github.com/alash3al/go@v0.0.0-20150827002835-d497eeb00540/src/go/types/expr.go (about)

     1  // Copyright 2012 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // This file implements typechecking of expressions.
     6  
     7  package types
     8  
     9  import (
    10  	"fmt"
    11  	"go/ast"
    12  	"go/constant"
    13  	"go/token"
    14  	"math"
    15  )
    16  
    17  /*
    18  Basic algorithm:
    19  
    20  Expressions are checked recursively, top down. Expression checker functions
    21  are generally of the form:
    22  
    23    func f(x *operand, e *ast.Expr, ...)
    24  
    25  where e is the expression to be checked, and x is the result of the check.
    26  The check performed by f may fail in which case x.mode == invalid, and
    27  related error messages will have been issued by f.
    28  
    29  If a hint argument is present, it is the composite literal element type
    30  of an outer composite literal; it is used to type-check composite literal
    31  elements that have no explicit type specification in the source
    32  (e.g.: []T{{...}, {...}}, the hint is the type T in this case).
    33  
    34  All expressions are checked via rawExpr, which dispatches according
    35  to expression kind. Upon returning, rawExpr is recording the types and
    36  constant values for all expressions that have an untyped type (those types
    37  may change on the way up in the expression tree). Usually these are constants,
    38  but the results of comparisons or non-constant shifts of untyped constants
    39  may also be untyped, but not constant.
    40  
    41  Untyped expressions may eventually become fully typed (i.e., not untyped),
    42  typically when the value is assigned to a variable, or is used otherwise.
    43  The updateExprType method is used to record this final type and update
    44  the recorded types: the type-checked expression tree is again traversed down,
    45  and the new type is propagated as needed. Untyped constant expression values
    46  that become fully typed must now be representable by the full type (constant
    47  sub-expression trees are left alone except for their roots). This mechanism
    48  ensures that a client sees the actual (run-time) type an untyped value would
    49  have. It also permits type-checking of lhs shift operands "as if the shift
    50  were not present": when updateExprType visits an untyped lhs shift operand
    51  and assigns it it's final type, that type must be an integer type, and a
    52  constant lhs must be representable as an integer.
    53  
    54  When an expression gets its final type, either on the way out from rawExpr,
    55  on the way down in updateExprType, or at the end of the type checker run,
    56  the type (and constant value, if any) is recorded via Info.Types, if present.
    57  */
    58  
    59  type opPredicates map[token.Token]func(Type) bool
    60  
    61  var unaryOpPredicates = opPredicates{
    62  	token.ADD: isNumeric,
    63  	token.SUB: isNumeric,
    64  	token.XOR: isInteger,
    65  	token.NOT: isBoolean,
    66  }
    67  
    68  func (check *Checker) op(m opPredicates, x *operand, op token.Token) bool {
    69  	if pred := m[op]; pred != nil {
    70  		if !pred(x.typ) {
    71  			check.invalidOp(x.pos(), "operator %s not defined for %s", op, x)
    72  			return false
    73  		}
    74  	} else {
    75  		check.invalidAST(x.pos(), "unknown operator %s", op)
    76  		return false
    77  	}
    78  	return true
    79  }
    80  
    81  // The unary expression e may be nil. It's passed in for better error messages only.
    82  func (check *Checker) unary(x *operand, e *ast.UnaryExpr, op token.Token) {
    83  	switch op {
    84  	case token.AND:
    85  		// spec: "As an exception to the addressability
    86  		// requirement x may also be a composite literal."
    87  		if _, ok := unparen(x.expr).(*ast.CompositeLit); !ok && x.mode != variable {
    88  			check.invalidOp(x.pos(), "cannot take address of %s", x)
    89  			x.mode = invalid
    90  			return
    91  		}
    92  		x.mode = value
    93  		x.typ = &Pointer{base: x.typ}
    94  		return
    95  
    96  	case token.ARROW:
    97  		typ, ok := x.typ.Underlying().(*Chan)
    98  		if !ok {
    99  			check.invalidOp(x.pos(), "cannot receive from non-channel %s", x)
   100  			x.mode = invalid
   101  			return
   102  		}
   103  		if typ.dir == SendOnly {
   104  			check.invalidOp(x.pos(), "cannot receive from send-only channel %s", x)
   105  			x.mode = invalid
   106  			return
   107  		}
   108  		x.mode = commaok
   109  		x.typ = typ.elem
   110  		check.hasCallOrRecv = true
   111  		return
   112  	}
   113  
   114  	if !check.op(unaryOpPredicates, x, op) {
   115  		x.mode = invalid
   116  		return
   117  	}
   118  
   119  	if x.mode == constant_ {
   120  		typ := x.typ.Underlying().(*Basic)
   121  		var prec uint
   122  		if isUnsigned(typ) {
   123  			prec = uint(check.conf.sizeof(typ) * 8)
   124  		}
   125  		x.val = constant.UnaryOp(op, x.val, prec)
   126  		// Typed constants must be representable in
   127  		// their type after each constant operation.
   128  		if isTyped(typ) {
   129  			if e != nil {
   130  				x.expr = e // for better error message
   131  			}
   132  			check.representable(x, typ)
   133  		}
   134  		return
   135  	}
   136  
   137  	x.mode = value
   138  	// x.typ remains unchanged
   139  }
   140  
   141  func isShift(op token.Token) bool {
   142  	return op == token.SHL || op == token.SHR
   143  }
   144  
   145  func isComparison(op token.Token) bool {
   146  	// Note: tokens are not ordered well to make this much easier
   147  	switch op {
   148  	case token.EQL, token.NEQ, token.LSS, token.LEQ, token.GTR, token.GEQ:
   149  		return true
   150  	}
   151  	return false
   152  }
   153  
   154  func fitsFloat32(x constant.Value) bool {
   155  	f32, _ := constant.Float32Val(x)
   156  	f := float64(f32)
   157  	return !math.IsInf(f, 0)
   158  }
   159  
   160  func roundFloat32(x constant.Value) constant.Value {
   161  	f32, _ := constant.Float32Val(x)
   162  	f := float64(f32)
   163  	if !math.IsInf(f, 0) {
   164  		return constant.MakeFloat64(f)
   165  	}
   166  	return nil
   167  }
   168  
   169  func fitsFloat64(x constant.Value) bool {
   170  	f, _ := constant.Float64Val(x)
   171  	return !math.IsInf(f, 0)
   172  }
   173  
   174  func roundFloat64(x constant.Value) constant.Value {
   175  	f, _ := constant.Float64Val(x)
   176  	if !math.IsInf(f, 0) {
   177  		return constant.MakeFloat64(f)
   178  	}
   179  	return nil
   180  }
   181  
   182  // representableConst reports whether x can be represented as
   183  // value of the given basic type kind and for the configuration
   184  // provided (only needed for int/uint sizes).
   185  //
   186  // If rounded != nil, *rounded is set to the rounded value of x for
   187  // representable floating-point values; it is left alone otherwise.
   188  // It is ok to provide the addressof the first argument for rounded.
