github.com/alexis81/domosgo@v0.0.0-20191016125037-5aee90a434af/Domos/src/golang.org/x/sys/unix/syscall_linux.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Linux system calls.
     6  // This file is compiled as ordinary Go code,
     7  // but it is also input to mksyscall,
     8  // which parses the //sys lines and generates system call stubs.
     9  // Note that sometimes we use a lowercase //sys name and
    10  // wrap it in our own nicer implementation.
    11  
    12  package unix
    13  
    14  import (
    15  	"syscall"
    16  	"unsafe"
    17  )
    18  
    19  /*
    20   * Wrapped
    21   */
    22  
    23  func Access(path string, mode uint32) (err error) {
    24  	return Faccessat(AT_FDCWD, path, mode, 0)
    25  }
    26  
    27  func Chmod(path string, mode uint32) (err error) {
    28  	return Fchmodat(AT_FDCWD, path, mode, 0)
    29  }
    30  
    31  func Chown(path string, uid int, gid int) (err error) {
    32  	return Fchownat(AT_FDCWD, path, uid, gid, 0)
    33  }
    34  
    35  func Creat(path string, mode uint32) (fd int, err error) {
    36  	return Open(path, O_CREAT|O_WRONLY|O_TRUNC, mode)
    37  }
    38  
    39  //sys	fchmodat(dirfd int, path string, mode uint32) (err error)
    40  
    41  func Fchmodat(dirfd int, path string, mode uint32, flags int) (err error) {
    42  	// Linux fchmodat doesn't support the flags parameter. Mimick glibc's behavior
    43  	// and check the flags. Otherwise the mode would be applied to the symlink
    44  	// destination which is not what the user expects.
    45  	if flags&^AT_SYMLINK_NOFOLLOW != 0 {
    46  		return EINVAL
    47  	} else if flags&AT_SYMLINK_NOFOLLOW != 0 {
    48  		return EOPNOTSUPP
    49  	}
    50  	return fchmodat(dirfd, path, mode)
    51  }
    52  
    53  //sys	ioctl(fd int, req uint, arg uintptr) (err error)
    54  
    55  // ioctl itself should not be exposed directly, but additional get/set
    56  // functions for specific types are permissible.
    57  
    58  // IoctlSetInt performs an ioctl operation which sets an integer value
    59  // on fd, using the specified request number.
    60  func IoctlSetInt(fd int, req uint, value int) error {
    61  	return ioctl(fd, req, uintptr(value))
    62  }
    63  
    64  func IoctlSetWinsize(fd int, req uint, value *Winsize) error {
    65  	return ioctl(fd, req, uintptr(unsafe.Pointer(value)))
    66  }
    67  
    68  func IoctlSetTermios(fd int, req uint, value *Termios) error {
    69  	return ioctl(fd, req, uintptr(unsafe.Pointer(value)))
    70  }
    71  
    72  // IoctlGetInt performs an ioctl operation which gets an integer value
    73  // from fd, using the specified request number.
    74  func IoctlGetInt(fd int, req uint) (int, error) {
    75  	var value int
    76  	err := ioctl(fd, req, uintptr(unsafe.Pointer(&value)))
    77  	return value, err
    78  }
    79  
    80  func IoctlGetWinsize(fd int, req uint) (*Winsize, error) {
    81  	var value Winsize
    82  	err := ioctl(fd, req, uintptr(unsafe.Pointer(&value)))
    83  	return &value, err
    84  }
    85  
    86  func IoctlGetTermios(fd int, req uint) (*Termios, error) {
    87  	var value Termios
    88  	err := ioctl(fd, req, uintptr(unsafe.Pointer(&value)))
    89  	return &value, err
    90  }
    91  
    92  //sys	Linkat(olddirfd int, oldpath string, newdirfd int, newpath string, flags int) (err error)
    93  
    94  func Link(oldpath string, newpath string) (err error) {
    95  	return Linkat(AT_FDCWD, oldpath, AT_FDCWD, newpath, 0)
    96  }
    97  
    98  func Mkdir(path string, mode uint32) (err error) {
    99  	return Mkdirat(AT_FDCWD, path, mode)
   100  }
   101  
   102  func Mknod(path string, mode uint32, dev int) (err error) {
   103  	return Mknodat(AT_FDCWD, path, mode, dev)
   104  }
   105  
   106  func Open(path string, mode int, perm uint32) (fd int, err error) {
   107  	return openat(AT_FDCWD, path, mode|O_LARGEFILE, perm)
   108  }
   109  
   110  //sys	openat(dirfd int, path string, flags int, mode uint32) (fd int, err error)
   111  
   112  func Openat(dirfd int, path string, flags int, mode uint32) (fd int, err error) {
   113  	return openat(dirfd, path, flags|O_LARGEFILE, mode)
   114  }
   115  
   116  //sys	ppoll(fds *PollFd, nfds int, timeout *Timespec, sigmask *Sigset_t) (n int, err error)
   117  
   118  func Ppoll(fds []PollFd, timeout *Timespec, sigmask *Sigset_t) (n int, err error) {
   119  	if len(fds) == 0 {
   120  		return ppoll(nil, 0, timeout, sigmask)
   121  	}
   122  	return ppoll(&fds[0], len(fds), timeout, sigmask)
   123  }
   124  
   125  //sys	Readlinkat(dirfd int, path string, buf []byte) (n int, err error)
   126  
   127  func Readlink(path string, buf []byte) (n int, err error) {
   128  	return Readlinkat(AT_FDCWD, path, buf)
   129  }
   130  
   131  func Rename(oldpath string, newpath string) (err error) {
   132  	return Renameat(AT_FDCWD, oldpath, AT_FDCWD, newpath)
   133  }
   134  
   135  func Rmdir(path string) error {
   136  	return Unlinkat(AT_FDCWD, path, AT_REMOVEDIR)
   137  }
   138  
   139  //sys	Symlinkat(oldpath string, newdirfd int, newpath string) (err error)
   140  
   141  func Symlink(oldpath string, newpath string) (err error) {
   142  	return Symlinkat(oldpath, AT_FDCWD, newpath)
   143  }
   144  
   145  func Unlink(path string) error {
   146  	return Unlinkat(AT_FDCWD, path, 0)
   147  }
   148  
   149  //sys	Unlinkat(dirfd int, path string, flags int) (err error)
   150  
   151  //sys	utimes(path string, times *[2]Timeval) (err error)
   152  
   153  func Utimes(path string, tv []Timeval) error {
   154  	if tv == nil {
   155  		err := utimensat(AT_FDCWD, path, nil, 0)
   156  		if err != ENOSYS {
   157  			return err
   158  		}
   159  		return utimes(path, nil)
   160  	}
   161  	if len(tv) != 2 {
   162  		return EINVAL
   163  	}
   164  	var ts [2]Timespec
   165  	ts[0] = NsecToTimespec(TimevalToNsec(tv[0]))
   166  	ts[1] = NsecToTimespec(TimevalToNsec(tv[1]))
   167  	err := utimensat(AT_FDCWD, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), 0)
   168  	if err != ENOSYS {
   169  		return err
   170  	}
   171  	return utimes(path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
   172  }
   173  
   174  //sys	utimensat(dirfd int, path string, times *[2]Timespec, flags int) (err error)
   175  
   176  func UtimesNano(path string, ts []Timespec) error {
   177  	if ts == nil {
   178  		err := utimensat(AT_FDCWD, path, nil, 0)
   179  		if err != ENOSYS {
   180  			return err
   181  		}
   182  		return utimes(path, nil)
   183  	}
   184  	if len(ts) != 2 {
   185  		return EINVAL
   186  	}
   187  	err := utimensat(AT_FDCWD, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), 0)
   188  	if err != ENOSYS {
   189  		return err
   190  	}
   191  	// If the utimensat syscall isn't available (utimensat was added to Linux
   192  	// in 2.6.22, Released, 8 July 2007) then fall back to utimes
   193  	var tv [2]Timeval
   194  	for i := 0; i < 2; i++ {
   195  		tv[i] = NsecToTimeval(TimespecToNsec(ts[i]))
   196  	}
   197  	return utimes(path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
   198  }
   199  
   200  func UtimesNanoAt(dirfd int, path string, ts []Timespec, flags int) error {
   201  	if ts == nil {
   202  		return utimensat(dirfd, path, nil, flags)
   203  	}
   204  	if len(ts) != 2 {
   205  		return EINVAL
   206  	}
   207  	return utimensat(dirfd, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), flags)
   208  }
   209  
   210  //sys	futimesat(dirfd int, path *byte, times *[2]Timeval) (err error)
   211  
   212  func Futimesat(dirfd int, path string, tv []Timeval) error {
   213  	pathp, err := BytePtrFromString(path)
   214  	if err != nil {
   215  		return err
   216  	}
   217  	if tv == nil {
   218  		return futimesat(dirfd, pathp, nil)
   219  	}
   220  	if len(tv) != 2 {
   221  		return EINVAL
   222  	}
   223  	return futimesat(dirfd, pathp, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
   224  }
   225  
   226  func Futimes(fd int, tv []Timeval) (err error) {
   227  	// Believe it or not, this is the best we can do on Linux
   228  	// (and is what glibc does).
