSize // Storage size of the preimages cache
    92  
    93  	lock sync.RWMutex
    94  }
    95  
    96  // rawNode is a simple binary blob used to differentiate between collapsed trie
    97  // nodes and already encoded RLP binary blobs (while at the same time store them
    98  // in the same cache fields).
    99  type rawNode []byte
   100  
   101  func (n rawNode) canUnload(uint16, uint16) bool { panic("this should never end up in a live trie") }
   102  func (n rawNode) cache() (hashNode, bool)       { panic("this should never end up in a live trie") }
   103  func (n rawNode) fstring(ind string) string     { panic("this should never end up in a live trie") }
   104  
   105  // rawFullNode represents only the useful data content of a full node, with the
   106  // caches and flags stripped out to minimize its data storage. This type honors
   107  // the same RLP encoding as the original parent.
   108  type rawFullNode [17]node
   109  
   110  func (n rawFullNode) canUnload(uint16, uint16) bool { panic("this should never end up in a live trie") }
   111  func (n rawFullNode) cache() (hashNode, bool)       { panic("this should never end up in a live trie") }
   112  func (n rawFullNode) fstring(ind string) string     { panic("this should never end up in a live trie") }
   113  
   114  func (n rawFullNode) EncodeRLP(w io.Writer) error {
   115  	var nodes [17]node
   116  
   117  	for i, child := range n {
   118  		if child != nil {
   119  			nodes[i] = child
   120  		} else {
   121  			nodes[i] = nilValueNode
   122  		}
   123  	}
   124  	return rlp.Encode(w, nodes)
   125  }
   126  
   127  // rawShortNode represents only the useful data content of a short node, with the
   128  // caches and flags stripped out to minimize its data storage. This type honors
   129  // the same RLP encoding as the original parent.
   130  type rawShortNode struct {
   131  	Key []byte
   132  	Val node
   133  }
   134  
   135  func (n rawShortNode) canUnload(uint16, uint16) bool { panic("this should never end up in a live trie") }
   136  func (n rawShortNode) cache() (hashNode, bool)       { panic("this should never end up in a live trie") }
   137  func (n rawShortNode) fstring(ind string) string     { panic("this should never end up in a live trie") }
   138  
   139  // cachedNode is all the information we know about a single cached node in the
   140  // memory database write layer.
   141  type cachedNode struct {
   142  	node node   // Cached collapsed trie node, or raw rlp data
   143  	size uint16 // Byte size of the useful cached data
   144  
   145  	parents  uint32                 // Number of live nodes referencing this one
   146  	children map[common.Hash]uint16 // External children referenced by this node
   147  
   148  	flushPrev common.Hash // Previous node in the flush-list
   149  	flushNext common.Hash // Next node in the flush-list
   150  }
   151  
   152  // cachedNodeSize is the raw size of a cachedNode data structure without any
   153  // node data included. It's an approximate size, but should be a lot better
   154  // than not counting them.
   155  var cachedNodeSize = int(reflect.TypeOf(cachedNode{}).Size())
   156  
   157  // cachedNodeChildrenSize is the raw size of an initialized but empty external
   158  // reference map.
   159  const cachedNodeChildrenSize = 48
   160  
   161  // rlp returns the raw rlp encoded blob of the cached node, either directly from
   162  // the cache, or by regenerating it from the collapsed node.
   163  func (n *cachedNode) rlp() []byte {
   164  	if node, ok := n.node.(rawNode); ok {
   165  		return node
   166  	}
   167  	blob, err := rlp.EncodeToBytes(n.node)
   168  	if err != nil {
   169  		panic(err)
   170  	}
   171  	return blob
   172  }
   173  
   174  // obj returns the decoded and expanded trie node, either directly from the cache,
   175  // or by regenerating it from the rlp encoded blob.
   176  func (n *cachedNode) obj(hash common.Hash) node {
   177  	if node, ok := n.node.(rawNode); ok {
   178  		return mustDecodeNode(hash[:], node)
   179  	}
   180  	return expandNode(hash[:], n.node)
   181  }
   182  
   183  // childs returns all the tracked children of this node, both the implicit ones
   184  // from inside the node as well as the explicit ones from outside the node.
   185  func (n *cachedNode) childs() []common.Hash {
   186  	children := make([]common.Hash, 0, 16)
   187  	for child := range n.children {
   188  		children = append(children, child)
   189  	}
   190  	if _, ok := n.node.(rawNode); !ok {
   191  		gatherChildren(n.node, &children)
   192  	}
   193  	return children
   194  }
   195  
   196  // gatherChildren traverses the node hierarchy of a collapsed storage node and
   197  // retrieves all the hashnode children.