   189  func representableConst(x constant.Value, conf *Config, as BasicKind, rounded *constant.Value) bool {
   190  	switch x.Kind() {
   191  	case constant.Unknown:
   192  		return true
   193  
   194  	case constant.Bool:
   195  		return as == Bool || as == UntypedBool
   196  
   197  	case constant.Int:
   198  		if x, ok := constant.Int64Val(x); ok {
   199  			switch as {
   200  			case Int:
   201  				var s = uint(conf.sizeof(Typ[as])) * 8
   202  				return int64(-1)<<(s-1) <= x && x <= int64(1)<<(s-1)-1
   203  			case Int8:
   204  				const s = 8
   205  				return -1<<(s-1) <= x && x <= 1<<(s-1)-1
   206  			case Int16:
   207  				const s = 16
   208  				return -1<<(s-1) <= x && x <= 1<<(s-1)-1
   209  			case Int32:
   210  				const s = 32
   211  				return -1<<(s-1) <= x && x <= 1<<(s-1)-1
   212  			case Int64:
   213  				return true
   214  			case Uint, Uintptr:
   215  				if s := uint(conf.sizeof(Typ[as])) * 8; s < 64 {
   216  					return 0 <= x && x <= int64(1)<<s-1
   217  				}
   218  				return 0 <= x
   219  			case Uint8:
   220  				const s = 8
   221  				return 0 <= x && x <= 1<<s-1
   222  			case Uint16:
   223  				const s = 16
   224  				return 0 <= x && x <= 1<<s-1
   225  			case Uint32:
   226  				const s = 32
   227  				return 0 <= x && x <= 1<<s-1
   228  			case Uint64:
   229  				return 0 <= x
   230  			case Float32, Float64, Complex64, Complex128,
   231  				UntypedInt, UntypedFloat, UntypedComplex:
   232  				return true
   233  			}
   234  		}
   235  
   236  		n := constant.BitLen(x)
   237  		switch as {
   238  		case Uint, Uintptr:
   239  			var s = uint(conf.sizeof(Typ[as])) * 8
   240  			return constant.Sign(x) >= 0 && n <= int(s)
   241  		case Uint64:
   242  			return constant.Sign(x) >= 0 && n <= 64
   243  		case Float32, Complex64:
   244  			if rounded == nil {
   245  				return fitsFloat32(x)
   246  			}
   247  			r := roundFloat32(x)
   248  			if r != nil {
   249  				*rounded = r
   250  				return true
   251  			}
   252  		case Float64, Complex128:
   253  			if rounded == nil {
   254  				return fitsFloat64(x)
   255  			}
   256  			r := roundFloat64(x)
   257  			if r != nil {
   258  				*rounded = r
   259  				return true
   260  			}
   261  		case UntypedInt, UntypedFloat, UntypedComplex:
   262  			return true
   263  		}
   264  
   265  	case constant.Float:
   266  		switch as {
   267  		case Float32, Complex64:
   268  			if rounded == nil {
   269  				return fitsFloat32(x)
   270  			}
   271  			r := roundFloat32(x)
   272  			if r != nil {
   273  				*rounded = r
   274  				return true
   275  			}
   276  		case Float64, Complex128:
   277  			if rounded == nil {
   278  				return fitsFloat64(x)
   279  			}
   280  			r := roundFloat64(x)
   281  			if r != nil {
   282  				*rounded = r
   283  				return true
   284  			}
   285  		case UntypedFloat, UntypedComplex:
   286  			return true
   287  		}
   288  
   289  	case constant.Complex:
   290  		switch as {
   291  		case Complex64:
   292  			if rounded == nil {
   293  				return fitsFloat32(constant.Real(x)) && fitsFloat32(constant.Imag(x))
   294  			}
   295  			re := roundFloat32(constant.Real(x))
   296  			im := roundFloat32(constant.Imag(x))
   297  			if re != nil && im != nil {
   298  				*rounded = constant.BinaryOp(re, token.ADD, constant.MakeImag(im))
   299  				return true
   300  			}
   301  		case Complex128:
   302  			if rounded == nil {
   303  				return fitsFloat64(constant.Real(x)) && fitsFloat64(constant.Imag(x))
   304  			}
   305  			re := roundFloat64(constant.Real(x))
   306  			im := roundFloat64(constant.Imag(x))
   307  			if re != nil && im != nil {
   308  				*rounded = constant.BinaryOp(re, token.ADD, constant.MakeImag(im))
   309  				return true
   310  			}
   311  		case UntypedComplex:
   312  			return true
   313  		}
   314  
   315  	case constant.String:
   316  		return as == String || as == UntypedString
   317  
   318  	default:
   319  		unreachable()
   320  	}
   321  
   322  	return false
   323  }
   324  
   325  // representable checks that a constant operand is representable in the given basic type.
   326  func (check *Checker) representable(x *operand, typ *Basic) {
   327  	assert(x.mode == constant_)
   328  	if !representableConst(x.val, check.conf, typ.kind, &x.val) {
   329  		var msg string
   330  		if isNumeric(x.typ) && isNumeric(typ) {
   331  			// numeric conversion : error msg
   332  			//
   333  			// integer -> integer : overflows
   334  			// integer -> float   : overflows (actually not possible)
   335  			// float   -> integer : truncated
   336  			// float   -> float   : overflows
   337  			//
   338  			if !isInteger(x.typ) && isInteger(typ) {
   339  				msg = "%s truncated to %s"
   340  			} else {
   341  				msg = "%s overflows %s"
   342  			}
   343  		} else {
   344  			msg = "cannot convert %s to %s"
   345  		}
   346  		check.errorf(x.pos(), msg, x, typ)
   347  		x.mode = invalid
   348  	}
   349  }
   350  
   351  // updateExprType updates the type of x to typ and invokes itself
   352  // recursively for the operands of x, depending on expression kind.
   353  // If typ is still an untyped and not the final type, updateExprType
   354  // only updates the recorded untyped type for x and possibly its
   355  // operands. Otherwise (i.e., typ is not an untyped type anymore,
   356  // or it is the final type for x), the type and value are recorded.
   357  // Also, if x is a constant, it must be representable as a value of typ,
   358  // and if x is the (formerly untyped) lhs operand of a non-constant
   359  // shift, it must be an integer value.
   360  //
   361  func (check *Checker) updateExprType(x ast.Expr, typ Type, final bool) {
   362  	old, found := check.untyped[x]
   363  	if !found {
   364  		return // nothing to do
   365  	}
   366  
   367  	// update operands of x if necessary
   368  	switch x := x.(type) {
   369  	case *ast.BadExpr,
   370  		*ast.FuncLit,
   371  		*ast.CompositeLit,
   372  		*ast.IndexExpr,
   373  		*ast.SliceExpr,
   374  		*ast.TypeAssertExpr,
   375  		*ast.StarExpr,
   376  		*ast.KeyValueExpr,
   377  		*ast.ArrayType,
   378  		*ast.StructType,
   379  		*ast.FuncType,
   380  		*ast.InterfaceType,
   381  		*ast.MapType,
   382  		*ast.ChanType:
   383  		// These expression are never untyped - nothing to do.
