github.com/alexdevranger/node-1.8.27@v0.0.0-20221128213301-aa5841e41d2d/accounts/abi/argument.go (about)

     1  // Copyright 2015 The go-ethereum Authors
     2  // This file is part of the go-dubxcoin library.
     3  //
     4  // The go-dubxcoin library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-dubxcoin library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-dubxcoin library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package abi
    18  
    19  import (
    20  	"encoding/json"
    21  	"fmt"
    22  	"reflect"
    23  	"strings"
    24  )
    25  
    26  // Argument holds the name of the argument and the corresponding type.
    27  // Types are used when packing and testing arguments.
    28  type Argument struct {
    29  	Name    string
    30  	Type    Type
    31  	Indexed bool // indexed is only used by events
    32  }
    33  
    34  type Arguments []Argument
    35  
    36  type ArgumentMarshaling struct {
    37  	Name       string
    38  	Type       string
    39  	Components []ArgumentMarshaling
    40  	Indexed    bool
    41  }
    42  
    43  // UnmarshalJSON implements json.Unmarshaler interface
    44  func (argument *Argument) UnmarshalJSON(data []byte) error {
    45  	var arg ArgumentMarshaling
    46  	err := json.Unmarshal(data, &arg)
    47  	if err != nil {
    48  		return fmt.Errorf("argument json err: %v", err)
    49  	}
    50  
    51  	argument.Type, err = NewType(arg.Type, arg.Components)
    52  	if err != nil {
    53  		return err
    54  	}
    55  	argument.Name = arg.Name
    56  	argument.Indexed = arg.Indexed
    57  
    58  	return nil
    59  }
    60  
    61  // LengthNonIndexed returns the number of arguments when not counting 'indexed' ones. Only events
    62  // can ever have 'indexed' arguments, it should always be false on arguments for method input/output
    63  func (arguments Arguments) LengthNonIndexed() int {
    64  	out := 0
    65  	for _, arg := range arguments {
    66  		if !arg.Indexed {
    67  			out++
    68  		}
    69  	}
    70  	return out
    71  }
    72  
    73  // NonIndexed returns the arguments with indexed arguments filtered out
    74  func (arguments Arguments) NonIndexed() Arguments {
    75  	var ret []Argument
    76  	for _, arg := range arguments {
    77  		if !arg.Indexed {
    78  			ret = append(ret, arg)
    79  		}
    80  	}
    81  	return ret
    82  }
    83  
    84  // isTuple returns true for non-atomic constructs, like (uint,uint) or uint[]
    85  func (arguments Arguments) isTuple() bool {
    86  	return len(arguments) > 1
    87  }
    88  
    89  // Unpack performs the operation hexdata -> Go format
    90  func (arguments Arguments) Unpack(v interface{}, data []byte) error {
    91  	// make sure the passed value is arguments pointer
    92  	if reflect.Ptr != reflect.ValueOf(v).Kind() {
    93  		return fmt.Errorf("abi: Unpack(non-pointer %T)", v)
    94  	}
    95  	marshalledValues, err := arguments.UnpackValues(data)
    96  	if err != nil {
    97  		return err
    98  	}
    99  	if arguments.isTuple() {
   100  		return arguments.unpackTuple(v, marshalledValues)
   101  	}
   102  	return arguments.unpackAtomic(v, marshalledValues[0])
   103  }
   104  
   105  // unpack sets the unmarshalled value to go format.
   106  // Note the dst here must be settable.
