github.com/alexdevranger/node-1.8.27@v0.0.0-20221128213301-aa5841e41d2d/accounts/abi/type.go (about) 1 // Copyright 2015 The go-ethereum Authors 2 // This file is part of the go-dubxcoin library. 3 // 4 // The go-dubxcoin library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-dubxcoin library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-dubxcoin library. If not, see <http://www.gnu.org/licenses/>. 16 17 package abi 18 19 import ( 20 "errors" 21 "fmt" 22 "reflect" 23 "regexp" 24 "strconv" 25 "strings" 26 ) 27 28 // Type enumerator 29 const ( 30 IntTy byte = iota 31 UintTy 32 BoolTy 33 StringTy 34 SliceTy 35 ArrayTy 36 TupleTy 37 AddressTy 38 FixedBytesTy 39 BytesTy 40 HashTy 41 FixedPointTy 42 FunctionTy 43 ) 44 45 // Type is the reflection of the supported argument type 46 type Type struct { 47 Elem *Type 48 Kind reflect.Kind 49 Type reflect.Type 50 Size int 51 T byte // Our own type checking 52 53 stringKind string // holds the unparsed string for deriving signatures 54 55 // Tuple relative fields 56 TupleElems []*Type // Type information of all tuple fields 57 TupleRawNames []string // Raw field name of all tuple fields 58 } 59 60 var ( 61 // typeRegex parses the abi sub types 62 typeRegex = regexp.MustCompile("([a-zA-Z]+)(([0-9]+)(x([0-9]+))?)?") 63 ) 64 65 // NewType creates a new reflection type of abi type given in t. 66 func NewType(t string, components []ArgumentMarshaling) (typ Type, err error) { 67 // check that array brackets are equal if they exist 68 if strings.Count(t, "[") != strings.Count(t, "]") { 69 return Type{}, fmt.Errorf("invalid arg type in abi") 70 } 71 72 typ.stringKind = t 73 74 // if there are brackets, get ready to go into slice/array mode and 75 // recursively create the type 76 if strings.Count(t, "[") != 0 { 77 i := strings.LastIndex(t, "[") 78 // recursively embed the type 79 embeddedType, err := NewType(t[:i], components) 80 if err != nil { 81 return Type{}, err 82 } 83 // grab the last cell and create a type from there 84 sliced := t[i:] 85 // grab the slice size with regexp 86 re := regexp.MustCompile("[0-9]+") 87 intz := re.FindAllString(sliced, -1) 88 89 if len(intz) == 0 { 90 // is a slice 91 typ.T = SliceTy 92 typ.Kind = reflect.Slice 93 typ.Elem = &embeddedType 94 typ.Type = reflect.SliceOf(embeddedType.Type) 95 if embeddedType.T == TupleTy { 96 typ.stringKind = embeddedType.stringKind + sliced 97 } 98 } else if len(intz) == 1 { 99 // is a array 100 typ.T = ArrayTy 101 typ.Kind = reflect.Array 102 typ.Elem = &embeddedType 103 typ.Size, err = strconv.Atoi(intz[0]) 104 if err != nil { 105 return Type{}, fmt.Errorf("abi: error parsing variable size: %v", err) 106 } 107 typ.Type = reflect.ArrayOf(typ.Size, embeddedType.Type) 108 if embeddedType.T == TupleTy { 109 typ.stringKind = embeddedType.stringKind + sliced 110 } 111 } else { 112 return Type{}, fmt.Errorf("invalid formatting of array type") 113 } 114 return typ, err 115 } 116 // parse the type and size of the abi-type. 117 matches := typeRegex.FindAllStringSubmatch(t, -1) 118 if len(matches) == 0 { 119 return Type{}, fmt.Errorf("invalid type '%v'", t) 120 } 121 parsedType := matches[0] 122 123 // varSize is the size of the variable 124 var varSize int 125 if len(parsedType[3]) > 0 { 126 var err error 127 varSize, err = strconv.Atoi(parsedType[2]) 128 if err != nil { 129 return