   384  		// The respective sub-expressions got their final types
   385  		// upon assignment or use.
   386  		if debug {
   387  			check.dump("%s: found old type(%s): %s (new: %s)", x.Pos(), x, old.typ, typ)
   388  			unreachable()
   389  		}
   390  		return
   391  
   392  	case *ast.CallExpr:
   393  		// Resulting in an untyped constant (e.g., built-in complex).
   394  		// The respective calls take care of calling updateExprType
   395  		// for the arguments if necessary.
   396  
   397  	case *ast.Ident, *ast.BasicLit, *ast.SelectorExpr:
   398  		// An identifier denoting a constant, a constant literal,
   399  		// or a qualified identifier (imported untyped constant).
   400  		// No operands to take care of.
   401  
   402  	case *ast.ParenExpr:
   403  		check.updateExprType(x.X, typ, final)
   404  
   405  	case *ast.UnaryExpr:
   406  		// If x is a constant, the operands were constants.
   407  		// They don't need to be updated since they never
   408  		// get "materialized" into a typed value; and they
   409  		// will be processed at the end of the type check.
   410  		if old.val != nil {
   411  			break
   412  		}
   413  		check.updateExprType(x.X, typ, final)
   414  
   415  	case *ast.BinaryExpr:
   416  		if old.val != nil {
   417  			break // see comment for unary expressions
   418  		}
   419  		if isComparison(x.Op) {
   420  			// The result type is independent of operand types
   421  			// and the operand types must have final types.
   422  		} else if isShift(x.Op) {
   423  			// The result type depends only on lhs operand.
   424  			// The rhs type was updated when checking the shift.
   425  			check.updateExprType(x.X, typ, final)
   426  		} else {
   427  			// The operand types match the result type.
   428  			check.updateExprType(x.X, typ, final)
   429  			check.updateExprType(x.Y, typ, final)
   430  		}
   431  
   432  	default:
   433  		unreachable()
   434  	}
   435  
   436  	// If the new type is not final and still untyped, just
   437  	// update the recorded type.
   438  	if !final && isUntyped(typ) {
   439  		old.typ = typ.Underlying().(*Basic)
   440  		check.untyped[x] = old
   441  		return
   442  	}
   443  
   444  	// Otherwise we have the final (typed or untyped type).
   445  	// Remove it from the map of yet untyped expressions.
   446  	delete(check.untyped, x)
   447  
   448  	// If x is the lhs of a shift, its final type must be integer.
   449  	// We already know from the shift check that it is representable
   450  	// as an integer if it is a constant.
   451  	if old.isLhs && !isInteger(typ) {
   452  		check.invalidOp(x.Pos(), "shifted operand %s (type %s) must be integer", x, typ)
   453  		return
   454  	}
   455  
   456  	// Everything's fine, record final type and value for x.
   457  	check.recordTypeAndValue(x, old.mode, typ, old.val)
   458  }
   459  
   460  // updateExprVal updates the value of x to val.
   461  func (check *Checker) updateExprVal(x ast.Expr, val constant.Value) {
   462  	if info, ok := check.untyped[x]; ok {
   463  		info.val = val
   464  		check.untyped[x] = info
   465  	}
   466  }
   467  
   468  // convertUntyped attempts to set the type of an untyped value to the target type.
   469  func (check *Checker) convertUntyped(x *operand, target Type) {
   470  	if x.mode == invalid || isTyped(x.typ) || target == Typ[Invalid] {
   471  		return
   472  	}
   473  
   474  	// TODO(gri) Sloppy code - clean up. This function is central
   475  	//           to assignment and expression checking.
   476  
   477  	if isUntyped(target) {
   478  		// both x and target are untyped
   479  		xkind := x.typ.(*Basic).kind
   480  		tkind := target.(*Basic).kind
   481  		if isNumeric(x.typ) && isNumeric(target) {
   482  			if xkind < tkind {
   483  				x.typ = target
   484  				check.updateExprType(x.expr, target, false)
   485  			}
   486  		} else if xkind != tkind {
   487  			goto Error
   488  		}
   489  		return
   490  	}
   491  
   492  	// typed target
   493  	switch t := target.Underlying().(type) {
   494  	case *Basic:
   495  		if x.mode == constant_ {
   496  			check.representable(x, t)
   497  			if x.mode == invalid {
   498  				return
   499  			}
   500  			// expression value may have been rounded - update if needed
   501  			// TODO(gri) A floating-point value may silently underflow to
   502  			// zero. If it was negative, the sign is lost. See issue 6898.
   503  			check.updateExprVal(x.expr, x.val)
   504  		} else {
   505  			// Non-constant untyped values may appear as the
   506  			// result of comparisons (untyped bool), intermediate
   507  			// (delayed-checked) rhs operands of shifts, and as
   508  			// the value nil.
   509  			switch x.typ.(*Basic).kind {
   510  			case UntypedBool:
   511  				if !isBoolean(target) {
   512  					goto Error
   513  				}
   514  			case UntypedInt, UntypedRune, UntypedFloat, UntypedComplex:
   515  				if !isNumeric(target) {
   516  					goto Error
   517  				}
   518  			case UntypedString:
   519  				// Non-constant untyped string values are not
   520  				// permitted by the spec and should not occur.
   521  				unreachable()
   522  			case UntypedNil:
   523  				// Unsafe.Pointer is a basic type that includes nil.
   524  				if !hasNil(target) {
   525  					goto Error
   526  				}
   527  			default:
   528  				goto Error
   529  			}
   530  		}
   531  	case *Interface:
   532  		if !x.isNil() && !t.Empty() /* empty interfaces are ok */ {
   533  			goto Error
   534  		}
   535  		// Update operand types to the default type rather then
   536  		// the target (interface) type: values must have concrete
   537  		// dynamic types. If the value is nil, keep it untyped
   538  		// (this is important for tools such as go vet which need
   539  		// the dynamic type for argument checking of say, print
   540  		// functions)
   541  		if x.isNil() {
   542  			target = Typ[UntypedNil]
   543  		} else {
   544  			// cannot assign untyped values to non-empty interfaces
   545  			if !t.Empty() {
   546  				goto Error
   547  			}
   548  			target = defaultType(x.typ)
   549  		}
   550  	case *Pointer, *Signature, *Slice, *Map, *Chan:
   551  		if !x.isNil() {
   552  			goto Error
   553  		}
   554  		// keep nil untyped - see comment for interfaces, above
   555  		target = Typ[UntypedNil]
   556  	default:
   557  		goto Error
   558  	}
   559  
   560  	x.typ = target
   561  	check.updateExprType(x.expr, target, true) // UntypedNils are final
   562  	return
   563  
   564  Error:
   565  	check.errorf(x.pos(), "cannot convert %s to %s", x, target)
   566  	x.mode = invalid
   567  }
   568  
   569  func (check *Checker) comparison(x, y *operand, op token.Token) {
   570  	// spec: "In any comparison, the first operand must be assignable
   571  	// to the type of the second operand, or vice versa."