   107  func unpack(t *Type, dst interface{}, src interface{}) error {
   108  	var (
   109  		dstVal = reflect.ValueOf(dst).Elem()
   110  		srcVal = reflect.ValueOf(src)
   111  	)
   112  
   113  	if t.T != TupleTy && !((t.T == SliceTy || t.T == ArrayTy) && t.Elem.T == TupleTy) {
   114  		return set(dstVal, srcVal)
   115  	}
   116  
   117  	switch t.T {
   118  	case TupleTy:
   119  		if dstVal.Kind() != reflect.Struct {
   120  			return fmt.Errorf("abi: invalid dst value for unpack, want struct, got %s", dstVal.Kind())
   121  		}
   122  		fieldmap, err := mapArgNamesToStructFields(t.TupleRawNames, dstVal)
   123  		if err != nil {
   124  			return err
   125  		}
   126  		for i, elem := range t.TupleElems {
   127  			fname := fieldmap[t.TupleRawNames[i]]
   128  			field := dstVal.FieldByName(fname)
   129  			if !field.IsValid() {
   130  				return fmt.Errorf("abi: field %s can't found in the given value", t.TupleRawNames[i])
   131  			}
   132  			if err := unpack(elem, field.Addr().Interface(), srcVal.Field(i).Interface()); err != nil {
   133  				return err
   134  			}
   135  		}
   136  		return nil
   137  	case SliceTy:
   138  		if dstVal.Kind() != reflect.Slice {
   139  			return fmt.Errorf("abi: invalid dst value for unpack, want slice, got %s", dstVal.Kind())
   140  		}
   141  		slice := reflect.MakeSlice(dstVal.Type(), srcVal.Len(), srcVal.Len())
   142  		for i := 0; i < slice.Len(); i++ {
   143  			if err := unpack(t.Elem, slice.Index(i).Addr().Interface(), srcVal.Index(i).Interface()); err != nil {
   144  				return err
   145  			}
   146  		}
   147  		dstVal.Set(slice)
   148  	case ArrayTy:
   149  		if dstVal.Kind() != reflect.Array {
   150  			return fmt.Errorf("abi: invalid dst value for unpack, want array, got %s", dstVal.Kind())
   151  		}
   152  		array := reflect.New(dstVal.Type()).Elem()
   153  		for i := 0; i < array.Len(); i++ {
   154  			if err := unpack(t.Elem, array.Index(i).Addr().Interface(), srcVal.Index(i).Interface()); err != nil {
   155  				return err
   156  			}
   157  		}
   158  		dstVal.Set(array)
   159  	}
   160  	return nil
   161  }
   162  
   163  // unpackAtomic unpacks ( hexdata -> go ) a single value
   164  func (arguments Arguments) unpackAtomic(v interface{}, marshalledValues interface{}) error {
   165  	if arguments.LengthNonIndexed() == 0 {
   166  		return nil
   167  	}
   168  	argument := arguments.NonIndexed()[0]
   169  	elem := reflect.ValueOf(v).Elem()
   170  
   171  	if elem.Kind() == reflect.Struct {
   172  		fieldmap, err := mapArgNamesToStructFields([]string{argument.Name}, elem)
   173  		if err != nil {
   174  			return err
   175  		}
   176  		field := elem.FieldByName(fieldmap[argument.Name])
   177  		if !field.IsValid() {
   178  			return fmt.Errorf("abi: field %s can't be found in the given value", argument.Name)
   179  		}
   180  		return unpack(&argument.Type, field.Addr().Interface(), marshalledValues)
   181  	}
   182  	return unpack(&argument.Type, elem.Addr().Interface(), marshalledValues)
   183  }
   184  
   185  // unpackTuple unpacks ( hexdata -> go ) a batch of values.
   186  func (arguments Arguments) unpackTuple(v interface{}, marshalledValues []interface{}) error {
   187  	var (
   188  		value = reflect.ValueOf(v).Elem()
   189  		typ   = value.Type()
   190  		kind  = value.Kind()
   191  	)
   192  	if err := requireUnpackKind(value, typ, kind, arguments); err != nil {
   193  		return err
   194  	}
   195  
   196  	// If the interface is a struct, get of abi->struct_field mapping
   197  	var abi2struct map[string]string
   198  	if kind == reflect.Struct {
   199  		var (
   200  			argNames []string
   201  			err      error
   202  		)
   203  		for _, arg := range arguments.NonIndexed() {
   204  			argNames = append(argNames, arg.Name)
   205  		}
   206  		abi2struct, err = mapArgNamesToStructFields(argNames, value)
   207  		if err != nil {
   208  			return err
   209  		}
   210  	}
   211  	for i, arg := range arguments.NonIndexed() {
   212  		switch kind {
   213  		case reflect.Struct:
   214  			field := value.FieldByName(abi2struct[arg.Name])
   215  			if !field.IsValid() {
   216  				return fmt.Errorf("abi: field %s can't be found in the given value", arg.Name)
   217  			}
   218  			if err := unpack(&arg.Type, field.Addr().Interface(), marshalledValues[i]); err != nil {
   219  				return err
   220  			}
   221  		case reflect.Slice, reflect.Array:
   222  			if value.Len() < i {
   223  				return fmt.Errorf("abi: insufficient number of arguments for unpack, want %d, got %d", len(arguments), value.Len())
   224  			}
   225  			v := value.Index(i)
   226  			if err := requireAssignable(v, reflect.ValueOf(marshalledValues[i])); err != nil {
   227  				return err
   228  			}
   229  			if err := unpack(&arg.Type, v.Addr().Interface(), marshalledValues[i]); err != nil {
   230  				return err
   231  			}
   232  		default:
   233  			return fmt.Errorf("abi:[2] cannot unmarshal tuple in to %v", typ)
   234  		}
   235  	}
   236  	return nil
   237  
   238  }
   239  
   240  // UnpackValues can be used to unpack ABI-encoded hexdata according to the ABI-specification,
   241  // without supplying a struct to unpack into. Instead, this method returns a list containing the
   242  // values. An atomic argument will be a list with one element.