Type{}, fmt.Errorf("abi: error parsing variable size: %v", err) 130 } 131 } else { 132 if parsedType[0] == "uint" || parsedType[0] == "int" { 133 // this should fail because it means that there's something wrong with 134 // the abi type (the compiler should always format it to the size...always) 135 return Type{}, fmt.Errorf("unsupported arg type: %s", t) 136 } 137 } 138 // varType is the parsed abi type 139 switch varType := parsedType[1]; varType { 140 case "int": 141 typ.Kind, typ.Type = reflectIntKindAndType(false, varSize) 142 typ.Size = varSize 143 typ.T = IntTy 144 case "uint": 145 typ.Kind, typ.Type = reflectIntKindAndType(true, varSize) 146 typ.Size = varSize 147 typ.T = UintTy 148 case "bool": 149 typ.Kind = reflect.Bool 150 typ.T = BoolTy 151 typ.Type = reflect.TypeOf(bool(false)) 152 case "address": 153 typ.Kind = reflect.Array 154 typ.Type = addressT 155 typ.Size = 20 156 typ.T = AddressTy 157 case "string": 158 typ.Kind = reflect.String 159 typ.Type = reflect.TypeOf("") 160 typ.T = StringTy 161 case "bytes": 162 if varSize == 0 { 163 typ.T = BytesTy 164 typ.Kind = reflect.Slice 165 typ.Type = reflect.SliceOf(reflect.TypeOf(byte(0))) 166 } else { 167 typ.T = FixedBytesTy 168 typ.Kind = reflect.Array 169 typ.Size = varSize 170 typ.Type = reflect.ArrayOf(varSize, reflect.TypeOf(byte(0))) 171 } 172 case "tuple": 173 var ( 174 fields []reflect.StructField 175 elems []*Type 176 names []string 177 expression string // canonical parameter expression 178 ) 179 expression += "(" 180 for idx, c := range components { 181 cType, err := NewType(c.Type, c.Components) 182 if err != nil { 183 return Type{}, err 184 } 185 if ToCamelCase(c.Name) == "" { 186 return Type{}, errors.New("abi: purely anonymous or underscored field is not supported") 187 } 188 fields = append(fields, reflect.StructField{ 189 Name: ToCamelCase(c.Name), // reflect.StructOf will panic for any exported field. 190 Type: cType.Type, 191 }) 192 elems = append(elems, &cType) 193 names = append(names, c.Name) 194 expression += cType.stringKind 195 if idx != len(components)-1 { 196 expression += "," 197 } 198 } 199 expression += ")" 200 typ.Kind = reflect.Struct 201 typ.Type = reflect.StructOf(fields) 202 typ.TupleElems = elems 203 typ.TupleRawNames = names 204 typ.T = TupleTy 205 typ.stringKind = expression 206 case "function": 207 typ.Kind = reflect.Array 208 typ.T = FunctionTy 209 typ.Size = 24 210 typ.Type = reflect.ArrayOf(24, reflect.TypeOf(byte(0))) 211 default: 212 return Type{}, fmt.Errorf("unsupported arg type: %s", t) 213 } 214 215 return 216 } 217 218 // String implements Stringer 219 func (t Type) String() (out string) { 220 return t.stringKind 221 } 222 223 func (t Type) pack(v reflect.Value) ([]byte, error) { 224 // dereference pointer first if it's a pointer 225 v = indirect(v) 226 if err := typeCheck(t, v); err != nil { 227 return nil, err 228 } 229 230 switch t.T { 231 case SliceTy, ArrayTy: 232 var ret []byte 233 234 if t.requiresLengthPrefix() { 235 // append length 236 ret = append(ret, packNum(reflect.ValueOf(v.Len()))...) 237 } 238 239 // calculate offset if any 240 offset := 0 241 offsetReq := isDynamicType(*t.Elem) 242 if offsetReq { 243 offset = getTypeSize(*t.Elem) * v.Len() 244 } 245 var tail []byte 246 for i := 0; i < v.Len(); i++ { 247 val, err := t.Elem.pack(v.Index(i)) 248 if err != nil { 249 return nil, err 250 } 251 if !offsetReq { 252 ret = append(ret, val...) 253 continue 254 } 255 ret = append(ret, packNum(reflect.ValueOf(offset))...) 