   229  	return Utimes("/proc/self/fd/"+itoa(fd), tv)
   230  }
   231  
   232  const ImplementsGetwd = true
   233  
   234  //sys	Getcwd(buf []byte) (n int, err error)
   235  
   236  func Getwd() (wd string, err error) {
   237  	var buf [PathMax]byte
   238  	n, err := Getcwd(buf[0:])
   239  	if err != nil {
   240  		return "", err
   241  	}
   242  	// Getcwd returns the number of bytes written to buf, including the NUL.
   243  	if n < 1 || n > len(buf) || buf[n-1] != 0 {
   244  		return "", EINVAL
   245  	}
   246  	return string(buf[0 : n-1]), nil
   247  }
   248  
   249  func Getgroups() (gids []int, err error) {
   250  	n, err := getgroups(0, nil)
   251  	if err != nil {
   252  		return nil, err
   253  	}
   254  	if n == 0 {
   255  		return nil, nil
   256  	}
   257  
   258  	// Sanity check group count. Max is 1<<16 on Linux.
   259  	if n < 0 || n > 1<<20 {
   260  		return nil, EINVAL
   261  	}
   262  
   263  	a := make([]_Gid_t, n)
   264  	n, err = getgroups(n, &a[0])
   265  	if err != nil {
   266  		return nil, err
   267  	}
   268  	gids = make([]int, n)
   269  	for i, v := range a[0:n] {
   270  		gids[i] = int(v)
   271  	}
   272  	return
   273  }
   274  
   275  func Setgroups(gids []int) (err error) {
   276  	if len(gids) == 0 {
   277  		return setgroups(0, nil)
   278  	}
   279  
   280  	a := make([]_Gid_t, len(gids))
   281  	for i, v := range gids {
   282  		a[i] = _Gid_t(v)
   283  	}
   284  	return setgroups(len(a), &a[0])
   285  }
   286  
   287  type WaitStatus uint32
   288  
   289  // Wait status is 7 bits at bottom, either 0 (exited),
   290  // 0x7F (stopped), or a signal number that caused an exit.
   291  // The 0x80 bit is whether there was a core dump.
   292  // An extra number (exit code, signal causing a stop)
   293  // is in the high bits. At least that's the idea.
   294  // There are various irregularities. For example, the
   295  // "continued" status is 0xFFFF, distinguishing itself
   296  // from stopped via the core dump bit.
   297  
   298  const (
   299  	mask    = 0x7F
   300  	core    = 0x80
   301  	exited  = 0x00
   302  	stopped = 0x7F
   303  	shift   = 8
   304  )
   305  
   306  func (w WaitStatus) Exited() bool { return w&mask == exited }
   307  
   308  func (w WaitStatus) Signaled() bool { return w&mask != stopped && w&mask != exited }
   309  
   310  func (w WaitStatus) Stopped() bool { return w&0xFF == stopped }
   311  
   312  func (w WaitStatus) Continued() bool { return w == 0xFFFF }
   313  
   314  func (w WaitStatus) CoreDump() bool { return w.Signaled() && w&core != 0 }
   315  
   316  func (w WaitStatus) ExitStatus() int {
   317  	if !w.Exited() {
   318  		return -1
   319  	}
   320  	return int(w>>shift) & 0xFF
   321  }
   322  
   323  func (w WaitStatus) Signal() syscall.Signal {
   324  	if !w.Signaled() {
   325  		return -1
   326  	}
   327  	return syscall.Signal(w & mask)
   328  }
   329  
   330  func (w WaitStatus) StopSignal() syscall.Signal {
   331  	if !w.Stopped() {
   332  		return -1
   333  	}
   334  	return syscall.Signal(w>>shift) & 0xFF
   335  }
   336  
   337  func (w WaitStatus) TrapCause() int {
   338  	if w.StopSignal() != SIGTRAP {
   339  		return -1
   340  	}
   341  	return int(w>>shift) >> 8
   342  }
   343  
   344  //sys	wait4(pid int, wstatus *_C_int, options int, rusage *Rusage) (wpid int, err error)
   345  
   346  func Wait4(pid int, wstatus *WaitStatus, options int, rusage *Rusage) (wpid int, err error) {
   347  	var status _C_int
   348  	wpid, err = wait4(pid, &status, options, rusage)
   349  	if wstatus != nil {
   350  		*wstatus = WaitStatus(status)
   351  	}
   352  	return
   353  }
   354  
   355  func Mkfifo(path string, mode uint32) error {
   356  	return Mknod(path, mode|S_IFIFO, 0)
   357  }
   358  
   359  func Mkfifoat(dirfd int, path string, mode uint32) error {
   360  	return Mknodat(dirfd, path, mode|S_IFIFO, 0)
   361  }
   362  
   363  func (sa *SockaddrInet4) sockaddr() (unsafe.Pointer, _Socklen, error) {
   364  	if sa.Port < 0 || sa.Port > 0xFFFF {
   365  		return nil, 0, EINVAL
   366  	}
   367  	sa.raw.Family = AF_INET
   368  	p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port))
   369  	p[0] = byte(sa.Port >> 8)
   370  	p[1] = byte(sa.Port)
   371  	for i := 0; i < len(sa.Addr); i++ {
   372  		sa.raw.Addr[i] = sa.Addr[i]
   373  	}
   374  	return unsafe.Pointer(&sa.raw), SizeofSockaddrInet4, nil
   375  }
   376  
   377  func (sa *SockaddrInet6) sockaddr() (unsafe.Pointer, _Socklen, error) {
   378  	if sa.Port < 0 || sa.Port > 0xFFFF {
   379  		return nil, 0, EINVAL
   380  	}
   381  	sa.raw.Family = AF_INET6
   382  	p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port))
   383  	p[0] = byte(sa.Port >> 8)
   384  	p[1] = byte(sa.Port)
   385  	sa.raw.Scope_id = sa.ZoneId
   386  	for i := 0; i < len(sa.Addr); i++ {
   387  		sa.raw.Addr[i] = sa.Addr[i]
   388  	}
   389  	return unsafe.Pointer(&sa.raw), SizeofSockaddrInet6, nil
   390  }
   391  
   392  func (sa *SockaddrUnix) sockaddr() (unsafe.Pointer, _Socklen, error) {
   393  	name := sa.Name
   394  	n := len(name)
   395  	if n >= len(sa.raw.Path) {
   396  		return nil, 0, EINVAL
   397  	}
   398  	sa.raw.Family = AF_UNIX
   399  	for i := 0; i < n; i++ {
   400  		sa.raw.Path[i] = int8(name[i])
   401  	}
   402  	// length is family (uint16), name, NUL.
   403  	sl := _Socklen(2)
   404  	if n > 0 {
   405  		sl += _Socklen(n) + 1
   406  	}
   407  	if sa.raw.Path[0] == '@' {
   408  		sa.raw.Path[0] = 0
   409  		// Don't count trailing NUL for abstract address.
   410  		sl--
   411  	}
   412  
   413  	return unsafe.Pointer(&sa.raw), sl, nil
   414  }
   415  
   416  // SockaddrLinklayer implements the Sockaddr interface for AF_PACKET type sockets.