   572  	err := ""
   573  	if x.assignableTo(check.conf, y.typ) || y.assignableTo(check.conf, x.typ) {
   574  		defined := false
   575  		switch op {
   576  		case token.EQL, token.NEQ:
   577  			// spec: "The equality operators == and != apply to operands that are comparable."
   578  			defined = Comparable(x.typ) || x.isNil() && hasNil(y.typ) || y.isNil() && hasNil(x.typ)
   579  		case token.LSS, token.LEQ, token.GTR, token.GEQ:
   580  			// spec: The ordering operators <, <=, >, and >= apply to operands that are ordered."
   581  			defined = isOrdered(x.typ)
   582  		default:
   583  			unreachable()
   584  		}
   585  		if !defined {
   586  			typ := x.typ
   587  			if x.isNil() {
   588  				typ = y.typ
   589  			}
   590  			err = check.sprintf("operator %s not defined for %s", op, typ)
   591  		}
   592  	} else {
   593  		err = check.sprintf("mismatched types %s and %s", x.typ, y.typ)
   594  	}
   595  
   596  	if err != "" {
   597  		check.errorf(x.pos(), "cannot compare %s %s %s (%s)", x.expr, op, y.expr, err)
   598  		x.mode = invalid
   599  		return
   600  	}
   601  
   602  	if x.mode == constant_ && y.mode == constant_ {
   603  		x.val = constant.MakeBool(constant.Compare(x.val, op, y.val))
   604  		// The operands are never materialized; no need to update
   605  		// their types.
   606  	} else {
   607  		x.mode = value
   608  		// The operands have now their final types, which at run-
   609  		// time will be materialized. Update the expression trees.
   610  		// If the current types are untyped, the materialized type
   611  		// is the respective default type.
   612  		check.updateExprType(x.expr, defaultType(x.typ), true)
   613  		check.updateExprType(y.expr, defaultType(y.typ), true)
   614  	}
   615  
   616  	// spec: "Comparison operators compare two operands and yield
   617  	//        an untyped boolean value."
   618  	x.typ = Typ[UntypedBool]
   619  }
   620  
   621  func (check *Checker) shift(x, y *operand, op token.Token) {
   622  	untypedx := isUntyped(x.typ)
   623  
   624  	// The lhs must be of integer type or be representable
   625  	// as an integer; otherwise the shift has no chance.
   626  	if !x.isInteger() {
   627  		check.invalidOp(x.pos(), "shifted operand %s must be integer", x)
   628  		x.mode = invalid
   629  		return
   630  	}
   631  
   632  	// spec: "The right operand in a shift expression must have unsigned
   633  	// integer type or be an untyped constant that can be converted to
   634  	// unsigned integer type."
   635  	switch {
   636  	case isInteger(y.typ) && isUnsigned(y.typ):
   637  		// nothing to do
   638  	case isUntyped(y.typ):
   639  		check.convertUntyped(y, Typ[UntypedInt])
   640  		if y.mode == invalid {
   641  			x.mode = invalid
   642  			return
   643  		}
   644  	default:
   645  		check.invalidOp(y.pos(), "shift count %s must be unsigned integer", y)
   646  		x.mode = invalid
   647  		return
   648  	}
   649  
   650  	if x.mode == constant_ {
   651  		if y.mode == constant_ {
   652  			// rhs must be an integer value
   653  			if !y.isInteger() {
   654  				check.invalidOp(y.pos(), "shift count %s must be unsigned integer", y)
   655  				x.mode = invalid
   656  				return
   657  			}
   658  			// rhs must be within reasonable bounds
   659  			const stupidShift = 1023 - 1 + 52 // so we can express smallestFloat64
   660  			s, ok := constant.Uint64Val(y.val)
   661  			if !ok || s > stupidShift {
   662  				check.invalidOp(y.pos(), "stupid shift count %s", y)
   663  				x.mode = invalid
   664  				return
   665  			}
   666  			// The lhs is representable as an integer but may not be an integer
   667  			// (e.g., 2.0, an untyped float) - this can only happen for untyped
   668  			// non-integer numeric constants. Correct the type so that the shift
   669  			// result is of integer type.
   670  			if !isInteger(x.typ) {
   671  				x.typ = Typ[UntypedInt]
   672  			}
   673  			x.val = constant.Shift(x.val, op, uint(s))
   674  			return
   675  		}
   676  
   677  		// non-constant shift with constant lhs
   678  		if untypedx {
   679  			// spec: "If the left operand of a non-constant shift
   680  			// expression is an untyped constant, the type of the
   681  			// constant is what it would be if the shift expression
   682  			// were replaced by its left operand alone.".
   683  			//
   684  			// Delay operand checking until we know the final type
   685  			// by marking the lhs expression as lhs shift operand.
   686  			//
   687  			// Usually (in correct programs), the lhs expression
   688  			// is in the untyped map. However, it is possible to
   689  			// create incorrect programs where the same expression
   690  			// is evaluated twice (via a declaration cycle) such
   691  			// that the lhs expression type is determined in the
   692  			// first round and thus deleted from the map, and then
   693  			// not found in the second round (double insertion of
   694  			// the same expr node still just leads to one entry for
   695  			// that node, and it can only be deleted once).
   696  			// Be cautious and check for presence of entry.
   697  			// Example: var e, f = int(1<<""[f]) // issue 11347
   698  			if info, found := check.untyped[x.expr]; found {
   699  				info.isLhs = true
   700  				check.untyped[x.expr] = info
   701  			}
   702  			// keep x's type
   703  			x.mode = value
   704  			return
   705  		}
   706  	}
   707  
   708  	// constant rhs must be >= 0
   709  	if y.mode == constant_ && constant.Sign(y.val) < 0 {
   710  		check.invalidOp(y.pos(), "shift count %s must not be negative", y)
   711  	}
   712  
   713  	// non-constant shift - lhs must be an integer
   714  	if !isInteger(x.typ) {
   715  		check.invalidOp(x.pos(), "shifted operand %s must be integer", x)
   716  		x.mode = invalid
   717  		return
   718  	}
   719  
   720  	x.mode = value
   721  }
   722  
   723  var binaryOpPredicates = opPredicates{
   724  	token.ADD: func(typ Type) bool { return isNumeric(typ) || isString(typ) },
   725  	token.SUB: isNumeric,
   726  	token.MUL: isNumeric,
   727  	token.QUO: isNumeric,
   728  	token.REM: isInteger,
   729  
   730  	token.AND:     isInteger,
   731  	token.OR:      isInteger,
   732  	token.XOR:     isInteger,
   733  	token.AND_NOT: isInteger,
   734  
   735  	token.LAND: isBoolean,
   736  	token.LOR:  isBoolean,
   737  }
   738  
   739  // The binary expression e may be nil. It's passed in for better error messages only.
