github.com/alanchchen/go-ethereum@v1.6.6-0.20170601190819-6171d01b1195/p2p/discover/node.go (about) 1 // Copyright 2015 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 package discover 18 19 import ( 20 "crypto/ecdsa" 21 "crypto/elliptic" 22 "encoding/hex" 23 "errors" 24 "fmt" 25 "math/big" 26 "math/rand" 27 "net" 28 "net/url" 29 "regexp" 30 "strconv" 31 "strings" 32 33 "github.com/ethereum/go-ethereum/common" 34 "github.com/ethereum/go-ethereum/crypto" 35 "github.com/ethereum/go-ethereum/crypto/secp256k1" 36 ) 37 38 const NodeIDBits = 512 39 40 // Node represents a host on the network. 41 // The fields of Node may not be modified. 42 type Node struct { 43 IP net.IP // len 4 for IPv4 or 16 for IPv6 44 UDP, TCP uint16 // port numbers 45 ID NodeID // the node's public key 46 47 // This is a cached copy of sha3(ID) which is used for node 48 // distance calculations. This is part of Node in order to make it 49 // possible to write tests that need a node at a certain distance. 50 // In those tests, the content of sha will not actually correspond 51 // with ID. 52 sha common.Hash 53 54 // whether this node is currently being pinged in order to replace 55 // it in a bucket 56 contested bool 57 } 58 59 // NewNode creates a new node. It is mostly meant to be used for 60 // testing purposes. 61 func NewNode(id NodeID, ip net.IP, udpPort, tcpPort uint16) *Node { 62 if ipv4 := ip.To4(); ipv4 != nil { 63 ip = ipv4 64 } 65 return &Node{ 66 IP: ip, 67 UDP: udpPort, 68 TCP: tcpPort, 69 ID: id, 70 sha: crypto.Keccak256Hash(id[:]), 71 } 72 } 73 74 func (n *Node) addr() *net.UDPAddr { 75 return &net.UDPAddr{IP: n.IP, Port: int(n.UDP)} 76 } 77 78 // Incomplete returns true for nodes with no IP address. 79 func (n *Node) Incomplete() bool { 80 return n.IP == nil 81 } 82 83 // checks whether n is a valid complete node. 84 func (n *Node) validateComplete() error { 85 if n.Incomplete() { 86 return errors.New("incomplete node") 87 } 88 if n.UDP == 0 { 89 return errors.New("missing UDP port") 90 } 91 if n.TCP == 0 { 92 return errors.New("missing TCP port") 93 } 94 if n.IP.IsMulticast() || n.IP.IsUnspecified() { 95 return errors.New("invalid IP (multicast/unspecified)") 96 } 97 _, err := n.ID.Pubkey() // validate the key (on curve, etc.) 98 return err 99 } 100 101 // The string representation of a Node is a URL. 102 // Please see ParseNode for a description of the format. 103 func (n *Node) String() string { 104 u := url.URL{Scheme: "enode"} 105 if n.Incomplete() { 106 u.Host = fmt.Sprintf("%x", n.ID[:]) 107 } else { 108 addr := net.TCPAddr{IP: n.IP, Port: int(n.TCP)} 109 u.User = url.User(fmt.Sprintf("%x", n.ID[:])) 110 u.Host = addr.String() 111 if n.UDP != n.TCP { 112 u.RawQuery = "discport=" + strconv.Itoa(int(n.UDP)) 113 } 114 } 115 return u.String() 116 } 117 118 var incompleteNodeURL = regexp.MustCompile("(?i)^(?:enode://)?([0-9a-f]+)$") 119 120 // ParseNode parses a node designator. 121 // 122 // There are two basic forms of node designators 123 // - incomplete nodes, which only have the public key (node ID) 124 // - complete nodes, which contain the public key and IP/Port information 125 // 126 // For incomplete nodes, the designator must look like one of these 127 // 128 // enode://<hex node id> 129 // <hex node id> 130 // 131 // For complete nodes, the node ID is encoded in the username portion 132 // of the URL, separated from the host by an @ sign. The hostname can 133 // only be given as an IP address, DNS domain names are not allowed. 134 // The port in the host name section is the TCP listening port. If the 135 // TCP and UDP (discovery) ports differ, the UDP port is specified as 136 // query parameter "discport". 