   417  type SockaddrLinklayer struct {
   418  	Protocol uint16
   419  	Ifindex  int
   420  	Hatype   uint16
   421  	Pkttype  uint8
   422  	Halen    uint8
   423  	Addr     [8]byte
   424  	raw      RawSockaddrLinklayer
   425  }
   426  
   427  func (sa *SockaddrLinklayer) sockaddr() (unsafe.Pointer, _Socklen, error) {
   428  	if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
   429  		return nil, 0, EINVAL
   430  	}
   431  	sa.raw.Family = AF_PACKET
   432  	sa.raw.Protocol = sa.Protocol
   433  	sa.raw.Ifindex = int32(sa.Ifindex)
   434  	sa.raw.Hatype = sa.Hatype
   435  	sa.raw.Pkttype = sa.Pkttype
   436  	sa.raw.Halen = sa.Halen
   437  	for i := 0; i < len(sa.Addr); i++ {
   438  		sa.raw.Addr[i] = sa.Addr[i]
   439  	}
   440  	return unsafe.Pointer(&sa.raw), SizeofSockaddrLinklayer, nil
   441  }
   442  
   443  // SockaddrNetlink implements the Sockaddr interface for AF_NETLINK type sockets.
   444  type SockaddrNetlink struct {
   445  	Family uint16
   446  	Pad    uint16
   447  	Pid    uint32
   448  	Groups uint32
   449  	raw    RawSockaddrNetlink
   450  }
   451  
   452  func (sa *SockaddrNetlink) sockaddr() (unsafe.Pointer, _Socklen, error) {
   453  	sa.raw.Family = AF_NETLINK
   454  	sa.raw.Pad = sa.Pad
   455  	sa.raw.Pid = sa.Pid
   456  	sa.raw.Groups = sa.Groups
   457  	return unsafe.Pointer(&sa.raw), SizeofSockaddrNetlink, nil
   458  }
   459  
   460  // SockaddrHCI implements the Sockaddr interface for AF_BLUETOOTH type sockets
   461  // using the HCI protocol.
   462  type SockaddrHCI struct {
   463  	Dev     uint16
   464  	Channel uint16
   465  	raw     RawSockaddrHCI
   466  }
   467  
   468  func (sa *SockaddrHCI) sockaddr() (unsafe.Pointer, _Socklen, error) {
   469  	sa.raw.Family = AF_BLUETOOTH
   470  	sa.raw.Dev = sa.Dev
   471  	sa.raw.Channel = sa.Channel
   472  	return unsafe.Pointer(&sa.raw), SizeofSockaddrHCI, nil
   473  }
   474  
   475  // SockaddrL2 implements the Sockaddr interface for AF_BLUETOOTH type sockets
   476  // using the L2CAP protocol.
   477  type SockaddrL2 struct {
   478  	PSM      uint16
   479  	CID      uint16
   480  	Addr     [6]uint8
   481  	AddrType uint8
   482  	raw      RawSockaddrL2
   483  }
   484  
   485  func (sa *SockaddrL2) sockaddr() (unsafe.Pointer, _Socklen, error) {
   486  	sa.raw.Family = AF_BLUETOOTH
   487  	psm := (*[2]byte)(unsafe.Pointer(&sa.raw.Psm))
   488  	psm[0] = byte(sa.PSM)
   489  	psm[1] = byte(sa.PSM >> 8)
   490  	for i := 0; i < len(sa.Addr); i++ {
   491  		sa.raw.Bdaddr[i] = sa.Addr[len(sa.Addr)-1-i]
   492  	}
   493  	cid := (*[2]byte)(unsafe.Pointer(&sa.raw.Cid))
   494  	cid[0] = byte(sa.CID)
   495  	cid[1] = byte(sa.CID >> 8)
   496  	sa.raw.Bdaddr_type = sa.AddrType
   497  	return unsafe.Pointer(&sa.raw), SizeofSockaddrL2, nil
   498  }
   499  
   500  // SockaddrCAN implements the Sockaddr interface for AF_CAN type sockets.
   501  // The RxID and TxID fields are used for transport protocol addressing in
   502  // (CAN_TP16, CAN_TP20, CAN_MCNET, and CAN_ISOTP), they can be left with
   503  // zero values for CAN_RAW and CAN_BCM sockets as they have no meaning.
   504  //
   505  // The SockaddrCAN struct must be bound to the socket file descriptor
   506  // using Bind before the CAN socket can be used.
   507  //
   508  //      // Read one raw CAN frame
   509  //      fd, _ := Socket(AF_CAN, SOCK_RAW, CAN_RAW)
   510  //      addr := &SockaddrCAN{Ifindex: index}
   511  //      Bind(fd, addr)
   512  //      frame := make([]byte, 16)
   513  //      Read(fd, frame)
   514  //
   515  // The full SocketCAN documentation can be found in the linux kernel
   516  // archives at: https://www.kernel.org/doc/Documentation/networking/can.txt
   517  type SockaddrCAN struct {
   518  	Ifindex int
   519  	RxID    uint32
   520  	TxID    uint32
   521  	raw     RawSockaddrCAN
   522  }
   523  
   524  func (sa *SockaddrCAN) sockaddr() (unsafe.Pointer, _Socklen, error) {
   525  	if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
   526  		return nil, 0, EINVAL
   527  	}
   528  	sa.raw.Family = AF_CAN
   529  	sa.raw.Ifindex = int32(sa.Ifindex)
   530  	rx := (*[4]byte)(unsafe.Pointer(&sa.RxID))
   531  	for i := 0; i < 4; i++ {
   532  		sa.raw.Addr[i] = rx[i]
   533  	}
   534  	tx := (*[4]byte)(unsafe.Pointer(&sa.TxID))
   535  	for i := 0; i < 4; i++ {
   536  		sa.raw.Addr[i+4] = tx[i]
   537  	}
   538  	return unsafe.Pointer(&sa.raw), SizeofSockaddrCAN, nil
   539  }
   540  
   541  // SockaddrALG implements the Sockaddr interface for AF_ALG type sockets.
   542  // SockaddrALG enables userspace access to the Linux kernel's cryptography
   543  // subsystem. The Type and Name fields specify which type of hash or cipher
   544  // should be used with a given socket.
   545  //
   546  // To create a file descriptor that provides access to a hash or cipher, both
   547  // Bind and Accept must be used. Once the setup process is complete, input
   548  // data can be written to the socket, processed by the kernel, and then read
   549  // back as hash output or ciphertext.
   550  //
   551  // Here is an example of using an AF_ALG socket with SHA1 hashing.
   552  // The initial socket setup process is as follows:
   553  //
   554  //      // Open a socket to perform SHA1 hashing.
   555  //      fd, _ := unix.Socket(unix.AF_ALG, unix.SOCK_SEQPACKET, 0)
   556  //      addr := &unix.SockaddrALG{Type: "hash", Name: "sha1"}
   557  //      unix.Bind(fd, addr)
   558  //      // Note: unix.Accept does not work at this time; must invoke accept()
   559  //      // manually using unix.Syscall.
   560  //      hashfd, _, _ := unix.Syscall(unix.SYS_ACCEPT, uintptr(fd), 0, 0)
   561  //
   562  // Once a file descriptor has been returned from Accept, it may be used to
   563  // perform SHA1 hashing. The descriptor is not safe for concurrent use, but
   564  // may be re-used repeatedly with subsequent Write and Read operations.
   565  //
   566  // When hashing a small byte slice or string, a single Write and Read may
   567  // be used:
   568  //
   569  //      // Assume hashfd is already configured using the setup process.
   570  //      hash := os.NewFile(hashfd, "sha1")
   571  //      // Hash an input string and read the results. Each Write discards
   572  //      // previous hash state. Read always reads the current state.
   573  //      b := make([]byte, 20)
   574  //      for i := 0; i < 2; i++ {
   575  //          io.WriteString(hash, "Hello, world.")
   576  //          hash.Read(b)
   577  //          fmt.Println(hex.EncodeToString(b))
   578  //      }
   579  //      // Output:
   580  //      // 2ae01472317d1935a84797ec1983ae243fc6aa28
   581  //      // 2ae01472317d1935a84797ec1983ae243fc6aa28
   582  //
   583  // For hashing larger byte slices, or byte streams such as those read from
   584  // a file or socket, use Sendto with MSG_MORE to instruct the kernel to update
   585  // the hash digest instead of creating a new one for a given chunk and finalizing it.
   586  //
   587  //      // Assume hashfd and addr are already configured using the setup process.
   588  //      hash := os.NewFile(hashfd, "sha1")
   589  //      // Hash the contents of a file.