   740  func (check *Checker) binary(x *operand, e *ast.BinaryExpr, lhs, rhs ast.Expr, op token.Token) {
   741  	var y operand
   742  
   743  	check.expr(x, lhs)
   744  	check.expr(&y, rhs)
   745  
   746  	if x.mode == invalid {
   747  		return
   748  	}
   749  	if y.mode == invalid {
   750  		x.mode = invalid
   751  		x.expr = y.expr
   752  		return
   753  	}
   754  
   755  	if isShift(op) {
   756  		check.shift(x, &y, op)
   757  		return
   758  	}
   759  
   760  	check.convertUntyped(x, y.typ)
   761  	if x.mode == invalid {
   762  		return
   763  	}
   764  	check.convertUntyped(&y, x.typ)
   765  	if y.mode == invalid {
   766  		x.mode = invalid
   767  		return
   768  	}
   769  
   770  	if isComparison(op) {
   771  		check.comparison(x, &y, op)
   772  		return
   773  	}
   774  
   775  	if !Identical(x.typ, y.typ) {
   776  		// only report an error if we have valid types
   777  		// (otherwise we had an error reported elsewhere already)
   778  		if x.typ != Typ[Invalid] && y.typ != Typ[Invalid] {
   779  			check.invalidOp(x.pos(), "mismatched types %s and %s", x.typ, y.typ)
   780  		}
   781  		x.mode = invalid
   782  		return
   783  	}
   784  
   785  	if !check.op(binaryOpPredicates, x, op) {
   786  		x.mode = invalid
   787  		return
   788  	}
   789  
   790  	if (op == token.QUO || op == token.REM) && (x.mode == constant_ || isInteger(x.typ)) && y.mode == constant_ && constant.Sign(y.val) == 0 {
   791  		check.invalidOp(y.pos(), "division by zero")
   792  		x.mode = invalid
   793  		return
   794  	}
   795  
   796  	if x.mode == constant_ && y.mode == constant_ {
   797  		typ := x.typ.Underlying().(*Basic)
   798  		// force integer division of integer operands
   799  		if op == token.QUO && isInteger(typ) {
   800  			op = token.QUO_ASSIGN
   801  		}
   802  		x.val = constant.BinaryOp(x.val, op, y.val)
   803  		// Typed constants must be representable in
   804  		// their type after each constant operation.
   805  		if isTyped(typ) {
   806  			if e != nil {
   807  				x.expr = e // for better error message
   808  			}
   809  			check.representable(x, typ)
   810  		}
   811  		return
   812  	}
   813  
   814  	x.mode = value
   815  	// x.typ is unchanged
   816  }
   817  
   818  // index checks an index expression for validity.
   819  // If max >= 0, it is the upper bound for index.
   820  // If index is valid and the result i >= 0, then i is the constant value of index.
   821  func (check *Checker) index(index ast.Expr, max int64) (i int64, valid bool) {
   822  	var x operand
   823  	check.expr(&x, index)
   824  	if x.mode == invalid {
   825  		return
   826  	}
   827  
   828  	// an untyped constant must be representable as Int
   829  	check.convertUntyped(&x, Typ[Int])
   830  	if x.mode == invalid {
   831  		return
   832  	}
   833  
   834  	// the index must be of integer type
   835  	if !isInteger(x.typ) {
   836  		check.invalidArg(x.pos(), "index %s must be integer", &x)
   837  		return
   838  	}
   839  
   840  	// a constant index i must be in bounds
   841  	if x.mode == constant_ {
   842  		if constant.Sign(x.val) < 0 {
   843  			check.invalidArg(x.pos(), "index %s must not be negative", &x)
   844  			return
   845  		}
   846  		i, valid = constant.Int64Val(x.val)
   847  		if !valid || max >= 0 && i >= max {
   848  			check.errorf(x.pos(), "index %s is out of bounds", &x)
   849  			return i, false
   850  		}
   851  		// 0 <= i [ && i < max ]
   852  		return i, true
   853  	}
   854  
   855  	return -1, true
   856  }
   857  
   858  // indexElts checks the elements (elts) of an array or slice composite literal
   859  // against the literal's element type (typ), and the element indices against
   860  // the literal length if known (length >= 0). It returns the length of the
   861  // literal (maximum index value + 1).
   862  //
   863  func (check *Checker) indexedElts(elts []ast.Expr, typ Type, length int64) int64 {
   864  	visited := make(map[int64]bool, len(elts))
   865  	var index, max int64
   866  	for _, e := range elts {
   867  		// determine and check index
   868  		validIndex := false
   869  		eval := e
   870  		if kv, _ := e.(*ast.KeyValueExpr); kv != nil {
   871  			if i, ok := check.index(kv.Key, length); ok {
   872  				if i >= 0 {
   873  					index = i
   874  					validIndex = true
   875  				} else {
   876  					check.errorf(e.Pos(), "index %s must be integer constant", kv.Key)
   877  				}
   878  			}
   879  			eval = kv.Value
   880  		} else if length >= 0 && index >= length {
   881  			check.errorf(e.Pos(), "index %d is out of bounds (>= %d)", index, length)
   882  		} else {
   883  			validIndex = true
   884  		}
   885  
   886  		// if we have a valid index, check for duplicate entries
   887  		if validIndex {
   888  			if visited[index] {
   889  				check.errorf(e.Pos(), "duplicate index %d in array or slice literal", index)
   890  			}
   891  			visited[index] = true
   892  		}
   893  		index++
   894  		if index > max {
   895  			max = index
   896  		}
   897  
   898  		// check element against composite literal element type
   899  		var x operand
   900  		check.exprWithHint(&x, eval, typ)
   901  		if !check.assignment(&x, typ) && x.mode != invalid {
   902  			check.errorf(x.pos(), "cannot use %s as %s value in array or slice literal", &x, typ)
   903  		}
   904  	}
   905  	return max
   906  }
   907  
   908  // exprKind describes the kind of an expression; the kind
   909  // determines if an expression is valid in 'statement context'.
   910  type exprKind int
   911  
   912  const (
   913  	conversion exprKind = iota
   914  	expression
   915  	statement
   916  )
   917  
   918  // rawExpr typechecks expression e and initializes x with the expression
   919  // value or type. If an error occurred, x.mode is set to invalid.
   920  // If hint != nil, it is the type of a composite literal element.
   921  //
   922  func (check *Checker) rawExpr(x *operand, e ast.Expr, hint Type) exprKind {
   923  	if trace {
   924  		check.trace(e.Pos(), "%s", e)
   925  		check.indent++
   926  		defer func() {
   927  			check.indent--
   928  			check.trace(e.Pos(), "=> %s", x)
   929  		}()
   930  	}
   931  
   932  	kind := check.exprInternal(x, e, hint)
   933  
   934  	// convert x into a user-friendly set of values
   935  	// TODO(gri) this code can be simplified
   936  	var typ Type
   937  	var val constant.Value
   938  	switch x.mode {
   939  	case invalid:
   940  		typ = Typ[Invalid]
   941  	case novalue:
   942  		typ = (*Tuple)(nil)
   943  	case constant_:
   944  		typ = x.typ
   945  		val = x.val
   946  	default:
   947  		typ = x.typ
   948  	}
   949  	assert(x.expr != nil && typ != nil)
   950  
   951  	if isUntyped(typ) {
   952  		// delay type and value recording until we know the type
   953  		// or until the end of type checking
   954  		check.rememberUntyped(x.expr, false, x.mode, typ.(*Basic), val)
   955  	} else {
   956  		check.recordTypeAndValue(e, x.mode, typ, val)
   957  	}
   958  
   959  	return kind
   960  }
   961  
   962  // exprInternal contains the core of type checking of expressions.