   243  func (arguments Arguments) UnpackValues(data []byte) ([]interface{}, error) {
   244  	retval := make([]interface{}, 0, arguments.LengthNonIndexed())
   245  	virtualArgs := 0
   246  	for index, arg := range arguments.NonIndexed() {
   247  		marshalledValue, err := toGoType((index+virtualArgs)*32, arg.Type, data)
   248  		if arg.Type.T == ArrayTy && !isDynamicType(arg.Type) {
   249  			// If we have a static array, like [3]uint256, these are coded as
   250  			// just like uint256,uint256,uint256.
   251  			// This means that we need to add two 'virtual' arguments when
   252  			// we count the index from now on.
   253  			//
   254  			// Array values nested multiple levels deep are also encoded inline:
   255  			// [2][3]uint256: uint256,uint256,uint256,uint256,uint256,uint256
   256  			//
   257  			// Calculate the full array size to get the correct offset for the next argument.
   258  			// Decrement it by 1, as the normal index increment is still applied.
   259  			virtualArgs += getTypeSize(arg.Type)/32 - 1
   260  		} else if arg.Type.T == TupleTy && !isDynamicType(arg.Type) {
   261  			// If we have a static tuple, like (uint256, bool, uint256), these are
   262  			// coded as just like uint256,bool,uint256
   263  			virtualArgs += getTypeSize(arg.Type)/32 - 1
   264  		}
   265  		if err != nil {
   266  			return nil, err
   267  		}
   268  		retval = append(retval, marshalledValue)
   269  	}
   270  	return retval, nil
   271  }
   272  
   273  // PackValues performs the operation Go format -> Hexdata
   274  // It is the semantic opposite of UnpackValues
   275  func (arguments Arguments) PackValues(args []interface{}) ([]byte, error) {
   276  	return arguments.Pack(args...)
   277  }
   278  
   279  // Pack performs the operation Go format -> Hexdata
   280  func (arguments Arguments) Pack(args ...interface{}) ([]byte, error) {
   281  	// Make sure arguments match up and pack them
   282  	abiArgs := arguments
   283  	if len(args) != len(abiArgs) {
   284  		return nil, fmt.Errorf("argument count mismatch: %d for %d", len(args), len(abiArgs))
   285  	}
   286  	// variable input is the output appended at the end of packed
   287  	// output. This is used for strings and bytes types input.
   288  	var variableInput []byte
   289  
   290  	// input offset is the bytes offset for packed output
   291  	inputOffset := 0
   292  	for _, abiArg := range abiArgs {
   293  		inputOffset += getTypeSize(abiArg.Type)
   294  	}
   295  	var ret []byte
   296  	for i, a := range args {
   297  		input := abiArgs[i]
   298  		// pack the input
   299  		packed, err := input.Type.pack(reflect.ValueOf(a))
   300  		if err != nil {
   301  			return nil, err
   302  		}
   303  		// check for dynamic types
   304  		if isDynamicType(input.Type) {
   305  			// set the offset
   306  			ret = append(ret, packNum(reflect.ValueOf(inputOffset))...)
   307  			// calculate next offset
   308  			inputOffset += len(packed)
   309  			// append to variable input
   310  			variableInput = append(variableInput, packed...)
   311  		} else {
   312  			// append the packed value to the input
   313  			ret = append(ret, packed...)
   314  		}
   315  	}
   316  	// append the variable input at the end of the packed input
   317  	ret = append(ret, variableInput...)
   318  
   319  	return ret, nil
   320  }
   321  
   322  // ToCamelCase converts an under-score string to a camel-case string
   323  func ToCamelCase(input string) string {
   324  	parts := strings.Split(input, "_")
   325  	for i, s := range parts {
   326  		if len(s) > 0 {
   327  			parts[i] = strings.ToUpper(s[:1]) + s[1:]
   328  		}
   329  	}
   330  	return strings.Join(parts, "")
   331  }