   590  //      f, _ := os.Open("/tmp/linux-4.10-rc7.tar.xz")
   591  //      b := make([]byte, 4096)
   592  //      for {
   593  //          n, err := f.Read(b)
   594  //          if err == io.EOF {
   595  //              break
   596  //          }
   597  //          unix.Sendto(hashfd, b[:n], unix.MSG_MORE, addr)
   598  //      }
   599  //      hash.Read(b)
   600  //      fmt.Println(hex.EncodeToString(b))
   601  //      // Output: 85cdcad0c06eef66f805ecce353bec9accbeecc5
   602  //
   603  // For more information, see: http://www.chronox.de/crypto-API/crypto/userspace-if.html.
   604  type SockaddrALG struct {
   605  	Type    string
   606  	Name    string
   607  	Feature uint32
   608  	Mask    uint32
   609  	raw     RawSockaddrALG
   610  }
   611  
   612  func (sa *SockaddrALG) sockaddr() (unsafe.Pointer, _Socklen, error) {
   613  	// Leave room for NUL byte terminator.
   614  	if len(sa.Type) > 13 {
   615  		return nil, 0, EINVAL
   616  	}
   617  	if len(sa.Name) > 63 {
   618  		return nil, 0, EINVAL
   619  	}
   620  
   621  	sa.raw.Family = AF_ALG
   622  	sa.raw.Feat = sa.Feature
   623  	sa.raw.Mask = sa.Mask
   624  
   625  	typ, err := ByteSliceFromString(sa.Type)
   626  	if err != nil {
   627  		return nil, 0, err
   628  	}
   629  	name, err := ByteSliceFromString(sa.Name)
   630  	if err != nil {
   631  		return nil, 0, err
   632  	}
   633  
   634  	copy(sa.raw.Type[:], typ)
   635  	copy(sa.raw.Name[:], name)
   636  
   637  	return unsafe.Pointer(&sa.raw), SizeofSockaddrALG, nil
   638  }
   639  
   640  // SockaddrVM implements the Sockaddr interface for AF_VSOCK type sockets.
   641  // SockaddrVM provides access to Linux VM sockets: a mechanism that enables
   642  // bidirectional communication between a hypervisor and its guest virtual
   643  // machines.
   644  type SockaddrVM struct {
   645  	// CID and Port specify a context ID and port address for a VM socket.
   646  	// Guests have a unique CID, and hosts may have a well-known CID of:
   647  	//  - VMADDR_CID_HYPERVISOR: refers to the hypervisor process.
   648  	//  - VMADDR_CID_HOST: refers to other processes on the host.
   649  	CID  uint32
   650  	Port uint32
   651  	raw  RawSockaddrVM
   652  }
   653  
   654  func (sa *SockaddrVM) sockaddr() (unsafe.Pointer, _Socklen, error) {
   655  	sa.raw.Family = AF_VSOCK
   656  	sa.raw.Port = sa.Port
   657  	sa.raw.Cid = sa.CID
   658  
   659  	return unsafe.Pointer(&sa.raw), SizeofSockaddrVM, nil
   660  }
   661  
   662  func anyToSockaddr(rsa *RawSockaddrAny) (Sockaddr, error) {
   663  	switch rsa.Addr.Family {
   664  	case AF_NETLINK:
   665  		pp := (*RawSockaddrNetlink)(unsafe.Pointer(rsa))
   666  		sa := new(SockaddrNetlink)
   667  		sa.Family = pp.Family
   668  		sa.Pad = pp.Pad
   669  		sa.Pid = pp.Pid
   670  		sa.Groups = pp.Groups
   671  		return sa, nil
   672  
   673  	case AF_PACKET:
   674  		pp := (*RawSockaddrLinklayer)(unsafe.Pointer(rsa))
   675  		sa := new(SockaddrLinklayer)
   676  		sa.Protocol = pp.Protocol
   677  		sa.Ifindex = int(pp.Ifindex)
   678  		sa.Hatype = pp.Hatype
   679  		sa.Pkttype = pp.Pkttype
   680  		sa.Halen = pp.Halen
   681  		for i := 0; i < len(sa.Addr); i++ {
   682  			sa.Addr[i] = pp.Addr[i]
   683  		}
   684  		return sa, nil
   685  
   686  	case AF_UNIX:
   687  		pp := (*RawSockaddrUnix)(unsafe.Pointer(rsa))
   688  		sa := new(SockaddrUnix)
   689  		if pp.Path[0] == 0 {
   690  			// "Abstract" Unix domain socket.
   691  			// Rewrite leading NUL as @ for textual display.
   692  			// (This is the standard convention.)
   693  			// Not friendly to overwrite in place,
   694  			// but the callers below don't care.
   695  			pp.Path[0] = '@'
   696  		}
   697  
   698  		// Assume path ends at NUL.
   699  		// This is not technically the Linux semantics for
   700  		// abstract Unix domain sockets--they are supposed
   701  		// to be uninterpreted fixed-size binary blobs--but
   702  		// everyone uses this convention.
   703  		n := 0
   704  		for n < len(pp.Path) && pp.Path[n] != 0 {
   705  			n++
   706  		}
   707  		bytes := (*[10000]byte)(unsafe.Pointer(&pp.Path[0]))[0:n]
   708  		sa.Name = string(bytes)
   709  		return sa, nil
   710  
   711  	case AF_INET:
   712  		pp := (*RawSockaddrInet4)(unsafe.Pointer(rsa))
   713  		sa := new(SockaddrInet4)
   714  		p := (*[2]byte)(unsafe.Pointer(&pp.Port))
   715  		sa.Port = int(p[0])<<8 + int(p[1])
   716  		for i := 0; i < len(sa.Addr); i++ {
   717  			sa.Addr[i] = pp.Addr[i]
   718  		}
   719  		return sa, nil
   720  
   721  	case AF_INET6:
   722  		pp := (*RawSockaddrInet6)(unsafe.Pointer(rsa))
   723  		sa := new(SockaddrInet6)
   724  		p := (*[2]byte)(unsafe.Pointer(&pp.Port))
   725  		sa.Port = int(p[0])<<8 + int(p[1])
   726  		sa.ZoneId = pp.Scope_id
   727  		for i := 0; i < len(sa.Addr); i++ {
   728  			sa.Addr[i] = pp.Addr[i]
   729  		}
   730  		return sa, nil
   731  
   732  	case AF_VSOCK:
   733  		pp := (*RawSockaddrVM)(unsafe.Pointer(rsa))
   734  		sa := &SockaddrVM{
   735  			CID:  pp.Cid,
   736  			Port: pp.Port,
   737  		}
   738  		return sa, nil
   739  	}
   740  	return nil, EAFNOSUPPORT
   741  }
   742  
   743  func Accept(fd int) (nfd int, sa Sockaddr, err error) {
   744  	var rsa RawSockaddrAny
   745  	var len _Socklen = SizeofSockaddrAny
   746  	nfd, err = accept(fd, &rsa, &len)
   747  	if err != nil {
   748  		return
   749  	}
   750  	sa, err = anyToSockaddr(&rsa)
   751  	if err != nil {
   752  		Close(nfd)
   753  		nfd = 0
   754  	}
   755  	return
   756  }
   757  
   758  func Accept4(fd int, flags int) (nfd int, sa Sockaddr, err error) {
   759  	var rsa RawSockaddrAny
   760  	var len _Socklen = SizeofSockaddrAny
   761  	nfd, err = accept4(fd, &rsa, &len, flags)
   762  	if err != nil {
   763  		return
   764  	}
   765  	if len > SizeofSockaddrAny {
   766  		panic("RawSockaddrAny too small")
   767  	}
   768  	sa, err = anyToSockaddr(&rsa)
   769  	if err != nil {
   770  		Close(nfd)
   771  		nfd = 0
   772  	}
   773  	return
   774  }
   775  
   776  func Getsockname(fd int) (sa Sockaddr, err error) {
   777  	var rsa RawSockaddrAny
   778  	var len _Socklen = SizeofSockaddrAny
   779  	if err = getsockname(fd, &rsa, &len); err != nil {
   780  		return
   781  	}
   782  	return anyToSockaddr(&rsa)
   783  }
   784  
   785  func GetsockoptInet4Addr(fd, level, opt int) (value [4]byte, err error) {
   786  	vallen := _Socklen(4)
   787  	err = getsockopt(fd, level, opt, unsafe.Pointer(&value[0]), &vallen)
   788  	return value, err
   789  }
   790  
   791  func GetsockoptIPMreq(fd, level, opt int) (*IPMreq, error) {
   792  	var value IPMreq
   793  	vallen := _Socklen(SizeofIPMreq)
   794  	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
   795  	return &value, err
   796  }
   797  
   798  func GetsockoptIPMreqn(fd, level, opt int) (*IPMreqn, error) {
   799  	var value IPMreqn
   800  	vallen := _Socklen(SizeofIPMreqn)
   801  	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
   802  	return &value, err
   803  }
   804  
   805  func GetsockoptIPv6Mreq(fd, level, opt int) (*IPv6Mreq, error) {
   806  	var value IPv6Mreq
   807  	vallen := _Socklen(SizeofIPv6Mreq)
   808  	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
   809  	return &value, err
   810  }
   811  
   812  func GetsockoptIPv6MTUInfo(fd, level, opt int) (*IPv6MTUInfo, error) {
   813  	var value IPv6MTUInfo
   814  	vallen := _Socklen(SizeofIPv6MTUInfo)
   815  	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
   816  	return &value, err
   817  }
   818  
   819  func GetsockoptICMPv6Filter(fd, level, opt int) (*ICMPv6Filter, error) {
   820  	var value ICMPv6Filter
   821  	vallen := _Socklen(SizeofICMPv6Filter)
   822  	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
   823  	return &value, err
   824  }
   825  
   826  func GetsockoptUcred(fd, level, opt int) (*Ucred, error) {
   827  	var value Ucred
   828  	vallen := _Socklen(SizeofUcred)
   829  	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
   830  	return &value, err
   831  }
   832  
   833  func GetsockoptTCPInfo(fd, level, opt int) (*TCPInfo, error) {
   834  	var value TCPInfo
   835  	vallen := _Socklen(SizeofTCPInfo)
   836  	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
   837  	return &value, err
   838  }
   839  
   840  // GetsockoptString returns the string value of the socket option opt for the
   841  // socket associated with fd at the given socket level.