   198  func gatherChildren(n node, children *[]common.Hash) {
   199  	switch n := n.(type) {
   200  	case *rawShortNode:
   201  		gatherChildren(n.Val, children)
   202  
   203  	case rawFullNode:
   204  		for i := 0; i < 16; i++ {
   205  			gatherChildren(n[i], children)
   206  		}
   207  	case hashNode:
   208  		*children = append(*children, common.BytesToHash(n))
   209  
   210  	case valueNode, nil:
   211  
   212  	default:
   213  		panic(fmt.Sprintf("unknown node type: %T", n))
   214  	}
   215  }
   216  
   217  // simplifyNode traverses the hierarchy of an expanded memory node and discards
   218  // all the internal caches, returning a node that only contains the raw data.
   219  func simplifyNode(n node) node {
   220  	switch n := n.(type) {
   221  	case *shortNode:
   222  		// Short nodes discard the flags and cascade
   223  		return &rawShortNode{Key: n.Key, Val: simplifyNode(n.Val)}
   224  
   225  	case *fullNode:
   226  		// Full nodes discard the flags and cascade
   227  		node := rawFullNode(n.Children)
   228  		for i := 0; i < len(node); i++ {
   229  			if node[i] != nil {
   230  				node[i] = simplifyNode(node[i])
   231  			}
   232  		}
   233  		return node
   234  
   235  	case valueNode, hashNode, rawNode:
   236  		return n
   237  
   238  	default:
   239  		panic(fmt.Sprintf("unknown node type: %T", n))
   240  	}
   241  }
   242  
   243  // expandNode traverses the node hierarchy of a collapsed storage node and converts
   244  // all fields and keys into expanded memory form.
   245  func expandNode(hash hashNode, n node) node {
   246  	switch n := n.(type) {
   247  	case *rawShortNode:
   248  		// Short nodes need key and child expansion
   249  		return &shortNode{
   250  			Key: compactToHex(n.Key),
   251  			Val: expandNode(nil, n.Val),
   252  			flags: nodeFlag{
   253  				hash: hash,
   254  			},
   255  		}
   256  
   257  	case rawFullNode:
   258  		// Full nodes need child expansion
   259  		node := &fullNode{
   260  			flags: nodeFlag{
   261  				hash: hash,
   262  			},
   263  		}
   264  		for i := 0; i < len(node.Children); i++ {
   265  			if n[i] != nil {
   266  				node.Children[i] = expandNode(nil, n[i])
   267  			}
   268  		}
   269  		return node
   270  
   271  	case valueNode, hashNode:
   272  		return n
   273  
   274  	default:
   275  		panic(fmt.Sprintf("unknown node type: %T", n))
   276  	}
   277  }
   278  
   279  // trienodeHasher is a struct to be used with BigCache, which uses a Hasher to
   280  // determine which shard to place an entry into. It's not a cryptographic hash,
   281  // just to provide a bit of anti-collision (default is FNV64a).
   282  //
   283  // Since trie keys are already hashes, we can just use the key directly to
   284  // map shard id.
   285  type trienodeHasher struct{}
   286  
   287  // Sum64 implements the bigcache.Hasher interface.
   288  func (t trienodeHasher) Sum64(key string) uint64 {
   289  	return binary.BigEndian.Uint64([]byte(key))
   290  }
   291  
   292  // NewDatabase creates a new trie database to store ephemeral trie content before
   293  // its written out to disk or garbage collected. No read cache is created, so all
   294  // data retrievals will hit the underlying disk database.
   295  func NewDatabase(diskdb ethdb.KeyValueStore) *Database {
   296  	return NewDatabaseWithCache(diskdb, 0)
   297  }
   298  
   299  // NewDatabaseWithCache creates a new trie database to store ephemeral trie content
   300  // before its written out to disk or garbage collected. It also acts as a read cache
   301  // for nodes loaded from disk.
