github.com/alanchchen/go-ethereum@v1.6.6-0.20170601190819-6171d01b1195/p2p/discover/node.go (about)

     1  // Copyright 2015 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package discover
    18  
    19  import (
    20  	"crypto/ecdsa"
    21  	"crypto/elliptic"
    22  	"encoding/hex"
    23  	"errors"
    24  	"fmt"
    25  	"math/big"
    26  	"math/rand"
    27  	"net"
    28  	"net/url"
    29  	"regexp"
    30  	"strconv"
    31  	"strings"
    32  
    33  	"github.com/ethereum/go-ethereum/common"
    34  	"github.com/ethereum/go-ethereum/crypto"
    35  	"github.com/ethereum/go-ethereum/crypto/secp256k1"
    36  )
    37  
    38  const NodeIDBits = 512
    39  
    40  // Node represents a host on the network.
    41  // The fields of Node may not be modified.
    42  type Node struct {
    43  	IP       net.IP // len 4 for IPv4 or 16 for IPv6
    44  	UDP, TCP uint16 // port numbers
    45  	ID       NodeID // the node's public key
    46  
    47  	// This is a cached copy of sha3(ID) which is used for node
    48  	// distance calculations. This is part of Node in order to make it
    49  	// possible to write tests that need a node at a certain distance.
    50  	// In those tests, the content of sha will not actually correspond
    51  	// with ID.
    52  	sha common.Hash
    53  
    54  	// whether this node is currently being pinged in order to replace
    55  	// it in a bucket
    56  	contested bool
    57  }
    58  
    59  // NewNode creates a new node. It is mostly meant to be used for
    60  // testing purposes.
    61  func NewNode(id NodeID, ip net.IP, udpPort, tcpPort uint16) *Node {
    62  	if ipv4 := ip.To4(); ipv4 != nil {
    63  		ip = ipv4
    64  	}
    65  	return &Node{
    66  		IP:  ip,
    67  		UDP: udpPort,
    68  		TCP: tcpPort,
    69  		ID:  id,
    70  		sha: crypto.Keccak256Hash(id[:]),
    71  	}
    72  }
    73  
    74  func (n *Node) addr() *net.UDPAddr {
    75  	return &net.UDPAddr{IP: n.IP, Port: int(n.UDP)}
    76  }
    77  
    78  // Incomplete returns true for nodes with no IP address.
    79  func (n *Node) Incomplete() bool {
    80  	return n.IP == nil
    81  }
    82  
    83  // checks whether n is a valid complete node.
    84  func (n *Node) validateComplete() error {
    85  	if n.Incomplete() {
    86  		return errors.New("incomplete node")
    87  	}
    88  	if n.UDP == 0 {
    89  		return errors.New("missing UDP port")
    90  	}
    91  	if n.TCP == 0 {
    92  		return errors.New("missing TCP port")
    93  	}
    94  	if n.IP.IsMulticast() || n.IP.IsUnspecified() {
    95  		return errors.New("invalid IP (multicast/unspecified)")
    96  	}
    97  	_, err := n.ID.Pubkey() // validate the key (on curve, etc.)
    98  	return err
    99  }
   100  
   101  // The string representation of a Node is a URL.
   102  // Please see ParseNode for a description of the format.
   103  func (n *Node) String() string {
   104  	u := url.URL{Scheme: "enode"}
   105  	if n.Incomplete() {
   106  		u.Host = fmt.Sprintf("%x", n.ID[:])
   107  	} else {
   108  		addr := net.TCPAddr{IP: n.IP, Port: int(n.TCP)}
   109  		u.User = url.User(fmt.Sprintf("%x", n.ID[:]))
   110  		u.Host = addr.String()
   111  		if n.UDP != n.TCP {
   112  			u.RawQuery = "discport=" + strconv.Itoa(int(n.UDP))
   113  		}
   114  	}
   115  	return u.String()
   116  }
   117  
   118  var incompleteNodeURL = regexp.MustCompile("(?i)^(?:enode://)?([0-9a-f]+)$")
   119  
   120  // ParseNode parses a node designator.