   842  func GetsockoptString(fd, level, opt int) (string, error) {
   843  	buf := make([]byte, 256)
   844  	vallen := _Socklen(len(buf))
   845  	err := getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen)
   846  	if err != nil {
   847  		if err == ERANGE {
   848  			buf = make([]byte, vallen)
   849  			err = getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen)
   850  		}
   851  		if err != nil {
   852  			return "", err
   853  		}
   854  	}
   855  	return string(buf[:vallen-1]), nil
   856  }
   857  
   858  func SetsockoptIPMreqn(fd, level, opt int, mreq *IPMreqn) (err error) {
   859  	return setsockopt(fd, level, opt, unsafe.Pointer(mreq), unsafe.Sizeof(*mreq))
   860  }
   861  
   862  // Keyctl Commands (http://man7.org/linux/man-pages/man2/keyctl.2.html)
   863  
   864  // KeyctlInt calls keyctl commands in which each argument is an int.
   865  // These commands are KEYCTL_REVOKE, KEYCTL_CHOWN, KEYCTL_CLEAR, KEYCTL_LINK,
   866  // KEYCTL_UNLINK, KEYCTL_NEGATE, KEYCTL_SET_REQKEY_KEYRING, KEYCTL_SET_TIMEOUT,
   867  // KEYCTL_ASSUME_AUTHORITY, KEYCTL_SESSION_TO_PARENT, KEYCTL_REJECT,
   868  // KEYCTL_INVALIDATE, and KEYCTL_GET_PERSISTENT.
   869  //sys	KeyctlInt(cmd int, arg2 int, arg3 int, arg4 int, arg5 int) (ret int, err error) = SYS_KEYCTL
   870  
   871  // KeyctlBuffer calls keyctl commands in which the third and fourth
   872  // arguments are a buffer and its length, respectively.
   873  // These commands are KEYCTL_UPDATE, KEYCTL_READ, and KEYCTL_INSTANTIATE.
   874  //sys	KeyctlBuffer(cmd int, arg2 int, buf []byte, arg5 int) (ret int, err error) = SYS_KEYCTL
   875  
   876  // KeyctlString calls keyctl commands which return a string.
   877  // These commands are KEYCTL_DESCRIBE and KEYCTL_GET_SECURITY.
   878  func KeyctlString(cmd int, id int) (string, error) {
   879  	// We must loop as the string data may change in between the syscalls.
   880  	// We could allocate a large buffer here to reduce the chance that the
   881  	// syscall needs to be called twice; however, this is unnecessary as
   882  	// the performance loss is negligible.
   883  	var buffer []byte
   884  	for {
   885  		// Try to fill the buffer with data
   886  		length, err := KeyctlBuffer(cmd, id, buffer, 0)
   887  		if err != nil {
   888  			return "", err
   889  		}
   890  
   891  		// Check if the data was written
   892  		if length <= len(buffer) {
   893  			// Exclude the null terminator
   894  			return string(buffer[:length-1]), nil
   895  		}
   896  
   897  		// Make a bigger buffer if needed
   898  		buffer = make([]byte, length)
   899  	}
   900  }
   901  
   902  // Keyctl commands with special signatures.
   903  
   904  // KeyctlGetKeyringID implements the KEYCTL_GET_KEYRING_ID command.
   905  // See the full documentation at:
   906  // http://man7.org/linux/man-pages/man3/keyctl_get_keyring_ID.3.html
   907  func KeyctlGetKeyringID(id int, create bool) (ringid int, err error) {
   908  	createInt := 0
   909  	if create {
   910  		createInt = 1
   911  	}
   912  	return KeyctlInt(KEYCTL_GET_KEYRING_ID, id, createInt, 0, 0)
   913  }
   914  
   915  // KeyctlSetperm implements the KEYCTL_SETPERM command. The perm value is the
   916  // key handle permission mask as described in the "keyctl setperm" section of
   917  // http://man7.org/linux/man-pages/man1/keyctl.1.html.
   918  // See the full documentation at:
   919  // http://man7.org/linux/man-pages/man3/keyctl_setperm.3.html
   920  func KeyctlSetperm(id int, perm uint32) error {
   921  	_, err := KeyctlInt(KEYCTL_SETPERM, id, int(perm), 0, 0)
   922  	return err
   923  }
   924  
   925  //sys	keyctlJoin(cmd int, arg2 string) (ret int, err error) = SYS_KEYCTL
   926  
   927  // KeyctlJoinSessionKeyring implements the KEYCTL_JOIN_SESSION_KEYRING command.
   928  // See the full documentation at:
   929  // http://man7.org/linux/man-pages/man3/keyctl_join_session_keyring.3.html
   930  func KeyctlJoinSessionKeyring(name string) (ringid int, err error) {
   931  	return keyctlJoin(KEYCTL_JOIN_SESSION_KEYRING, name)
   932  }
   933  
   934  //sys	keyctlSearch(cmd int, arg2 int, arg3 string, arg4 string, arg5 int) (ret int, err error) = SYS_KEYCTL
   935  
   936  // KeyctlSearch implements the KEYCTL_SEARCH command.
   937  // See the full documentation at:
   938  // http://man7.org/linux/man-pages/man3/keyctl_search.3.html
   939  func KeyctlSearch(ringid int, keyType, description string, destRingid int) (id int, err error) {
   940  	return keyctlSearch(KEYCTL_SEARCH, ringid, keyType, description, destRingid)
   941  }
   942  
   943  //sys	keyctlIOV(cmd int, arg2 int, payload []Iovec, arg5 int) (err error) = SYS_KEYCTL
   944  
   945  // KeyctlInstantiateIOV implements the KEYCTL_INSTANTIATE_IOV command. This
   946  // command is similar to KEYCTL_INSTANTIATE, except that the payload is a slice
   947  // of Iovec (each of which represents a buffer) instead of a single buffer.
   948  // See the full documentation at:
   949  // http://man7.org/linux/man-pages/man3/keyctl_instantiate_iov.3.html
   950  func KeyctlInstantiateIOV(id int, payload []Iovec, ringid int) error {
   951  	return keyctlIOV(KEYCTL_INSTANTIATE_IOV, id, payload, ringid)
   952  }
   953  
   954  //sys	keyctlDH(cmd int, arg2 *KeyctlDHParams, buf []byte) (ret int, err error) = SYS_KEYCTL
   955  
   956  // KeyctlDHCompute implements the KEYCTL_DH_COMPUTE command. This command
   957  // computes a Diffie-Hellman shared secret based on the provide params. The
   958  // secret is written to the provided buffer and the returned size is the number
   959  // of bytes written (returning an error if there is insufficient space in the
   960  // buffer). If a nil buffer is passed in, this function returns the minimum
   961  // buffer length needed to store the appropriate data. Note that this differs
   962  // from KEYCTL_READ's behavior which always returns the requested payload size.