256 offset += len(val) 257 tail = append(tail, val...) 258 } 259 return append(ret, tail...), nil 260 case TupleTy: 261 // (T1,...,Tk) for k >= 0 and any types T1, …, Tk 262 // enc(X) = head(X(1)) ... head(X(k)) tail(X(1)) ... tail(X(k)) 263 // where X = (X(1), ..., X(k)) and head and tail are defined for Ti being a static 264 // type as 265 // head(X(i)) = enc(X(i)) and tail(X(i)) = "" (the empty string) 266 // and as 267 // head(X(i)) = enc(len(head(X(1)) ... head(X(k)) tail(X(1)) ... tail(X(i-1)))) 268 // tail(X(i)) = enc(X(i)) 269 // otherwise, i.e. if Ti is a dynamic type. 270 fieldmap, err := mapArgNamesToStructFields(t.TupleRawNames, v) 271 if err != nil { 272 return nil, err 273 } 274 // Calculate prefix occupied size. 275 offset := 0 276 for _, elem := range t.TupleElems { 277 offset += getTypeSize(*elem) 278 } 279 var ret, tail []byte 280 for i, elem := range t.TupleElems { 281 field := v.FieldByName(fieldmap[t.TupleRawNames[i]]) 282 if !field.IsValid() { 283 return nil, fmt.Errorf("field %s for tuple not found in the given struct", t.TupleRawNames[i]) 284 } 285 val, err := elem.pack(field) 286 if err != nil { 287 return nil, err 288 } 289 if isDynamicType(*elem) { 290 ret = append(ret, packNum(reflect.ValueOf(offset))...) 291 tail = append(tail, val...) 292 offset += len(val) 293 } else { 294 ret = append(ret, val...) 295 } 296 } 297 return append(ret, tail...), nil 298 299 default: 300 return packElement(t, v), nil 301 } 302 } 303 304 // requireLengthPrefix returns whether the type requires any sort of length 305 // prefixing. 306 func (t Type) requiresLengthPrefix() bool { 307 return t.T == StringTy || t.T == BytesTy || t.T == SliceTy 308 } 309 310 // isDynamicType returns true if the type is dynamic. 311 // The following types are called “dynamic”: 312 // * bytes 313 // * string 314 // * T[] for any T 315 // * T[k] for any dynamic T and any k >= 0 316 // * (T1,...,Tk) if Ti is dynamic for some 1 <= i <= k 317 func isDynamicType(t Type) bool { 318 if t.T == TupleTy { 319 for _, elem := range t.TupleElems { 320 if isDynamicType(*elem) { 321 return true 322 } 323 } 324 return false 325 } 326 return t.T == StringTy || t.T == BytesTy || t.T == SliceTy || (t.T == ArrayTy && isDynamicType(*t.Elem)) 327 } 328 329 // getTypeSize returns the size that this type needs to occupy. 330 // We distinguish static and dynamic types. Static types are encoded in-place 331 // and dynamic types are encoded at a separately allocated location after the 332 // current block. 333 // So for a static variable, the size returned represents the size that the 334 // variable actually occupies. 335 // For a dynamic variable, the returned size is fixed 32 bytes, which is used 336 // to store the location reference for actual value storage. 337 func getTypeSize(t Type) int { 338 if t.T == ArrayTy && !isDynamicType(*t.Elem) { 339 // Recursively calculate type size if it is a nested array 340 if t.Elem.T == ArrayTy { 341 return t.Size * getTypeSize(*t.Elem) 342 } 343 return t.Size * 32 344 } else if t.T == TupleTy && !isDynamicType(t) { 345 total := 0 346 for _, elem := range t.TupleElems { 347 total += getTypeSize(*elem) 348 } 349 return total 350 } 351 return 32 352 }