   302  func NewDatabaseWithCache(diskdb ethdb.KeyValueStore, cache int) *Database {
   303  	var cleans *bigcache.BigCache
   304  	if cache > 0 {
   305  		cleans, _ = bigcache.NewBigCache(bigcache.Config{
   306  			Shards:             1024,
   307  			LifeWindow:         time.Hour,
   308  			MaxEntriesInWindow: cache * 1024,
   309  			MaxEntrySize:       512,
   310  			HardMaxCacheSize:   cache,
   311  			Hasher:             trienodeHasher{},
   312  		})
   313  	}
   314  	return &Database{
   315  		diskdb: diskdb,
   316  		cleans: cleans,
   317  		dirties: map[common.Hash]*cachedNode{{}: {
   318  			children: make(map[common.Hash]uint16),
   319  		}},
   320  		preimages: make(map[common.Hash][]byte),
   321  	}
   322  }
   323  
   324  // DiskDB retrieves the persistent storage backing the trie database.
   325  func (db *Database) DiskDB() ethdb.KeyValueReader {
   326  	return db.diskdb
   327  }
   328  
   329  // InsertBlob writes a new reference tracked blob to the memory database if it's
   330  // yet unknown. This method should only be used for non-trie nodes that require
   331  // reference counting, since trie nodes are garbage collected directly through
   332  // their embedded children.
   333  func (db *Database) InsertBlob(hash common.Hash, blob []byte) {
   334  	db.lock.Lock()
   335  	defer db.lock.Unlock()
   336  
   337  	db.insert(hash, blob, rawNode(blob))
   338  }
   339  
   340  // insert inserts a collapsed trie node into the memory database. This method is
   341  // a more generic version of InsertBlob, supporting both raw blob insertions as
   342  // well ex trie node insertions. The blob must always be specified to allow proper
   343  // size tracking.
   344  func (db *Database) insert(hash common.Hash, blob []byte, node node) {
   345  	// If the node's already cached, skip
   346  	if _, ok := db.dirties[hash]; ok {
   347  		return
   348  	}
   349  	// Create the cached entry for this node
   350  	entry := &cachedNode{
   351  		node:      simplifyNode(node),
   352  		size:      uint16(len(blob)),
   353  		flushPrev: db.newest,
   354  	}
   355  	for _, child := range entry.childs() {
   356  		if c := db.dirties[child]; c != nil {
   357  			c.parents++
   358  		}
   359  	}
   360  	db.dirties[hash] = entry
   361  
   362  	// Update the flush-list endpoints
   363  	if db.oldest == (common.Hash{}) {
   364  		db.oldest, db.newest = hash, hash
   365  	} else {
   366  		db.dirties[db.newest].flushNext, db.newest = hash, hash
   367  	}
   368  	db.dirtiesSize += common.StorageSize(common.HashLength + entry.size)
   369  }
   370  
   371  // insertPreimage writes a new trie node pre-image to the memory database if it's
   372  // yet unknown. The method will make a copy of the slice.
   373  //
   374  // Note, this method assumes that the database's lock is held!
   375  func (db *Database) insertPreimage(hash common.Hash, preimage []byte) {
   376  	if _, ok := db.preimages[hash]; ok {
   377  		return
   378  	}
   379  	db.preimages[hash] = common.CopyBytes(preimage)
   380  	db.preimagesSize += common.StorageSize(common.HashLength + len(preimage))
   381  }
   382  
   383  // node retrieves a cached trie node from memory, or returns nil if none can be
   384  // found in the memory cache.
   385  func (db *Database) node(hash common.Hash) node {
   386  	// Retrieve the node from the clean cache if available
   387  	if db.cleans != nil {
   388  		if enc, err := db.cleans.Get(string(hash[:])); err == nil && enc != nil {
   389  			memcacheCleanHitMeter.Mark(1)
   390  			memcacheCleanReadMeter.Mark(int64(len(enc)))
   391  			return mustDecodeNode(hash[:], enc)
   392  		}
   393  	}
   394  	// Retrieve the node from the dirty cache if available
   395  	db.lock.RLock()
   396  	dirty := db.dirties[hash]
   397  	db.lock.RUnlock()
   398  
   399  	if dirty != nil {
   400  		return dirty.obj(hash)
   401  	}
   402  	// Content unavailable in memory, attempt to retrieve from disk
   403  	enc, err := db.diskdb.Get(hash[:])
   404  	if err != nil || enc == nil {
   405  		return nil
   406  	}
   407  	if db.cleans != nil {
   408  		db.cleans.Set(string(hash[:]), enc)
   409  		memcacheCleanMissMeter.Mark(1)
   410  		memcacheCleanWriteMeter.Mark(int64(len(enc)))
   411  	}
   412  	return mustDecodeNode(hash[:], enc)
   413  }
   414  
   415  // Node retrieves an encoded cached trie node from memory. If it cannot be found
   416  // cached, the method queries the persistent database for the content.