   963  // See the full documentation at:
   964  // http://man7.org/linux/man-pages/man3/keyctl_dh_compute.3.html
   965  func KeyctlDHCompute(params *KeyctlDHParams, buffer []byte) (size int, err error) {
   966  	return keyctlDH(KEYCTL_DH_COMPUTE, params, buffer)
   967  }
   968  
   969  func Recvmsg(fd int, p, oob []byte, flags int) (n, oobn int, recvflags int, from Sockaddr, err error) {
   970  	var msg Msghdr
   971  	var rsa RawSockaddrAny
   972  	msg.Name = (*byte)(unsafe.Pointer(&rsa))
   973  	msg.Namelen = uint32(SizeofSockaddrAny)
   974  	var iov Iovec
   975  	if len(p) > 0 {
   976  		iov.Base = &p[0]
   977  		iov.SetLen(len(p))
   978  	}
   979  	var dummy byte
   980  	if len(oob) > 0 {
   981  		var sockType int
   982  		sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE)
   983  		if err != nil {
   984  			return
   985  		}
   986  		// receive at least one normal byte
   987  		if sockType != SOCK_DGRAM && len(p) == 0 {
   988  			iov.Base = &dummy
   989  			iov.SetLen(1)
   990  		}
   991  		msg.Control = &oob[0]
   992  		msg.SetControllen(len(oob))
   993  	}
   994  	msg.Iov = &iov
   995  	msg.Iovlen = 1
   996  	if n, err = recvmsg(fd, &msg, flags); err != nil {
   997  		return
   998  	}
   999  	oobn = int(msg.Controllen)
  1000  	recvflags = int(msg.Flags)
  1001  	// source address is only specified if the socket is unconnected
  1002  	if rsa.Addr.Family != AF_UNSPEC {
  1003  		from, err = anyToSockaddr(&rsa)
  1004  	}
  1005  	return
  1006  }
  1007  
  1008  func Sendmsg(fd int, p, oob []byte, to Sockaddr, flags int) (err error) {
  1009  	_, err = SendmsgN(fd, p, oob, to, flags)
  1010  	return
  1011  }
  1012  
  1013  func SendmsgN(fd int, p, oob []byte, to Sockaddr, flags int) (n int, err error) {
  1014  	var ptr unsafe.Pointer
  1015  	var salen _Socklen
  1016  	if to != nil {
  1017  		var err error
  1018  		ptr, salen, err = to.sockaddr()
  1019  		if err != nil {
  1020  			return 0, err
  1021  		}
  1022  	}
  1023  	var msg Msghdr
  1024  	msg.Name = (*byte)(ptr)
  1025  	msg.Namelen = uint32(salen)
  1026  	var iov Iovec
  1027  	if len(p) > 0 {
  1028  		iov.Base = &p[0]
  1029  		iov.SetLen(len(p))
  1030  	}
  1031  	var dummy byte
  1032  	if len(oob) > 0 {
  1033  		var sockType int
  1034  		sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE)
  1035  		if err != nil {
  1036  			return 0, err
  1037  		}
  1038  		// send at least one normal byte
  1039  		if sockType != SOCK_DGRAM && len(p) == 0 {
  1040  			iov.Base = &dummy
  1041  			iov.SetLen(1)
  1042  		}
  1043  		msg.Control = &oob[0]
  1044  		msg.SetControllen(len(oob))
  1045  	}
  1046  	msg.Iov = &iov
  1047  	msg.Iovlen = 1
  1048  	if n, err = sendmsg(fd, &msg, flags); err != nil {
  1049  		return 0, err
  1050  	}
  1051  	if len(oob) > 0 && len(p) == 0 {
  1052  		n = 0
  1053  	}
  1054  	return n, nil
  1055  }
  1056  
  1057  // BindToDevice binds the socket associated with fd to device.
  1058  func BindToDevice(fd int, device string) (err error) {
  1059  	return SetsockoptString(fd, SOL_SOCKET, SO_BINDTODEVICE, device)
  1060  }
  1061  
  1062  //sys	ptrace(request int, pid int, addr uintptr, data uintptr) (err error)
  1063  
  1064  func ptracePeek(req int, pid int, addr uintptr, out []byte) (count int, err error) {
  1065  	// The peek requests are machine-size oriented, so we wrap it
  1066  	// to retrieve arbitrary-length data.
  1067  
  1068  	// The ptrace syscall differs from glibc's ptrace.
  1069  	// Peeks returns the word in *data, not as the return value.
  1070  
  1071  	var buf [sizeofPtr]byte
  1072  
  1073  	// Leading edge. PEEKTEXT/PEEKDATA don't require aligned
  1074  	// access (PEEKUSER warns that it might), but if we don't
  1075  	// align our reads, we might straddle an unmapped page
  1076  	// boundary and not get the bytes leading up to the page
  1077  	// boundary.
  1078  	n := 0
  1079  	if addr%sizeofPtr != 0 {
  1080  		err = ptrace(req, pid, addr-addr%sizeofPtr, uintptr(unsafe.Pointer(&buf[0])))
  1081  		if err != nil {
  1082  			return 0, err
  1083  		}
  1084  		n += copy(out, buf[addr%sizeofPtr:])
  1085  		out = out[n:]
  1086  	}
  1087  
  1088  	// Remainder.
  1089  	for len(out) > 0 {
  1090  		// We use an internal buffer to guarantee alignment.
  1091  		// It's not documented if this is necessary, but we're paranoid.
  1092  		err = ptrace(req, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0])))
  1093  		if err != nil {
  1094  			return n, err
  1095  		}
  1096  		copied := copy(out, buf[0:])
  1097  		n += copied
  1098  		out = out[copied:]
  1099  	}
  1100  
  1101  	return n, nil
  1102  }
  1103  
  1104  func PtracePeekText(pid int, addr uintptr, out []byte) (count int, err error) {
  1105  	return ptracePeek(PTRACE_PEEKTEXT, pid, addr, out)
  1106  }
  1107  
  1108  func PtracePeekData(pid int, addr uintptr, out []byte) (count int, err error) {
  1109  	return ptracePeek(PTRACE_PEEKDATA, pid, addr, out)
  1110  }
  1111  
  1112  func PtracePeekUser(pid int, addr uintptr, out []byte) (count int, err error) {
  1113  	return ptracePeek(PTRACE_PEEKUSR, pid, addr, out)
  1114  }
  1115  
  1116  func ptracePoke(pokeReq int, peekReq int, pid int, addr uintptr, data []byte) (count int, err error) {
  1117  	// As for ptracePeek, we need to align our accesses to deal
  1118  	// with the possibility of straddling an invalid page.
  1119  
  1120  	// Leading edge.
  1121  	n := 0
  1122  	if addr%sizeofPtr != 0 {
  1123  		var buf [sizeofPtr]byte
  1124  		err = ptrace(peekReq, pid, addr-addr%sizeofPtr, uintptr(unsafe.Pointer(&buf[0])))
  1125  		if err != nil {
  1126  			return 0, err
  1127  		}
  1128  		n += copy(buf[addr%sizeofPtr:], data)
  1129  		word := *((*uintptr)(unsafe.Pointer(&buf[0])))
  1130  		err = ptrace(pokeReq, pid, addr-addr%sizeofPtr, word)
  1131  		if err != nil {
  1132  			return 0, err
  1133  		}
  1134  		data = data[n:]
  1135  	}
  1136  
  1137  	// Interior.
  1138  	for len(data) > sizeofPtr {
  1139  		word := *((*uintptr)(unsafe.Pointer(&data[0])))
  1140  		err = ptrace(pokeReq, pid, addr+uintptr(n), word)
  1141  		if err != nil {
  1142  			return n, err
  1143  		}
  1144  		n += sizeofPtr
  1145  		data = data[sizeofPtr:]
  1146  	}
  1147  
  1148  	// Trailing edge.