137 // 138 // In the following example, the node URL describes 139 // a node with IP address 10.3.58.6, TCP listening port 30303 140 // and UDP discovery port 30301. 141 // 142 // enode://<hex node id>@10.3.58.6:30303?discport=30301 143 func ParseNode(rawurl string) (*Node, error) { 144 if m := incompleteNodeURL.FindStringSubmatch(rawurl); m != nil { 145 id, err := HexID(m[1]) 146 if err != nil { 147 return nil, fmt.Errorf("invalid node ID (%v)", err) 148 } 149 return NewNode(id, nil, 0, 0), nil 150 } 151 return parseComplete(rawurl) 152 } 153 154 func parseComplete(rawurl string) (*Node, error) { 155 var ( 156 id NodeID 157 ip net.IP 158 tcpPort, udpPort uint64 159 ) 160 u, err := url.Parse(rawurl) 161 if err != nil { 162 return nil, err 163 } 164 if u.Scheme != "enode" { 165 return nil, errors.New("invalid URL scheme, want \"enode\"") 166 } 167 // Parse the Node ID from the user portion. 168 if u.User == nil { 169 return nil, errors.New("does not contain node ID") 170 } 171 if id, err = HexID(u.User.String()); err != nil { 172 return nil, fmt.Errorf("invalid node ID (%v)", err) 173 } 174 // Parse the IP address. 175 host, port, err := net.SplitHostPort(u.Host) 176 if err != nil { 177 return nil, fmt.Errorf("invalid host: %v", err) 178 } 179 if ip = net.ParseIP(host); ip == nil { 180 return nil, errors.New("invalid IP address") 181 } 182 // Ensure the IP is 4 bytes long for IPv4 addresses. 183 if ipv4 := ip.To4(); ipv4 != nil { 184 ip = ipv4 185 } 186 // Parse the port numbers. 187 if tcpPort, err = strconv.ParseUint(port, 10, 16); err != nil { 188 return nil, errors.New("invalid port") 189 } 190 udpPort = tcpPort 191 qv := u.Query() 192 if qv.Get("discport") != "" { 193 udpPort, err = strconv.ParseUint(qv.Get("discport"), 10, 16) 194 if err != nil { 195 return nil, errors.New("invalid discport in query") 196 } 197 } 198 return NewNode(id, ip, uint16(udpPort), uint16(tcpPort)), nil 199 } 200 201 // MustParseNode parses a node URL. It panics if the URL is not valid. 202 func MustParseNode(rawurl string) *Node { 203 n, err := ParseNode(rawurl) 204 if err != nil { 205 panic("invalid node URL: " + err.Error()) 206 } 207 return n 208 } 209 210 // MarshalText implements encoding.TextMarshaler. 211 func (n *Node) MarshalText() ([]byte, error) { 212 return []byte(n.String()), nil 213 } 214 215 // UnmarshalText implements encoding.TextUnmarshaler. 216 func (n *Node) UnmarshalText(text []byte) error { 217 dec, err := ParseNode(string(text)) 218 if err == nil { 219 *n = *dec 220 } 221 return err 222 } 223 224 // NodeID is a unique identifier for each node. 225 // The node identifier is a marshaled elliptic curve public key. 226 type NodeID [NodeIDBits / 8]byte 227 228 // NodeID prints as a long hexadecimal number. 229 func (n NodeID) String() string { 230 return fmt.Sprintf("%x", n[:]) 231 } 232 233 // The Go syntax representation of a NodeID is a call to HexID. 234 func (n NodeID) GoString() string { 235 return fmt.Sprintf("discover.HexID(\"%x\")", n[:]) 236 } 237 238 // TerminalString returns a shortened hex string for terminal logging. 239 func (n NodeID) TerminalString() string { 240 return hex.EncodeToString(n[:8]) 241 } 242 243 // HexID converts a hex string to a NodeID. 244 // The string may be prefixed with 0x. 245 func HexID(in string) (NodeID, error) { 246 var id NodeID 247 b, err := hex.DecodeString(strings.TrimPrefix(in, "0x")) 248 if err != nil { 249 return id, err 250 } else if len(b) != len(id) { 251 return id, fmt.Errorf("wrong length, want %d hex chars", len(id)*2) 252 } 253 copy(id[:], b) 254 return id, nil 255 } 256 257 // MustHexID converts a hex string to a NodeID. 258 // It panics if the string is not a valid NodeID. 