   963  // Must only be called by rawExpr.
   964  //
   965  func (check *Checker) exprInternal(x *operand, e ast.Expr, hint Type) exprKind {
   966  	// make sure x has a valid state in case of bailout
   967  	// (was issue 5770)
   968  	x.mode = invalid
   969  	x.typ = Typ[Invalid]
   970  
   971  	switch e := e.(type) {
   972  	case *ast.BadExpr:
   973  		goto Error // error was reported before
   974  
   975  	case *ast.Ident:
   976  		check.ident(x, e, nil, nil)
   977  
   978  	case *ast.Ellipsis:
   979  		// ellipses are handled explicitly where they are legal
   980  		// (array composite literals and parameter lists)
   981  		check.error(e.Pos(), "invalid use of '...'")
   982  		goto Error
   983  
   984  	case *ast.BasicLit:
   985  		x.setConst(e.Kind, e.Value)
   986  		if x.mode == invalid {
   987  			check.invalidAST(e.Pos(), "invalid literal %v", e.Value)
   988  			goto Error
   989  		}
   990  
   991  	case *ast.FuncLit:
   992  		if sig, ok := check.typ(e.Type).(*Signature); ok {
   993  			// Anonymous functions are considered part of the
   994  			// init expression/func declaration which contains
   995  			// them: use existing package-level declaration info.
   996  			check.funcBody(check.decl, "", sig, e.Body)
   997  			x.mode = value
   998  			x.typ = sig
   999  		} else {
  1000  			check.invalidAST(e.Pos(), "invalid function literal %s", e)
  1001  			goto Error
  1002  		}
  1003  
  1004  	case *ast.CompositeLit:
  1005  		typ := hint
  1006  		openArray := false
  1007  		if e.Type != nil {
  1008  			// [...]T array types may only appear with composite literals.
  1009  			// Check for them here so we don't have to handle ... in general.
  1010  			typ = nil
  1011  			if atyp, _ := e.Type.(*ast.ArrayType); atyp != nil && atyp.Len != nil {
  1012  				if ellip, _ := atyp.Len.(*ast.Ellipsis); ellip != nil && ellip.Elt == nil {
  1013  					// We have an "open" [...]T array type.
  1014  					// Create a new ArrayType with unknown length (-1)
  1015  					// and finish setting it up after analyzing the literal.
  1016  					typ = &Array{len: -1, elem: check.typ(atyp.Elt)}
  1017  					openArray = true
  1018  				}
  1019  			}
  1020  			if typ == nil {
  1021  				typ = check.typ(e.Type)
  1022  			}
  1023  		}
  1024  		if typ == nil {
  1025  			// TODO(gri) provide better error messages depending on context
  1026  			check.error(e.Pos(), "missing type in composite literal")
  1027  			goto Error
  1028  		}
  1029  
  1030  		switch typ, _ := deref(typ); utyp := typ.Underlying().(type) {
  1031  		case *Struct:
  1032  			if len(e.Elts) == 0 {
  1033  				break
  1034  			}
  1035  			fields := utyp.fields
  1036  			if _, ok := e.Elts[0].(*ast.KeyValueExpr); ok {
  1037  				// all elements must have keys
  1038  				visited := make([]bool, len(fields))
  1039  				for _, e := range e.Elts {
  1040  					kv, _ := e.(*ast.KeyValueExpr)
  1041  					if kv == nil {
  1042  						check.error(e.Pos(), "mixture of field:value and value elements in struct literal")
  1043  						continue
  1044  					}
  1045  					key, _ := kv.Key.(*ast.Ident)
  1046  					if key == nil {
  1047  						check.errorf(kv.Pos(), "invalid field name %s in struct literal", kv.Key)
  1048  						continue
  1049  					}
  1050  					i := fieldIndex(utyp.fields, check.pkg, key.Name)
  1051  					if i < 0 {
  1052  						check.errorf(kv.Pos(), "unknown field %s in struct literal", key.Name)
  1053  						continue
  1054  					}
  1055  					fld := fields[i]
  1056  					check.recordUse(key, fld)
  1057  					// 0 <= i < len(fields)
  1058  					if visited[i] {
  1059  						check.errorf(kv.Pos(), "duplicate field name %s in struct literal", key.Name)
  1060  						continue
  1061  					}
  1062  					visited[i] = true
  1063  					check.expr(x, kv.Value)
  1064  					etyp := fld.typ
  1065  					if !check.assignment(x, etyp) {
  1066  						if x.mode != invalid {
  1067  							check.errorf(x.pos(), "cannot use %s as %s value in struct literal", x, etyp)
  1068  						}
  1069  						continue
  1070  					}
  1071  				}
  1072  			} else {
  1073  				// no element must have a key
  1074  				for i, e := range e.Elts {
  1075  					if kv, _ := e.(*ast.KeyValueExpr); kv != nil {
  1076  						check.error(kv.Pos(), "mixture of field:value and value elements in struct literal")
  1077  						continue
  1078  					}
  1079  					check.expr(x, e)
  1080  					if i >= len(fields) {
  1081  						check.error(x.pos(), "too many values in struct literal")
  1082  						break // cannot continue
  1083  					}
  1084  					// i < len(fields)
  1085  					fld := fields[i]
  1086  					if !fld.Exported() && fld.pkg != check.pkg {
  1087  						check.errorf(x.pos(), "implicit assignment to unexported field %s in %s literal", fld.name, typ)
  1088  						continue
  1089  					}
  1090  					etyp := fld.typ
  1091  					if !check.assignment(x, etyp) {
  1092  						if x.mode != invalid {
  1093  							check.errorf(x.pos(), "cannot use %s as %s value in struct literal", x, etyp)
  1094  						}
  1095  						continue
  1096  					}
  1097  				}
  1098  				if len(e.Elts) < len(fields) {
  1099  					check.error(e.Rbrace, "too few values in struct literal")
  1100  					// ok to continue
  1101  				}
  1102  			}
  1103  
  1104  		case *Array:
  1105  			n := check.indexedElts(e.Elts, utyp.elem, utyp.len)
  1106  			// if we have an "open" [...]T array, set the length now that we know it
  1107  			if openArray {
  1108  				utyp.len = n
  1109  			}
  1110  
  1111  		case *Slice:
  1112  			check.indexedElts(e.Elts, utyp.elem, -1)
  1113  
  1114  		case *Map:
  1115  			visited := make(map[interface{}][]Type, len(e.Elts))
  1116  			for _, e := range e.Elts {
  1117  				kv, _ := e.(*ast.KeyValueExpr)
  1118  				if kv == nil {
  1119  					check.error(e.Pos(), "missing key in map literal")
  1120  					continue
  1121  				}
  1122  				check.exprWithHint(x, kv.Key, utyp.key)