  1149  	if len(data) > 0 {
  1150  		var buf [sizeofPtr]byte
  1151  		err = ptrace(peekReq, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0])))
  1152  		if err != nil {
  1153  			return n, err
  1154  		}
  1155  		copy(buf[0:], data)
  1156  		word := *((*uintptr)(unsafe.Pointer(&buf[0])))
  1157  		err = ptrace(pokeReq, pid, addr+uintptr(n), word)
  1158  		if err != nil {
  1159  			return n, err
  1160  		}
  1161  		n += len(data)
  1162  	}
  1163  
  1164  	return n, nil
  1165  }
  1166  
  1167  func PtracePokeText(pid int, addr uintptr, data []byte) (count int, err error) {
  1168  	return ptracePoke(PTRACE_POKETEXT, PTRACE_PEEKTEXT, pid, addr, data)
  1169  }
  1170  
  1171  func PtracePokeData(pid int, addr uintptr, data []byte) (count int, err error) {
  1172  	return ptracePoke(PTRACE_POKEDATA, PTRACE_PEEKDATA, pid, addr, data)
  1173  }
  1174  
  1175  func PtracePokeUser(pid int, addr uintptr, data []byte) (count int, err error) {
  1176  	return ptracePoke(PTRACE_POKEUSR, PTRACE_PEEKUSR, pid, addr, data)
  1177  }
  1178  
  1179  func PtraceGetRegs(pid int, regsout *PtraceRegs) (err error) {
  1180  	return ptrace(PTRACE_GETREGS, pid, 0, uintptr(unsafe.Pointer(regsout)))
  1181  }
  1182  
  1183  func PtraceSetRegs(pid int, regs *PtraceRegs) (err error) {
  1184  	return ptrace(PTRACE_SETREGS, pid, 0, uintptr(unsafe.Pointer(regs)))
  1185  }
  1186  
  1187  func PtraceSetOptions(pid int, options int) (err error) {
  1188  	return ptrace(PTRACE_SETOPTIONS, pid, 0, uintptr(options))
  1189  }
  1190  
  1191  func PtraceGetEventMsg(pid int) (msg uint, err error) {
  1192  	var data _C_long
  1193  	err = ptrace(PTRACE_GETEVENTMSG, pid, 0, uintptr(unsafe.Pointer(&data)))
  1194  	msg = uint(data)
  1195  	return
  1196  }
  1197  
  1198  func PtraceCont(pid int, signal int) (err error) {
  1199  	return ptrace(PTRACE_CONT, pid, 0, uintptr(signal))
  1200  }
  1201  
  1202  func PtraceSyscall(pid int, signal int) (err error) {
  1203  	return ptrace(PTRACE_SYSCALL, pid, 0, uintptr(signal))
  1204  }
  1205  
  1206  func PtraceSingleStep(pid int) (err error) { return ptrace(PTRACE_SINGLESTEP, pid, 0, 0) }
  1207  
  1208  func PtraceAttach(pid int) (err error) { return ptrace(PTRACE_ATTACH, pid, 0, 0) }
  1209  
  1210  func PtraceDetach(pid int) (err error) { return ptrace(PTRACE_DETACH, pid, 0, 0) }
  1211  
  1212  //sys	reboot(magic1 uint, magic2 uint, cmd int, arg string) (err error)
  1213  
  1214  func Reboot(cmd int) (err error) {
  1215  	return reboot(LINUX_REBOOT_MAGIC1, LINUX_REBOOT_MAGIC2, cmd, "")
  1216  }
  1217  
  1218  func ReadDirent(fd int, buf []byte) (n int, err error) {
  1219  	return Getdents(fd, buf)
  1220  }
  1221  
  1222  //sys	mount(source string, target string, fstype string, flags uintptr, data *byte) (err error)
  1223  
  1224  func Mount(source string, target string, fstype string, flags uintptr, data string) (err error) {
  1225  	// Certain file systems get rather angry and EINVAL if you give
  1226  	// them an empty string of data, rather than NULL.
  1227  	if data == "" {
  1228  		return mount(source, target, fstype, flags, nil)
  1229  	}
  1230  	datap, err := BytePtrFromString(data)
  1231  	if err != nil {
  1232  		return err
  1233  	}
  1234  	return mount(source, target, fstype, flags, datap)
  1235  }
  1236  
  1237  // Sendto
  1238  // Recvfrom
  1239  // Socketpair
  1240  
  1241  /*
  1242   * Direct access
  1243   */
  1244  //sys	Acct(path string) (err error)
  1245  //sys	AddKey(keyType string, description string, payload []byte, ringid int) (id int, err error)
  1246  //sys	Adjtimex(buf *Timex) (state int, err error)
  1247  //sys	Chdir(path string) (err error)
  1248  //sys	Chroot(path string) (err error)
  1249  //sys	ClockGettime(clockid int32, time *Timespec) (err error)
  1250  //sys	Close(fd int) (err error)
  1251  //sys	CopyFileRange(rfd int, roff *int64, wfd int, woff *int64, len int, flags int) (n int, err error)
  1252  //sys	Dup(oldfd int) (fd int, err error)
  1253  //sys	Dup3(oldfd int, newfd int, flags int) (err error)
  1254  //sysnb	EpollCreate(size int) (fd int, err error)
  1255  //sysnb	EpollCreate1(flag int) (fd int, err error)
  1256  //sysnb	EpollCtl(epfd int, op int, fd int, event *EpollEvent) (err error)
  1257  //sys	Eventfd(initval uint, flags int) (fd int, err error) = SYS_EVENTFD2
  1258  //sys	Exit(code int) = SYS_EXIT_GROUP
  1259  //sys	Faccessat(dirfd int, path string, mode uint32, flags int) (err error)
  1260  //sys	Fallocate(fd int, mode uint32, off int64, len int64) (err error)
  1261  //sys	Fchdir(fd int) (err error)
  1262  //sys	Fchmod(fd int, mode uint32) (err error)
  1263  //sys	Fchownat(dirfd int, path string, uid int, gid int, flags int) (err error)
  1264  //sys	fcntl(fd int, cmd int, arg int) (val int, err error)
  1265  //sys	Fdatasync(fd int) (err error)
  1266  //sys	Flock(fd int, how int) (err error)
  1267  //sys	Fsync(fd int) (err error)
  1268  //sys	Getdents(fd int, buf []byte) (n int, err error) = SYS_GETDENTS64
  1269  //sysnb	Getpgid(pid int) (pgid int, err error)
  1270  
  1271  func Getpgrp() (pid int) {
  1272  	pid, _ = Getpgid(0)
  1273  	return
  1274  }
  1275  
  1276  //sysnb	Getpid() (pid int)
  1277  //sysnb	Getppid() (ppid int)
  1278  //sys	Getpriority(which int, who int) (prio int, err error)
  1279  //sys	Getrandom(buf []byte, flags int) (n int, err error)
  1280  //sysnb	Getrusage(who int, rusage *Rusage) (err error)
  1281  //sysnb	Getsid(pid int) (sid int, err error)
  1282  //sysnb	Gettid() (tid int)
  1283  //sys	Getxattr(path string, attr string, dest []byte) (sz int, err error)
  1284  //sys	InotifyAddWatch(fd int, pathname string, mask uint32) (watchdesc int, err error)
  1285  //sysnb	InotifyInit1(flags int) (fd int, err error)
  1286  //sysnb	InotifyRmWatch(fd int, watchdesc uint32) (success int, err error)
  1287  //sysnb	Kill(pid int, sig syscall.Signal) (err error)
  1288  //sys	Klogctl(typ int, buf []byte) (n int, err error) = SYS_SYSLOG
  1289  //sys	Lgetxattr(path string, attr string, dest []byte) (sz int, err error)
  1290  //sys	Listxattr(path string, dest []byte) (sz int, err error)
  1291  //sys	Llistxattr(path string, dest []byte) (sz int, err error)
  1292  //sys	Lremovexattr(path string, attr string) (err error)
  1293  //sys	Lsetxattr(path string, attr string, data []byte, flags int) (err error)
  1294  //sys	Mkdirat(dirfd int, path string, mode uint32) (err error)
  1295  //sys	Mknodat(dirfd int, path string, mode uint32, dev int) (err error)
  1296  //sys	Nanosleep(time *Timespec, leftover *Timespec) (err error)
  1297  //sys	PivotRoot(newroot string, putold string) (err error) = SYS_PIVOT_ROOT
  1298  //sysnb prlimit(pid int, resource int, newlimit *Rlimit, old *Rlimit) (err error) = SYS_PRLIMIT64
  1299  //sys   Prctl(option int, arg2 uintptr, arg3 uintptr, arg4 uintptr, arg5 uintptr) (err error)
  1300  //sys	Pselect(nfd int, r *FdSet, w *FdSet, e *FdSet, timeout *Timespec, sigmask *Sigset_t) (n int, err error) = SYS_PSELECT6
  1301  //sys	read(fd int, p []byte) (n int, err error)
  1302  //sys	Removexattr(path string, attr string) (err error)
  1303  //sys	Renameat(olddirfd int, oldpath string, newdirfd int, newpath string) (err error)
  1304  //sys	RequestKey(keyType string, description string, callback string, destRingid int) (id int, err error)
  1305  //sys	Setdomainname(p []byte) (err error)
  1306  //sys	Sethostname(p []byte) (err error)
  1307  //sysnb	Setpgid(pid int, pgid int) (err error)
  1308  //sysnb	Setsid() (pid int, err error)
  1309  //sysnb	Settimeofday(tv *Timeval) (err error)
  1310  //sys	Setns(fd int, nstype int) (err error)
  1311  
  1312  // issue 1435.