259 func MustHexID(in string) NodeID { 260 id, err := HexID(in) 261 if err != nil { 262 panic(err) 263 } 264 return id 265 } 266 267 // PubkeyID returns a marshaled representation of the given public key. 268 func PubkeyID(pub *ecdsa.PublicKey) NodeID { 269 var id NodeID 270 pbytes := elliptic.Marshal(pub.Curve, pub.X, pub.Y) 271 if len(pbytes)-1 != len(id) { 272 panic(fmt.Errorf("need %d bit pubkey, got %d bits", (len(id)+1)*8, len(pbytes))) 273 } 274 copy(id[:], pbytes[1:]) 275 return id 276 } 277 278 // Pubkey returns the public key represented by the node ID. 279 // It returns an error if the ID is not a point on the curve. 280 func (id NodeID) Pubkey() (*ecdsa.PublicKey, error) { 281 p := &ecdsa.PublicKey{Curve: crypto.S256(), X: new(big.Int), Y: new(big.Int)} 282 half := len(id) / 2 283 p.X.SetBytes(id[:half]) 284 p.Y.SetBytes(id[half:]) 285 if !p.Curve.IsOnCurve(p.X, p.Y) { 286 return nil, errors.New("id is invalid secp256k1 curve point") 287 } 288 return p, nil 289 } 290 291 // recoverNodeID computes the public key used to sign the 292 // given hash from the signature. 293 func recoverNodeID(hash, sig []byte) (id NodeID, err error) { 294 pubkey, err := secp256k1.RecoverPubkey(hash, sig) 295 if err != nil { 296 return id, err 297 } 298 if len(pubkey)-1 != len(id) { 299 return id, fmt.Errorf("recovered pubkey has %d bits, want %d bits", len(pubkey)*8, (len(id)+1)*8) 300 } 301 for i := range id { 302 id[i] = pubkey[i+1] 303 } 304 return id, nil 305 } 306 307 // distcmp compares the distances a->target and b->target. 308 // Returns -1 if a is closer to target, 1 if b is closer to target 309 // and 0 if they are equal. 310 func distcmp(target, a, b common.Hash) int { 311 for i := range target { 312 da := a[i] ^ target[i] 313 db := b[i] ^ target[i] 314 if da > db { 315 return 1 316 } else if da < db { 317 return -1 318 } 319 } 320 return 0 321 } 322 323 // table of leading zero counts for bytes [0..255] 324 var lzcount = [256]int{ 325 8, 7, 6, 6, 5, 5, 5, 5, 326 4, 4, 4, 4, 4, 4, 4, 4, 327 3, 3, 3, 3, 3, 3, 3, 3, 328 3, 3, 3, 3, 3, 3, 3, 3, 329 2, 2, 2, 2, 2, 2, 2, 2, 330 2, 2, 2, 2, 2, 2, 2, 2, 331 2, 2, 2, 2, 2, 2, 2, 2, 332 2, 2, 2, 2, 2, 2, 2, 2, 333 1, 1, 1, 1, 1, 1, 1, 1, 334 1, 1, 1, 1, 1, 1, 1, 1, 335 1, 1, 1, 1, 1, 1, 1, 1, 336 1, 1, 1, 1, 1, 1, 1, 1, 337 1, 1, 1, 1, 1, 1, 1, 1, 338 1, 1, 1, 1, 1, 1, 1, 1, 339 1, 1, 1, 1, 1, 1, 1, 1, 340 1, 1, 1, 1, 1, 1, 1, 1, 341 0, 0, 0, 0, 0, 0, 0, 0, 342 0, 0, 0, 0, 0, 0, 0, 0, 343 0, 0, 0, 0, 0, 0, 0, 0, 344 0, 0, 0, 0, 0, 0, 0, 0, 345 0, 0, 0, 0, 0, 0, 0, 0, 346 0, 0, 0, 0, 0, 0, 0, 0, 347 0, 0, 0, 0, 0, 0, 0, 0, 348 0, 0, 0, 0, 0, 0, 0, 0, 349 0, 0, 0, 0, 0, 0, 0, 0, 350 0, 0, 0, 0, 0, 0, 0, 0, 351 0, 0, 0, 0, 0, 0, 0, 0, 352 0, 0, 0, 0, 0, 0, 0, 0, 353 0, 0, 0, 0, 0, 0, 0, 0, 354 0, 0, 0, 0, 0, 0, 0, 0, 355 0, 0, 0, 0, 0, 0, 0, 0, 356 0, 0, 0, 0, 0, 0, 0, 0, 357 } 358 359 // logdist returns the logarithmic distance between a and b, log2(a ^ b). 360 func logdist(a, b common.Hash) int { 361 lz := 0 362 for i := range a { 363 x := a[i] ^ b[i] 364 if x == 0 { 365 lz += 8 366 } else { 367 lz += lzcount[x] 368 break 369 } 370 } 371 return len(a)*8 - lz 372 } 373 374 // hashAtDistance returns a random hash such that logdist(a, b) == n 375 func hashAtDistance(a common.Hash, n int) (b common.Hash) { 376 if n == 0 { 377 return a 378 } 379 // flip bit at position n, fill the rest with random bits 380 b = a 381 pos := len(a) - n/8 - 1 382 bit := byte(0x01) << (byte(n%8) - 1) 383 if bit == 0 { 384 pos++ 385 bit = 0x80 386 } 387 b[pos] = a[pos]&^bit | ^a[pos]&bit // TODO: randomize end bits 388 for i := pos + 1; i < len(a); i++ { 389 b[i] = byte(rand.Intn(255)) 390 } 391 return b 392 }