   417  func (db *Database) Node(hash common.Hash) ([]byte, error) {
   418  	// It doens't make sense to retrieve the metaroot
   419  	if hash == (common.Hash{}) {
   420  		return nil, errors.New("not found")
   421  	}
   422  	// Retrieve the node from the clean cache if available
   423  	if db.cleans != nil {
   424  		if enc, err := db.cleans.Get(string(hash[:])); err == nil && enc != nil {
   425  			memcacheCleanHitMeter.Mark(1)
   426  			memcacheCleanReadMeter.Mark(int64(len(enc)))
   427  			return enc, nil
   428  		}
   429  	}
   430  	// Retrieve the node from the dirty cache if available
   431  	db.lock.RLock()
   432  	dirty := db.dirties[hash]
   433  	db.lock.RUnlock()
   434  
   435  	if dirty != nil {
   436  		return dirty.rlp(), nil
   437  	}
   438  	// Content unavailable in memory, attempt to retrieve from disk
   439  	enc, err := db.diskdb.Get(hash[:])
   440  	if err == nil && enc != nil {
   441  		if db.cleans != nil {
   442  			db.cleans.Set(string(hash[:]), enc)
   443  			memcacheCleanMissMeter.Mark(1)
   444  			memcacheCleanWriteMeter.Mark(int64(len(enc)))
   445  		}
   446  	}
   447  	return enc, err
   448  }
   449  
   450  // preimage retrieves a cached trie node pre-image from memory. If it cannot be
   451  // found cached, the method queries the persistent database for the content.
   452  func (db *Database) preimage(hash common.Hash) ([]byte, error) {
   453  	// Retrieve the node from cache if available
   454  	db.lock.RLock()
   455  	preimage := db.preimages[hash]
   456  	db.lock.RUnlock()
   457  
   458  	if preimage != nil {
   459  		return preimage, nil
   460  	}
   461  	// Content unavailable in memory, attempt to retrieve from disk
   462  	return db.diskdb.Get(db.secureKey(hash[:]))
   463  }
   464  
   465  // secureKey returns the database key for the preimage of key, as an ephemeral
   466  // buffer. The caller must not hold onto the return value because it will become
   467  // invalid on the next call.
   468  func (db *Database) secureKey(key []byte) []byte {
   469  	buf := append(db.seckeybuf[:0], secureKeyPrefix...)
   470  	buf = append(buf, key...)
   471  	return buf
   472  }
   473  
   474  // Nodes retrieves the hashes of all the nodes cached within the memory database.
   475  // This method is extremely expensive and should only be used to validate internal
   476  // states in test code.
   477  func (db *Database) Nodes() []common.Hash {
   478  	db.lock.RLock()
   479  	defer db.lock.RUnlock()
   480  
   481  	var hashes = make([]common.Hash, 0, len(db.dirties))
   482  	for hash := range db.dirties {
   483  		if hash != (common.Hash{}) { // Special case for "root" references/nodes
   484  			hashes = append(hashes, hash)
   485  		}
   486  	}
   487  	return hashes
   488  }
   489  
   490  // Reference adds a new reference from a parent node to a child node.
   491  func (db *Database) Reference(child common.Hash, parent common.Hash) {
   492  	db.lock.Lock()
   493  	defer db.lock.Unlock()
   494  
   495  	db.reference(child, parent)
   496  }
   497  
   498  // reference is the private locked version of Reference.
   499  func (db *Database) reference(child common.Hash, parent common.Hash) {
   500  	// If the node does not exist, it's a node pulled from disk, skip
   501  	node, ok := db.dirties[child]
   502  	if !ok {
   503  		return
   504  	}
   505  	// If the reference already exists, only duplicate for roots
   506  	if db.dirties[parent].children == nil {
   507  		db.dirties[parent].children = make(map[common.Hash]uint16)
   508  		db.childrenSize += cachedNodeChildrenSize
   509  	} else if _, ok = db.dirties[parent].children[child]; ok && parent != (common.Hash{}) {
   510  		return
   511  	}
   512  	node.parents++
   513  	db.dirties[parent].children[child]++
   514  	if db.dirties[parent].children[child] == 1 {
   515  		db.childrenSize += common.HashLength + 2 // uint16 counter
   516  	}
   517  }
   518  
   519  // Dereference removes an existing reference from a root node.