  1313  // On linux Setuid and Setgid only affects the current thread, not the process.
  1314  // This does not match what most callers expect so we must return an error
  1315  // here rather than letting the caller think that the call succeeded.
  1316  
  1317  func Setuid(uid int) (err error) {
  1318  	return EOPNOTSUPP
  1319  }
  1320  
  1321  func Setgid(uid int) (err error) {
  1322  	return EOPNOTSUPP
  1323  }
  1324  
  1325  //sys	Setpriority(which int, who int, prio int) (err error)
  1326  //sys	Setxattr(path string, attr string, data []byte, flags int) (err error)
  1327  //sys	Statx(dirfd int, path string, flags int, mask int, stat *Statx_t) (err error)
  1328  //sys	Sync()
  1329  //sys	Syncfs(fd int) (err error)
  1330  //sysnb	Sysinfo(info *Sysinfo_t) (err error)
  1331  //sys	Tee(rfd int, wfd int, len int, flags int) (n int64, err error)
  1332  //sysnb	Tgkill(tgid int, tid int, sig syscall.Signal) (err error)
  1333  //sysnb	Times(tms *Tms) (ticks uintptr, err error)
  1334  //sysnb	Umask(mask int) (oldmask int)
  1335  //sysnb	Uname(buf *Utsname) (err error)
  1336  //sys	Unmount(target string, flags int) (err error) = SYS_UMOUNT2
  1337  //sys	Unshare(flags int) (err error)
  1338  //sys	Ustat(dev int, ubuf *Ustat_t) (err error)
  1339  //sys	write(fd int, p []byte) (n int, err error)
  1340  //sys	exitThread(code int) (err error) = SYS_EXIT
  1341  //sys	readlen(fd int, p *byte, np int) (n int, err error) = SYS_READ
  1342  //sys	writelen(fd int, p *byte, np int) (n int, err error) = SYS_WRITE
  1343  
  1344  // mmap varies by architecture; see syscall_linux_*.go.
  1345  //sys	munmap(addr uintptr, length uintptr) (err error)
  1346  
  1347  var mapper = &mmapper{
  1348  	active: make(map[*byte][]byte),
  1349  	mmap:   mmap,
  1350  	munmap: munmap,
  1351  }
  1352  
  1353  func Mmap(fd int, offset int64, length int, prot int, flags int) (data []byte, err error) {
  1354  	return mapper.Mmap(fd, offset, length, prot, flags)
  1355  }
  1356  
  1357  func Munmap(b []byte) (err error) {
  1358  	return mapper.Munmap(b)
  1359  }
  1360  
  1361  //sys	Madvise(b []byte, advice int) (err error)
  1362  //sys	Mprotect(b []byte, prot int) (err error)
  1363  //sys	Mlock(b []byte) (err error)
  1364  //sys	Mlockall(flags int) (err error)
  1365  //sys	Msync(b []byte, flags int) (err error)
  1366  //sys	Munlock(b []byte) (err error)
  1367  //sys	Munlockall() (err error)
  1368  
  1369  // Vmsplice splices user pages from a slice of Iovecs into a pipe specified by fd,
  1370  // using the specified flags.
  1371  func Vmsplice(fd int, iovs []Iovec, flags int) (int, error) {
  1372  	n, _, errno := Syscall6(
  1373  		SYS_VMSPLICE,
  1374  		uintptr(fd),
  1375  		uintptr(unsafe.Pointer(&iovs[0])),
  1376  		uintptr(len(iovs)),
  1377  		uintptr(flags),
  1378  		0,
  1379  		0,
  1380  	)
  1381  	if errno != 0 {
  1382  		return 0, syscall.Errno(errno)
  1383  	}
  1384  
  1385  	return int(n), nil
  1386  }
  1387  
  1388  /*
  1389   * Unimplemented
  1390   */
  1391  // AfsSyscall
  1392  // Alarm
  1393  // ArchPrctl
  1394  // Brk
  1395  // Capget
  1396  // Capset
  1397  // ClockGetres
  1398  // ClockNanosleep
  1399  // ClockSettime
  1400  // Clone
  1401  // CreateModule
  1402  // DeleteModule
  1403  // EpollCtlOld
  1404  // EpollPwait
  1405  // EpollWaitOld
  1406  // Execve
  1407  // Fgetxattr
  1408  // Flistxattr
  1409  // Fork
  1410  // Fremovexattr
  1411  // Fsetxattr
  1412  // Futex
  1413  // GetKernelSyms
  1414  // GetMempolicy
  1415  // GetRobustList
  1416  // GetThreadArea
  1417  // Getitimer
  1418  // Getpmsg
  1419  // IoCancel
  1420  // IoDestroy
  1421  // IoGetevents
  1422  // IoSetup
  1423  // IoSubmit
  1424  // IoprioGet
  1425  // IoprioSet
  1426  // KexecLoad
  1427  // LookupDcookie
  1428  // Mbind
  1429  // MigratePages
  1430  // Mincore
  1431  // ModifyLdt
  1432  // Mount
  1433  // MovePages
  1434  // MqGetsetattr
  1435  // MqNotify
  1436  // MqOpen
  1437  // MqTimedreceive
  1438  // MqTimedsend
  1439  // MqUnlink
  1440  // Mremap
  1441  // Msgctl
  1442  // Msgget
  1443  // Msgrcv
  1444  // Msgsnd
  1445  // Nfsservctl
  1446  // Personality
  1447  // Pselect6
  1448  // Ptrace
  1449  // Putpmsg
  1450  // QueryModule
  1451  // Quotactl
  1452  // Readahead
  1453  // Readv
  1454  // RemapFilePages
  1455  // RestartSyscall
  1456  // RtSigaction
  1457  // RtSigpending
  1458  // RtSigprocmask
  1459  // RtSigqueueinfo
  1460  // RtSigreturn
  1461  // RtSigsuspend
  1462  // RtSigtimedwait
  1463  // SchedGetPriorityMax
  1464  // SchedGetPriorityMin
  1465  // SchedGetparam
  1466  // SchedGetscheduler
  1467  // SchedRrGetInterval
  1468  // SchedSetparam
  1469  // SchedYield
  1470  // Security
  1471  // Semctl
  1472  // Semget
  1473  // Semop
  1474  // Semtimedop
  1475  // SetMempolicy
  1476  // SetRobustList
  1477  // SetThreadArea
  1478  // SetTidAddress
  1479  // Shmat
  1480  // Shmctl
  1481  // Shmdt
  1482  // Shmget
  1483  // Sigaltstack
  1484  // Signalfd
  1485  // Swapoff
  1486  // Swapon
  1487  // Sysfs
  1488  // TimerCreate
  1489  // TimerDelete
  1490  // TimerGetoverrun
  1491  // TimerGettime
  1492  // TimerSettime
  1493  // Timerfd
  1494  // Tkill (obsolete)
  1495  // Tuxcall
  1496  // Umount2
  1497  // Uselib
  1498  // Utimensat
  1499  // Vfork
  1500  // Vhangup
  1501  // Vserver
  1502  // Waitid
  1503  // _Sysctl