   121  //
   122  // There are two basic forms of node designators
   123  //   - incomplete nodes, which only have the public key (node ID)
   124  //   - complete nodes, which contain the public key and IP/Port information
   125  //
   126  // For incomplete nodes, the designator must look like one of these
   127  //
   128  //    enode://<hex node id>
   129  //    <hex node id>
   130  //
   131  // For complete nodes, the node ID is encoded in the username portion
   132  // of the URL, separated from the host by an @ sign. The hostname can
   133  // only be given as an IP address, DNS domain names are not allowed.
   134  // The port in the host name section is the TCP listening port. If the
   135  // TCP and UDP (discovery) ports differ, the UDP port is specified as
   136  // query parameter "discport".
   137  //
   138  // In the following example, the node URL describes
   139  // a node with IP address 10.3.58.6, TCP listening port 30303
   140  // and UDP discovery port 30301.
   141  //
   142  //    enode://<hex node id>@10.3.58.6:30303?discport=30301
   143  func ParseNode(rawurl string) (*Node, error) {
   144  	if m := incompleteNodeURL.FindStringSubmatch(rawurl); m != nil {
   145  		id, err := HexID(m[1])
   146  		if err != nil {
   147  			return nil, fmt.Errorf("invalid node ID (%v)", err)
   148  		}
   149  		return NewNode(id, nil, 0, 0), nil
   150  	}
   151  	return parseComplete(rawurl)
   152  }
   153  
   154  func parseComplete(rawurl string) (*Node, error) {
   155  	var (
   156  		id               NodeID
   157  		ip               net.IP
   158  		tcpPort, udpPort uint64
   159  	)
   160  	u, err := url.Parse(rawurl)
   161  	if err != nil {
   162  		return nil, err
   163  	}
   164  	if u.Scheme != "enode" {
   165  		return nil, errors.New("invalid URL scheme, want \"enode\"")
   166  	}
   167  	// Parse the Node ID from the user portion.
   168  	if u.User == nil {
   169  		return nil, errors.New("does not contain node ID")
   170  	}
   171  	if id, err = HexID(u.User.String()); err != nil {
   172  		return nil, fmt.Errorf("invalid node ID (%v)", err)
   173  	}
   174  	// Parse the IP address.
   175  	host, port, err := net.SplitHostPort(u.Host)
   176  	if err != nil {
   177  		return nil, fmt.Errorf("invalid host: %v", err)
   178  	}
   179  	if ip = net.ParseIP(host); ip == nil {
   180  		return nil, errors.New("invalid IP address")
   181  	}
   182  	// Ensure the IP is 4 bytes long for IPv4 addresses.
   183  	if ipv4 := ip.To4(); ipv4 != nil {
   184  		ip = ipv4
   185  	}
   186  	// Parse the port numbers.
   187  	if tcpPort, err = strconv.ParseUint(port, 10, 16); err != nil {
   188  		return nil, errors.New("invalid port")
   189  	}
   190  	udpPort = tcpPort
   191  	qv := u.Query()
   192  	if qv.Get("discport") != "" {
   193  		udpPort, err = strconv.ParseUint(qv.Get("discport"), 10, 16)
   194  		if err != nil {
   195  			return nil, errors.New("invalid discport in query")
   196  		}
   197  	}
   198  	return NewNode(id, ip, uint16(udpPort), uint16(tcpPort)), nil
   199  }
   200  
   201  // MustParseNode parses a node URL. It panics if the URL is not valid.
   202  func MustParseNode(rawurl string) *Node {
   203  	n, err := ParseNode(rawurl)
   204  	if err != nil {
   205  		panic("invalid node URL: " + err.Error())
   206  	}
   207  	return n
   208  }
   209  
   210  // MarshalText implements encoding.TextMarshaler.
   211  func (n *Node) MarshalText() ([]byte, error) {
   212  	return []byte(n.String()), nil
   213  }
   214  
   215  // UnmarshalText implements encoding.TextUnmarshaler.