   520  func (db *Database) Dereference(root common.Hash) {
   521  	// Sanity check to ensure that the meta-root is not removed
   522  	if root == (common.Hash{}) {
   523  		log.Error("Attempted to dereference the trie cache meta root")
   524  		return
   525  	}
   526  	db.lock.Lock()
   527  	defer db.lock.Unlock()
   528  
   529  	nodes, storage, start := len(db.dirties), db.dirtiesSize, time.Now()
   530  	db.dereference(root, common.Hash{})
   531  
   532  	db.gcnodes += uint64(nodes - len(db.dirties))
   533  	db.gcsize += storage - db.dirtiesSize
   534  	db.gctime += time.Since(start)
   535  
   536  	memcacheGCTimeTimer.Update(time.Since(start))
   537  	memcacheGCSizeMeter.Mark(int64(storage - db.dirtiesSize))
   538  	memcacheGCNodesMeter.Mark(int64(nodes - len(db.dirties)))
   539  
   540  	log.Debug("Dereferenced trie from memory database", "nodes", nodes-len(db.dirties), "size", storage-db.dirtiesSize, "time", time.Since(start),
   541  		"gcnodes", db.gcnodes, "gcsize", db.gcsize, "gctime", db.gctime, "livenodes", len(db.dirties), "livesize", db.dirtiesSize)
   542  }
   543  
   544  // dereference is the private locked version of Dereference.
   545  func (db *Database) dereference(child common.Hash, parent common.Hash) {
   546  	// Dereference the parent-child
   547  	node := db.dirties[parent]
   548  
   549  	if node.children != nil && node.children[child] > 0 {
   550  		node.children[child]--
   551  		if node.children[child] == 0 {
   552  			delete(node.children, child)
   553  			db.childrenSize -= (common.HashLength + 2) // uint16 counter
   554  		}
   555  	}
   556  	// If the child does not exist, it's a previously committed node.
   557  	node, ok := db.dirties[child]
   558  	if !ok {
   559  		return
   560  	}
   561  	// If there are no more references to the child, delete it and cascade
   562  	if node.parents > 0 {
   563  		// This is a special cornercase where a node loaded from disk (i.e. not in the
   564  		// memcache any more) gets reinjected as a new node (short node split into full,
   565  		// then reverted into short), causing a cached node to have no parents. That is
   566  		// no problem in itself, but don't make maxint parents out of it.
   567  		node.parents--
   568  	}
   569  	if node.parents == 0 {
   570  		// Remove the node from the flush-list
   571  		switch child {
   572  		case db.oldest:
   573  			db.oldest = node.flushNext
   574  			db.dirties[node.flushNext].flushPrev = common.Hash{}
   575  		case db.newest:
   576  			db.newest = node.flushPrev
   577  			db.dirties[node.flushPrev].flushNext = common.Hash{}
   578  		default:
   579  			db.dirties[node.flushPrev].flushNext = node.flushNext
   580  			db.dirties[node.flushNext].flushPrev = node.flushPrev
   581  		}
   582  		// Dereference all children and delete the node
   583  		for _, hash := range node.childs() {
   584  			db.dereference(hash, child)
   585  		}
   586  		delete(db.dirties, child)
   587  		db.dirtiesSize -= common.StorageSize(common.HashLength + int(node.size))
   588  		if node.children != nil {
   589  			db.childrenSize -= cachedNodeChildrenSize
   590  		}
   591  	}
   592  }
   593  
   594  // Cap iteratively flushes old but still referenced trie nodes until the total
   595  // memory usage goes below the given threshold.
   596  //
   597  // Note, this method is a non-synchronized mutator. It is unsafe to call this
   598  // concurrently with other mutators.
   599  func (db *Database) Cap(limit common.StorageSize) error {
   600  	// Create a database batch to flush persistent data out. It is important that
   601  	// outside code doesn't see an inconsistent state (referenced data removed from
   602  	// memory cache during commit but not yet in persistent storage). This is ensured
   603  	// by only uncaching existing data when the database write finalizes.
   604  	nodes, storage, start := len(db.dirties), db.dirtiesSize, time.Now()
   605  	batch := db.diskdb.NewBatch()
   606  
   607  	// db.dirtiesSize only contains the useful data in the cache, but when reporting
   608  	// the total memory consumption, the maintenance metadata is also needed to be
   609  	// counted.
   610  	size := db.dirtiesSize + common.StorageSize((len(db.dirties)-1)*cachedNodeSize)
   611  	size += db.childrenSize - common.StorageSize(len(db.dirties[common.Hash{}].children)*(common.HashLength+2))
   612  
   613  	// If the preimage cache got large enough, push to disk. If it's still small
   614  	// leave for later to deduplicate writes.