  1123  				if !check.assignment(x, utyp.key) {
  1124  					if x.mode != invalid {
  1125  						check.errorf(x.pos(), "cannot use %s as %s key in map literal", x, utyp.key)
  1126  					}
  1127  					continue
  1128  				}
  1129  				if x.mode == constant_ {
  1130  					duplicate := false
  1131  					// if the key is of interface type, the type is also significant when checking for duplicates
  1132  					if _, ok := utyp.key.Underlying().(*Interface); ok {
  1133  						for _, vtyp := range visited[x.val] {
  1134  							if Identical(vtyp, x.typ) {
  1135  								duplicate = true
  1136  								break
  1137  							}
  1138  						}
  1139  						visited[x.val] = append(visited[x.val], x.typ)
  1140  					} else {
  1141  						_, duplicate = visited[x.val]
  1142  						visited[x.val] = nil
  1143  					}
  1144  					if duplicate {
  1145  						check.errorf(x.pos(), "duplicate key %s in map literal", x.val)
  1146  						continue
  1147  					}
  1148  				}
  1149  				check.exprWithHint(x, kv.Value, utyp.elem)
  1150  				if !check.assignment(x, utyp.elem) {
  1151  					if x.mode != invalid {
  1152  						check.errorf(x.pos(), "cannot use %s as %s value in map literal", x, utyp.elem)
  1153  					}
  1154  					continue
  1155  				}
  1156  			}
  1157  
  1158  		default:
  1159  			// if utyp is invalid, an error was reported before
  1160  			if utyp != Typ[Invalid] {
  1161  				check.errorf(e.Pos(), "invalid composite literal type %s", typ)
  1162  				goto Error
  1163  			}
  1164  		}
  1165  
  1166  		x.mode = value
  1167  		x.typ = typ
  1168  
  1169  	case *ast.ParenExpr:
  1170  		kind := check.rawExpr(x, e.X, nil)
  1171  		x.expr = e
  1172  		return kind
  1173  
  1174  	case *ast.SelectorExpr:
  1175  		check.selector(x, e)
  1176  
  1177  	case *ast.IndexExpr:
  1178  		check.expr(x, e.X)
  1179  		if x.mode == invalid {
  1180  			goto Error
  1181  		}
  1182  
  1183  		valid := false
  1184  		length := int64(-1) // valid if >= 0
  1185  		switch typ := x.typ.Underlying().(type) {
  1186  		case *Basic:
  1187  			if isString(typ) {
  1188  				valid = true
  1189  				if x.mode == constant_ {
  1190  					length = int64(len(constant.StringVal(x.val)))
  1191  				}
  1192  				// an indexed string always yields a byte value
  1193  				// (not a constant) even if the string and the
  1194  				// index are constant
  1195  				x.mode = value
  1196  				x.typ = universeByte // use 'byte' name
  1197  			}
  1198  
  1199  		case *Array:
  1200  			valid = true
  1201  			length = typ.len
  1202  			if x.mode != variable {
  1203  				x.mode = value
  1204  			}
  1205  			x.typ = typ.elem
  1206  
  1207  		case *Pointer:
  1208  			if typ, _ := typ.base.Underlying().(*Array); typ != nil {
  1209  				valid = true
  1210  				length = typ.len
  1211  				x.mode = variable
  1212  				x.typ = typ.elem
  1213  			}
  1214  
  1215  		case *Slice:
  1216  			valid = true
  1217  			x.mode = variable
  1218  			x.typ = typ.elem
  1219  
  1220  		case *Map:
  1221  			var key operand
  1222  			check.expr(&key, e.Index)
  1223  			if !check.assignment(&key, typ.key) {
  1224  				if key.mode != invalid {
  1225  					check.invalidOp(key.pos(), "cannot use %s as map index of type %s", &key, typ.key)
  1226  				}
  1227  				goto Error
  1228  			}
  1229  			x.mode = mapindex
  1230  			x.typ = typ.elem
  1231  			x.expr = e
  1232  			return expression
  1233  		}
  1234  
  1235  		if !valid {
  1236  			check.invalidOp(x.pos(), "cannot index %s", x)
  1237  			goto Error
  1238  		}
  1239  
  1240  		if e.Index == nil {
  1241  			check.invalidAST(e.Pos(), "missing index for %s", x)
  1242  			goto Error
  1243  		}
  1244  
  1245  		check.index(e.Index, length)
  1246  		// ok to continue
  1247  
  1248  	case *ast.SliceExpr:
  1249  		check.expr(x, e.X)
  1250  		if x.mode == invalid {
  1251  			goto Error
  1252  		}
  1253  
  1254  		valid := false
  1255  		length := int64(-1) // valid if >= 0
  1256  		switch typ := x.typ.Underlying().(type) {
  1257  		case *Basic:
  1258  			if isString(typ) {
  1259  				if e.Slice3 {
  1260  					check.invalidOp(x.pos(), "3-index slice of string")
  1261  					goto Error
  1262  				}
  1263  				valid = true
  1264  				if x.mode == constant_ {
  1265  					length = int64(len(constant.StringVal(x.val)))
  1266  				}
  1267  				// spec: "For untyped string operands the result
  1268  				// is a non-constant value of type string."
  1269  				if typ.kind == UntypedString {
  1270  					x.typ = Typ[String]
  1271  				}
  1272  			}
  1273  
  1274  		case *Array:
  1275  			valid = true
  1276  			length = typ.len
  1277  			if x.mode != variable {
  1278  				check.invalidOp(x.pos(), "cannot slice %s (value not addressable)", x)
  1279  				goto Error
  1280  			}
  1281  			x.typ = &Slice{elem: typ.elem}
  1282  
  1283  		case *Pointer:
  1284  			if typ, _ := typ.base.Underlying().(*Array); typ != nil {
  1285  				valid = true
  1286  				length = typ.len
  1287  				x.typ = &Slice{elem: typ.elem}
  1288  			}
  1289  
  1290  		case *Slice:
  1291  			valid = true
  1292  			// x.typ doesn't change
  1293  		}
  1294  
  1295  		if !valid {
  1296  			check.invalidOp(x.pos(), "cannot slice %s", x)
  1297  			goto Error
  1298  		}
  1299  
  1300  		x.mode = value
  1301  
  1302  		// spec: "Only the first index may be omitted; it defaults to 0."
  1303  		if e.Slice3 && (e.High == nil || e.Max == nil) {
  1304  			check.error(e.Rbrack, "2nd and 3rd index required in 3-index slice")
  1305  			goto Error
  1306  		}
  1307  
  1308  		// check indices
  1309  		var ind [3]int64
  1310  		for i, expr := range []ast.Expr{e.Low, e.High, e.Max} {
  1311  			x := int64(-1)
  1312  			switch {
  1313  			case expr != nil:
  1314  				// The "capacity" is only known statically for strings, arrays,
  1315  				// and pointers to arrays, and it is the same as the length for
  1316  				// those types.