   216  func (n *Node) UnmarshalText(text []byte) error {
   217  	dec, err := ParseNode(string(text))
   218  	if err == nil {
   219  		*n = *dec
   220  	}
   221  	return err
   222  }
   223  
   224  // NodeID is a unique identifier for each node.
   225  // The node identifier is a marshaled elliptic curve public key.
   226  type NodeID [NodeIDBits / 8]byte
   227  
   228  // NodeID prints as a long hexadecimal number.
   229  func (n NodeID) String() string {
   230  	return fmt.Sprintf("%x", n[:])
   231  }
   232  
   233  // The Go syntax representation of a NodeID is a call to HexID.
   234  func (n NodeID) GoString() string {
   235  	return fmt.Sprintf("discover.HexID(\"%x\")", n[:])
   236  }
   237  
   238  // TerminalString returns a shortened hex string for terminal logging.
   239  func (n NodeID) TerminalString() string {
   240  	return hex.EncodeToString(n[:8])
   241  }
   242  
   243  // HexID converts a hex string to a NodeID.
   244  // The string may be prefixed with 0x.
   245  func HexID(in string) (NodeID, error) {
   246  	var id NodeID
   247  	b, err := hex.DecodeString(strings.TrimPrefix(in, "0x"))
   248  	if err != nil {
   249  		return id, err
   250  	} else if len(b) != len(id) {
   251  		return id, fmt.Errorf("wrong length, want %d hex chars", len(id)*2)
   252  	}
   253  	copy(id[:], b)
   254  	return id, nil
   255  }
   256  
   257  // MustHexID converts a hex string to a NodeID.
   258  // It panics if the string is not a valid NodeID.
   259  func MustHexID(in string) NodeID {
   260  	id, err := HexID(in)
   261  	if err != nil {
   262  		panic(err)
   263  	}
   264  	return id
   265  }
   266  
   267  // PubkeyID returns a marshaled representation of the given public key.
   268  func PubkeyID(pub *ecdsa.PublicKey) NodeID {
   269  	var id NodeID
   270  	pbytes := elliptic.Marshal(pub.Curve, pub.X, pub.Y)
   271  	if len(pbytes)-1 != len(id) {
   272  		panic(fmt.Errorf("need %d bit pubkey, got %d bits", (len(id)+1)*8, len(pbytes)))
   273  	}
   274  	copy(id[:], pbytes[1:])
   275  	return id
   276  }
   277  
   278  // Pubkey returns the public key represented by the node ID.
   279  // It returns an error if the ID is not a point on the curve.
   280  func (id NodeID) Pubkey() (*ecdsa.PublicKey, error) {
   281  	p := &ecdsa.PublicKey{Curve: crypto.S256(), X: new(big.Int), Y: new(big.Int)}
   282  	half := len(id) / 2
   283  	p.X.SetBytes(id[:half])
   284  	p.Y.SetBytes(id[half:])
   285  	if !p.Curve.IsOnCurve(p.X, p.Y) {
   286  		return nil, errors.New("id is invalid secp256k1 curve point")
   287  	}
   288  	return p, nil
   289  }
   290  
   291  // recoverNodeID computes the public key used to sign the
   292  // given hash from the signature.
   293  func recoverNodeID(hash, sig []byte) (id NodeID, err error) {
   294  	pubkey, err := secp256k1.RecoverPubkey(hash, sig)
   295  	if err != nil {
   296  		return id, err
   297  	}
   298  	if len(pubkey)-1 != len(id) {
   299  		return id, fmt.Errorf("recovered pubkey has %d bits, want %d bits", len(pubkey)*8, (len(id)+1)*8)
   300  	}
   301  	for i := range id {
   302  		id[i] = pubkey[i+1]
   303  	}
   304  	return id, nil
   305  }
   306  
   307  // distcmp compares the distances a->target and b->target.
   308  // Returns -1 if a is closer to target, 1 if b is closer to target
   309  // and 0 if they are equal.