   615  	flushPreimages := db.preimagesSize > 4*1024*1024
   616  	if flushPreimages {
   617  		for hash, preimage := range db.preimages {
   618  			if err := batch.Put(db.secureKey(hash[:]), preimage); err != nil {
   619  				log.Error("Failed to commit preimage from trie database", "err", err)
   620  				return err
   621  			}
   622  			if batch.ValueSize() > ethdb.IdealBatchSize {
   623  				if err := batch.Write(); err != nil {
   624  					return err
   625  				}
   626  				batch.Reset()
   627  			}
   628  		}
   629  	}
   630  	// Keep committing nodes from the flush-list until we're below allowance
   631  	oldest := db.oldest
   632  	for size > limit && oldest != (common.Hash{}) {
   633  		// Fetch the oldest referenced node and push into the batch
   634  		node := db.dirties[oldest]
   635  		if err := batch.Put(oldest[:], node.rlp()); err != nil {
   636  			return err
   637  		}
   638  		// If we exceeded the ideal batch size, commit and reset
   639  		if batch.ValueSize() >= ethdb.IdealBatchSize {
   640  			if err := batch.Write(); err != nil {
   641  				log.Error("Failed to write flush list to disk", "err", err)
   642  				return err
   643  			}
   644  			batch.Reset()
   645  		}
   646  		// Iterate to the next flush item, or abort if the size cap was achieved. Size
   647  		// is the total size, including the useful cached data (hash -> blob), the
   648  		// cache item metadata, as well as external children mappings.
   649  		size -= common.StorageSize(common.HashLength + int(node.size) + cachedNodeSize)
   650  		if node.children != nil {
   651  			size -= common.StorageSize(cachedNodeChildrenSize + len(node.children)*(common.HashLength+2))
   652  		}
   653  		oldest = node.flushNext
   654  	}
   655  	// Flush out any remainder data from the last batch
   656  	if err := batch.Write(); err != nil {
   657  		log.Error("Failed to write flush list to disk", "err", err)
   658  		return err
   659  	}
   660  	// Write successful, clear out the flushed data
   661  	db.lock.Lock()
   662  	defer db.lock.Unlock()
   663  
   664  	if flushPreimages {
   665  		db.preimages = make(map[common.Hash][]byte)
   666  		db.preimagesSize = 0
   667  	}
   668  	for db.oldest != oldest {
   669  		node := db.dirties[db.oldest]
   670  		delete(db.dirties, db.oldest)
   671  		db.oldest = node.flushNext
   672  
   673  		db.dirtiesSize -= common.StorageSize(common.HashLength + int(node.size))
   674  		if node.children != nil {
   675  			db.childrenSize -= common.StorageSize(cachedNodeChildrenSize + len(node.children)*(common.HashLength+2))
   676  		}
   677  	}
   678  	if db.oldest != (common.Hash{}) {
   679  		db.dirties[db.oldest].flushPrev = common.Hash{}
   680  	}
   681  	db.flushnodes += uint64(nodes - len(db.dirties))
   682  	db.flushsize += storage - db.dirtiesSize
   683  	db.flushtime += time.Since(start)
   684  
   685  	memcacheFlushTimeTimer.Update(time.Since(start))
   686  	memcacheFlushSizeMeter.Mark(int64(storage - db.dirtiesSize))
   687  	memcacheFlushNodesMeter.Mark(int64(nodes - len(db.dirties)))
   688  
   689  	log.Debug("Persisted nodes from memory database", "nodes", nodes-len(db.dirties), "size", storage-db.dirtiesSize, "time", time.Since(start),
   690  		"flushnodes", db.flushnodes, "flushsize", db.flushsize, "flushtime", db.flushtime, "livenodes", len(db.dirties), "livesize", db.dirtiesSize)
   691  
   692  	return nil
   693  }
   694  
   695  // Commit iterates over all the children of a particular node, writes them out
   696  // to disk, forcefully tearing down all references in both directions. As a side
   697  // effect, all pre-images accumulated up to this point are also written.
   698  //
   699  // Note, this method is a non-synchronized mutator. It is unsafe to call this
   700  // concurrently with other mutators.