  1317  				max := int64(-1)
  1318  				if length >= 0 {
  1319  					max = length + 1
  1320  				}
  1321  				if t, ok := check.index(expr, max); ok && t >= 0 {
  1322  					x = t
  1323  				}
  1324  			case i == 0:
  1325  				// default is 0 for the first index
  1326  				x = 0
  1327  			case length >= 0:
  1328  				// default is length (== capacity) otherwise
  1329  				x = length
  1330  			}
  1331  			ind[i] = x
  1332  		}
  1333  
  1334  		// constant indices must be in range
  1335  		// (check.index already checks that existing indices >= 0)
  1336  	L:
  1337  		for i, x := range ind[:len(ind)-1] {
  1338  			if x > 0 {
  1339  				for _, y := range ind[i+1:] {
  1340  					if y >= 0 && x > y {
  1341  						check.errorf(e.Rbrack, "invalid slice indices: %d > %d", x, y)
  1342  						break L // only report one error, ok to continue
  1343  					}
  1344  				}
  1345  			}
  1346  		}
  1347  
  1348  	case *ast.TypeAssertExpr:
  1349  		check.expr(x, e.X)
  1350  		if x.mode == invalid {
  1351  			goto Error
  1352  		}
  1353  		xtyp, _ := x.typ.Underlying().(*Interface)
  1354  		if xtyp == nil {
  1355  			check.invalidOp(x.pos(), "%s is not an interface", x)
  1356  			goto Error
  1357  		}
  1358  		// x.(type) expressions are handled explicitly in type switches
  1359  		if e.Type == nil {
  1360  			check.invalidAST(e.Pos(), "use of .(type) outside type switch")
  1361  			goto Error
  1362  		}
  1363  		T := check.typ(e.Type)
  1364  		if T == Typ[Invalid] {
  1365  			goto Error
  1366  		}
  1367  		check.typeAssertion(x.pos(), x, xtyp, T)
  1368  		x.mode = commaok
  1369  		x.typ = T
  1370  
  1371  	case *ast.CallExpr:
  1372  		return check.call(x, e)
  1373  
  1374  	case *ast.StarExpr:
  1375  		check.exprOrType(x, e.X)
  1376  		switch x.mode {
  1377  		case invalid:
  1378  			goto Error
  1379  		case typexpr:
  1380  			x.typ = &Pointer{base: x.typ}
  1381  		default:
  1382  			if typ, ok := x.typ.Underlying().(*Pointer); ok {
  1383  				x.mode = variable
  1384  				x.typ = typ.base
  1385  			} else {
  1386  				check.invalidOp(x.pos(), "cannot indirect %s", x)
  1387  				goto Error
  1388  			}
  1389  		}
  1390  
  1391  	case *ast.UnaryExpr:
  1392  		check.expr(x, e.X)
  1393  		if x.mode == invalid {
  1394  			goto Error
  1395  		}
  1396  		check.unary(x, e, e.Op)
  1397  		if x.mode == invalid {
  1398  			goto Error
  1399  		}
  1400  		if e.Op == token.ARROW {
  1401  			x.expr = e
  1402  			return statement // receive operations may appear in statement context
  1403  		}
  1404  
  1405  	case *ast.BinaryExpr:
  1406  		check.binary(x, e, e.X, e.Y, e.Op)
  1407  		if x.mode == invalid {
  1408  			goto Error
  1409  		}
  1410  
  1411  	case *ast.KeyValueExpr:
  1412  		// key:value expressions are handled in composite literals
  1413  		check.invalidAST(e.Pos(), "no key:value expected")
  1414  		goto Error
  1415  
  1416  	case *ast.ArrayType, *ast.StructType, *ast.FuncType,
  1417  		*ast.InterfaceType, *ast.MapType, *ast.ChanType:
  1418  		x.mode = typexpr
  1419  		x.typ = check.typ(e)
  1420  		// Note: rawExpr (caller of exprInternal) will call check.recordTypeAndValue
  1421  		// even though check.typ has already called it. This is fine as both
  1422  		// times the same expression and type are recorded. It is also not a
  1423  		// performance issue because we only reach here for composite literal
  1424  		// types, which are comparatively rare.
  1425  
  1426  	default:
  1427  		panic(fmt.Sprintf("%s: unknown expression type %T", check.fset.Position(e.Pos()), e))
  1428  	}
  1429  
  1430  	// everything went well
  1431  	x.expr = e
  1432  	return expression
  1433  
  1434  Error:
  1435  	x.mode = invalid
  1436  	x.expr = e
  1437  	return statement // avoid follow-up errors
  1438  }
  1439  
  1440  // typeAssertion checks that x.(T) is legal; xtyp must be the type of x.
  1441  func (check *Checker) typeAssertion(pos token.Pos, x *operand, xtyp *Interface, T Type) {
  1442  	method, wrongType := assertableTo(xtyp, T)
  1443  	if method == nil {
  1444  		return
  1445  	}
  1446  
  1447  	var msg string
  1448  	if wrongType {
  1449  		msg = "wrong type for method"
  1450  	} else {
  1451  		msg = "missing method"
  1452  	}
  1453  	check.errorf(pos, "%s cannot have dynamic type %s (%s %s)", x, T, msg, method.name)
  1454  }
  1455  
  1456  // expr typechecks expression e and initializes x with the expression value.
  1457  // If an error occurred, x.mode is set to invalid.
  1458  //
  1459  func (check *Checker) expr(x *operand, e ast.Expr) {
  1460  	check.rawExpr(x, e, nil)
  1461  	var msg string
  1462  	switch x.mode {
  1463  	default:
  1464  		return
  1465  	case novalue:
  1466  		msg = "used as value"
  1467  	case builtin:
  1468  		msg = "must be called"
  1469  	case typexpr:
  1470  		msg = "is not an expression"
  1471  	}
  1472  	check.errorf(x.pos(), "%s %s", x, msg)
  1473  	x.mode = invalid
  1474  }
  1475  
  1476  // exprWithHint typechecks expression e and initializes x with the expression value;
  1477  // hint is the type of a composite literal element.
  1478  // If an error occurred, x.mode is set to invalid.
  1479  //
  1480  func (check *Checker) exprWithHint(x *operand, e ast.Expr, hint Type) {
  1481  	assert(hint != nil)
  1482  	check.rawExpr(x, e, hint)
  1483  	var msg string
  1484  	switch x.mode {
  1485  	default:
  1486  		return
  1487  	case novalue:
  1488  		msg = "used as value"
  1489  	case builtin:
  1490  		msg = "must be called"
  1491  	case typexpr:
  1492  		msg = "is not an expression"
  1493  	}
  1494  	check.errorf(x.pos(), "%s %s", x, msg)
  1495  	x.mode = invalid
  1496  }
  1497  
  1498  // exprOrType typechecks expression or type e and initializes x with the expression value or type.
  1499  // If an error occurred, x.mode is set to invalid.
  1500  //
  1501  func (check *Checker) exprOrType(x *operand, e ast.Expr) {
  1502  	check.rawExpr(x, e, nil)
  1503  	if x.mode == novalue {
  1504  		check.errorf(x.pos(), "%s used as value or type", x)
  1505  		x.mode = invalid
  1506  	}
  1507  }