   310  func distcmp(target, a, b common.Hash) int {
   311  	for i := range target {
   312  		da := a[i] ^ target[i]
   313  		db := b[i] ^ target[i]
   314  		if da > db {
   315  			return 1
   316  		} else if da < db {
   317  			return -1
   318  		}
   319  	}
   320  	return 0
   321  }
   322  
   323  // table of leading zero counts for bytes [0..255]
   324  var lzcount = [256]int{
   325  	8, 7, 6, 6, 5, 5, 5, 5,
   326  	4, 4, 4, 4, 4, 4, 4, 4,
   327  	3, 3, 3, 3, 3, 3, 3, 3,
   328  	3, 3, 3, 3, 3, 3, 3, 3,
   329  	2, 2, 2, 2, 2, 2, 2, 2,
   330  	2, 2, 2, 2, 2, 2, 2, 2,
   331  	2, 2, 2, 2, 2, 2, 2, 2,
   332  	2, 2, 2, 2, 2, 2, 2, 2,
   333  	1, 1, 1, 1, 1, 1, 1, 1,
   334  	1, 1, 1, 1, 1, 1, 1, 1,
   335  	1, 1, 1, 1, 1, 1, 1, 1,
   336  	1, 1, 1, 1, 1, 1, 1, 1,
   337  	1, 1, 1, 1, 1, 1, 1, 1,
   338  	1, 1, 1, 1, 1, 1, 1, 1,
   339  	1, 1, 1, 1, 1, 1, 1, 1,
   340  	1, 1, 1, 1, 1, 1, 1, 1,
   341  	0, 0, 0, 0, 0, 0, 0, 0,
   342  	0, 0, 0, 0, 0, 0, 0, 0,
   343  	0, 0, 0, 0, 0, 0, 0, 0,
   344  	0, 0, 0, 0, 0, 0, 0, 0,
   345  	0, 0, 0, 0, 0, 0, 0, 0,
   346  	0, 0, 0, 0, 0, 0, 0, 0,
   347  	0, 0, 0, 0, 0, 0, 0, 0,
   348  	0, 0, 0, 0, 0, 0, 0, 0,
   349  	0, 0, 0, 0, 0, 0, 0, 0,
   350  	0, 0, 0, 0, 0, 0, 0, 0,
   351  	0, 0, 0, 0, 0, 0, 0, 0,
   352  	0, 0, 0, 0, 0, 0, 0, 0,
   353  	0, 0, 0, 0, 0, 0, 0, 0,
   354  	0, 0, 0, 0, 0, 0, 0, 0,
   355  	0, 0, 0, 0, 0, 0, 0, 0,
   356  	0, 0, 0, 0, 0, 0, 0, 0,
   357  }
   358  
   359  // logdist returns the logarithmic distance between a and b, log2(a ^ b).
   360  func logdist(a, b common.Hash) int {
   361  	lz := 0
   362  	for i := range a {
   363  		x := a[i] ^ b[i]
   364  		if x == 0 {
   365  			lz += 8
   366  		} else {
   367  			lz += lzcount[x]
   368  			break
   369  		}
   370  	}
   371  	return len(a)*8 - lz
   372  }
   373  
   374  // hashAtDistance returns a random hash such that logdist(a, b) == n
   375  func hashAtDistance(a common.Hash, n int) (b common.Hash) {
   376  	if n == 0 {
   377  		return a
   378  	}
   379  	// flip bit at position n, fill the rest with random bits
   380  	b = a
   381  	pos := len(a) - n/8 - 1
   382  	bit := byte(0x01) << (byte(n%8) - 1)
   383  	if bit == 0 {
   384  		pos++
   385  		bit = 0x80
   386  	}
   387  	b[pos] = a[pos]&^bit | ^a[pos]&bit // TODO: randomize end bits
   388  	for i := pos + 1; i < len(a); i++ {
   389  		b[i] = byte(rand.Intn(255))
   390  	}
   391  	return b
   392  }