   701  func (db *Database) Commit(node common.Hash, report bool) error {
   702  	// Create a database batch to flush persistent data out. It is important that
   703  	// outside code doesn't see an inconsistent state (referenced data removed from
   704  	// memory cache during commit but not yet in persistent storage). This is ensured
   705  	// by only uncaching existing data when the database write finalizes.
   706  	start := time.Now()
   707  	batch := db.diskdb.NewBatch()
   708  
   709  	// Move all of the accumulated preimages into a write batch
   710  	for hash, preimage := range db.preimages {
   711  		if err := batch.Put(db.secureKey(hash[:]), preimage); err != nil {
   712  			log.Error("Failed to commit preimage from trie database", "err", err)
   713  			return err
   714  		}
   715  		// If the batch is too large, flush to disk
   716  		if batch.ValueSize() > ethdb.IdealBatchSize {
   717  			if err := batch.Write(); err != nil {
   718  				return err
   719  			}
   720  			batch.Reset()
   721  		}
   722  	}
   723  	// Since we're going to replay trie node writes into the clean cache, flush out
   724  	// any batched pre-images before continuing.
   725  	if err := batch.Write(); err != nil {
   726  		return err
   727  	}
   728  	batch.Reset()
   729  
   730  	// Move the trie itself into the batch, flushing if enough data is accumulated
   731  	nodes, storage := len(db.dirties), db.dirtiesSize
   732  
   733  	uncacher := &cleaner{db}
   734  	if err := db.commit(node, batch, uncacher); err != nil {
   735  		log.Error("Failed to commit trie from trie database", "err", err)
   736  		return err
   737  	}
   738  	// Trie mostly committed to disk, flush any batch leftovers
   739  	if err := batch.Write(); err != nil {
   740  		log.Error("Failed to write trie to disk", "err", err)
   741  		return err
   742  	}
   743  	// Uncache any leftovers in the last batch
   744  	db.lock.Lock()
   745  	defer db.lock.Unlock()
   746  
   747  	batch.Replay(uncacher)
   748  	batch.Reset()
   749  
   750  	// Reset the storage counters and bumpd metrics
   751  	db.preimages = make(map[common.Hash][]byte)
   752  	db.preimagesSize = 0
   753  
   754  	memcacheCommitTimeTimer.Update(time.Since(start))
   755  	memcacheCommitSizeMeter.Mark(int64(storage - db.dirtiesSize))
   756  	memcacheCommitNodesMeter.Mark(int64(nodes - len(db.dirties)))
   757  
   758  	logger := log.Info
   759  	if !report {
   760  		logger = log.Debug
   761  	}
   762  	logger("Persisted trie from memory database", "nodes", nodes-len(db.dirties)+int(db.flushnodes), "size", storage-db.dirtiesSize+db.flushsize, "time", time.Since(start)+db.flushtime,
   763  		"gcnodes", db.gcnodes, "gcsize", db.gcsize, "gctime", db.gctime, "livenodes", len(db.dirties), "livesize", db.dirtiesSize)
   764  
   765  	// Reset the garbage collection statistics
   766  	db.gcnodes, db.gcsize, db.gctime = 0, 0, 0
   767  	db.flushnodes, db.flushsize, db.flushtime = 0, 0, 0
   768  
   769  	return nil
   770  }
   771  
   772  // commit is the private locked version of Commit.
   773  func (db *Database) commit(hash common.Hash, batch ethdb.Batch, uncacher *cleaner) error {
   774  	// If the node does not exist, it's a previously committed node
   775  	node, ok := db.dirties[hash]
   776  	if !ok {
   777  		return nil
   778  	}
   779  	for _, child := range node.childs() {
   780  		if err := db.commit(child, batch, uncacher); err != nil {
   781  			return err
   782  		}
   783  	}
   784  	if err := batch.Put(hash[:], node.rlp()); err != nil {
   785  		return err
   786  	}
   787  	// If we've reached an optimal batch size, commit and start over
   788  	if batch.ValueSize() >= ethdb.IdealBatchSize {
   789  		if err := batch.Write(); err != nil {
   790  			return err
   791  		}
   792  		db.lock.Lock()
   793  		batch.Replay(uncacher)
   794  		batch.Reset()
   795  		db.lock.Unlock()
   796  	}
   797  	return nil
   798  }
   799  
   800  // cleaner is a database batch replayer that takes a batch of write operations
   801  // and cleans up the trie database from anything written to disk.
   802  type cleaner struct {
   803  	db *Database
   804  }
   805  
   806  // Put reacts to database writes and implements dirty data uncaching. This is the
   807  // post-processing step of a commit operation where the already persisted trie is
   808  // removed from the dirty cache and moved into the clean cache. The reason behind
   809  // the two-phase commit is to ensure ensure data availability while moving from
   810  // memory to disk.
   811  func (c *cleaner) Put(key []byte, rlp []byte) error {
   812  	hash := common.BytesToHash(key)
   813  
   814  	// If the node does not exist, we're done on this path
   815  	node, ok := c.db.dirties[hash]
   816  	if !ok {
   817  		return nil
   818  	}
   819  	// Node still exists, remove it from the flush-list
   820  	switch hash {
   821  	case c.db.oldest:
   822  		c.db.oldest = node.flushNext
   823  		c.db.dirties[node.flushNext].flushPrev = common.Hash{}
   824  	case c.db.newest:
   825  		c.db.newest = node.flushPrev
   826  		c.db.dirties[node.flushPrev].flushNext = common.Hash{}
   827  	default:
   828  		c.db.dirties[node.flushPrev].flushNext = node.flushNext
   829  		c.db.dirties[node.flushNext].flushPrev = node.flushPrev
   830  	}
   831  	// Remove the node from the dirty cache
   832  	delete(c.db.dirties, hash)
   833  	c.db.dirtiesSize -= common.StorageSize(common.HashLength + int(node.size))
   834  	if node.children != nil {
   835  		c.db.dirtiesSize -= common.StorageSize(cachedNodeChildrenSize + len(node.children)*(common.HashLength+2))
   836  	}
   837  	// Move the flushed node into the clean cache to prevent insta-reloads
   838  	if c.db.cleans != nil {
   839  		c.db.cleans.Set(string(hash[:]), rlp)
   840  	}
   841  	return nil
   842  }
   843  
   844  func (c *cleaner) Delete(key []byte) error {
   845  	panic("Not implemented")
   846  }
   847  
   848  // Size returns the current storage size of the memory cache in front of the
   849  // persistent database layer.
   850  func (db *Database) Size() (common.StorageSize, common.StorageSize) {
   851  	db.lock.RLock()
   852  	defer db.lock.RUnlock()
   853  
   854  	// db.dirtiesSize only contains the useful data in the cache, but when reporting
   855  	// the total memory consumption, the maintenance metadata is also needed to be
   856  	// counted.
   857  	var metadataSize = common.StorageSize((len(db.dirties) - 1) * cachedNodeSize)
   858  	var metarootRefs = common.StorageSize(len(db.dirties[common.Hash{}].children) * (common.HashLength + 2))
   859  	return db.dirtiesSize + db.childrenSize + metadataSize - metarootRefs, db.preimagesSize
   860  }
   861  
   862  // verifyIntegrity is a debug method to iterate over the entire trie stored in
   863  // memory and check whether every node is reachable from the meta root. The goal
   864  // is to find any errors that might cause memory leaks and or trie nodes to go
   865  // missing.
   866  //
   867  // This method is extremely CPU and memory intensive, only use when must.
   868  func (db *Database) verifyIntegrity() {
   869  	// Iterate over all the cached nodes and accumulate them into a set
   870  	reachable := map[common.Hash]struct{}{{}: {}}
   871  
   872  	for child := range db.dirties[common.Hash{}].children {
   873  		db.accumulate(child, reachable)
   874  	}
   875  	// Find any unreachable but cached nodes
   876  	var unreachable []string
   877  	for hash, node := range db.dirties {
   878  		if _, ok := reachable[hash]; !ok {
   879  			unreachable = append(unreachable, fmt.Sprintf("%x: {Node: %v, Parents: %d, Prev: %x, Next: %x}",
   880  				hash, node.node, node.parents, node.flushPrev, node.flushNext))
   881  		}
   882  	}
   883  	if len(unreachable) != 0 {
   884  		panic(fmt.Sprintf("trie cache memory leak: %v", unreachable))
   885  	}
   886  }
   887  
   888  // accumulate iterates over the trie defined by hash and accumulates all the
   889  // cached children found in memory.
   890  func (db *Database) accumulate(hash common.Hash, reachable map[common.Hash]struct{}) {
   891  	// Mark the node reachable if present in the memory cache
   892  	node, ok := db.dirties[hash]
   893  	if !ok {
   894  		return
   895  	}
   896  	reachable[hash] = struct{}{}
   897  
   898  	// Iterate over all the children and accumulate them too
   899  	for _, child := range node.childs() {
   900  		db.accumulate(child, reachable)
   901  	}
   902  }