github.com/aloncn/graphics-go@v0.0.1/src/go/types/expr.go (about)

     1  // Copyright 2012 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // This file implements typechecking of expressions.
     6  
     7  package types
     8  
     9  import (
    10  	"fmt"
    11  	"go/ast"
    12  	"go/constant"
    13  	"go/token"
    14  	"math"
    15  )
    16  
    17  /*
    18  Basic algorithm:
    19  
    20  Expressions are checked recursively, top down. Expression checker functions
    21  are generally of the form:
    22  
    23    func f(x *operand, e *ast.Expr, ...)
    24  
    25  where e is the expression to be checked, and x is the result of the check.
    26  The check performed by f may fail in which case x.mode == invalid, and
    27  related error messages will have been issued by f.
    28  
    29  If a hint argument is present, it is the composite literal element type
    30  of an outer composite literal; it is used to type-check composite literal
    31  elements that have no explicit type specification in the source
    32  (e.g.: []T{{...}, {...}}, the hint is the type T in this case).
    33  
    34  All expressions are checked via rawExpr, which dispatches according
    35  to expression kind. Upon returning, rawExpr is recording the types and
    36  constant values for all expressions that have an untyped type (those types
    37  may change on the way up in the expression tree). Usually these are constants,
    38  but the results of comparisons or non-constant shifts of untyped constants
    39  may also be untyped, but not constant.
    40  
    41  Untyped expressions may eventually become fully typed (i.e., not untyped),
    42  typically when the value is assigned to a variable, or is used otherwise.
    43  The updateExprType method is used to record this final type and update
    44  the recorded types: the type-checked expression tree is again traversed down,
    45  and the new type is propagated as needed. Untyped constant expression values
    46  that become fully typed must now be representable by the full type (constant
    47  sub-expression trees are left alone except for their roots). This mechanism
    48  ensures that a client sees the actual (run-time) type an untyped value would
    49  have. It also permits type-checking of lhs shift operands "as if the shift
    50  were not present": when updateExprType visits an untyped lhs shift operand
    51  and assigns it it's final type, that type must be an integer type, and a
    52  constant lhs must be representable as an integer.
    53  
    54  When an expression gets its final type, either on the way out from rawExpr,
    55  on the way down in updateExprType, or at the end of the type checker run,
    56  the type (and constant value, if any) is recorded via Info.Types, if present.
    57  */
    58  
    59  type opPredicates map[token.Token]func(Type) bool
    60  
    61  var unaryOpPredicates = opPredicates{
    62  	token.ADD: isNumeric,
    63  	token.SUB: isNumeric,
    64  	token.XOR: isInteger,
    65  	token.NOT: isBoolean,
    66  }
    67  
    68  func (check *Checker) op(m opPredicates, x *operand, op token.Token) bool {
    69  	if pred := m[op]; pred != nil {
    70  		if !pred(x.typ) {
    71  			check.invalidOp(x.pos(), "operator %s not defined for %s", op, x)
    72  			return false
    73  		}
    74  	} else {
    75  		check.invalidAST(x.pos(), "unknown operator %s", op)
    76  		return false
    77  	}
    78  	return true
    79  }
    80  
    81  // The unary expression e may be nil. It's passed in for better error messages only.
    82  func (check *Checker) unary(x *operand, e *ast.UnaryExpr, op token.Token) {
    83  	switch op {
    84  	case token.AND:
    85  		// spec: "As an exception to the addressability
    86  		// requirement x may also be a composite literal."
    87  		if _, ok := unparen(x.expr).(*ast.CompositeLit); !ok && x.mode != variable {
    88  			check.invalidOp(x.pos(), "cannot take address of %s", x)
    89  			x.mode = invalid
    90  			return
    91  		}
    92  		x.mode = value
    93  		x.typ = &Pointer{base: x.typ}
    94  		return
    95  
    96  	case token.ARROW:
    97  		typ, ok := x.typ.Underlying().(*Chan)
    98  		if !ok {
    99  			check.invalidOp(x.pos(), "cannot receive from non-channel %s", x)
   100  			x.mode = invalid
   101  			return
   102  		}
   103  		if typ.dir == SendOnly {
   104  			check.invalidOp(x.pos(), "cannot receive from send-only channel %s", x)
   105  			x.mode = invalid
   106  			return
   107  		}
   108  		x.mode = commaok
   109  		x.typ = typ.elem
   110  		check.hasCallOrRecv = true
   111  		return
   112  	}
   113  
   114  	if !check.op(unaryOpPredicates, x, op) {
   115  		x.mode = invalid
   116  		return
   117  	}
   118  
   119  	if x.mode == constant_ {
   120  		typ := x.typ.Underlying().(*Basic)
   121  		var prec uint
   122  		if isUnsigned(typ) {
   123  			prec = uint(check.conf.sizeof(typ) * 8)
   124  		}
   125  		x.val = constant.UnaryOp(op, x.val, prec)
   126  		// Typed constants must be representable in
   127  		// their type after each constant operation.
   128  		if isTyped(typ) {
   129  			if e != nil {
   130  				x.expr = e // for better error message
   131  			}
   132  			check.representable(x, typ)
   133  		}
   134  		return
   135  	}
   136  
   137  	x.mode = value
   138  	// x.typ remains unchanged
   139  }
   140  
   141  func isShift(op token.Token) bool {
   142  	return op == token.SHL || op == token.SHR
   143  }
   144  
   145  func isComparison(op token.Token) bool {
   146  	// Note: tokens are not ordered well to make this much easier
   147  	switch op {
   148  	case token.EQL, token.NEQ, token.LSS, token.LEQ, token.GTR, token.GEQ:
   149  		return true
   150  	}
   151  	return false
   152  }
   153  
   154  func fitsFloat32(x constant.Value) bool {
   155  	f32, _ := constant.Float32Val(x)
   156  	f := float64(f32)
   157  	return !math.IsInf(f, 0)
   158  }
   159  
   160  func roundFloat32(x constant.Value) constant.Value {
   161  	f32, _ := constant.Float32Val(x)
   162  	f := float64(f32)
   163  	if !math.IsInf(f, 0) {
   164  		return constant.MakeFloat64(f)
   165  	}
   166  	return nil
   167  }
   168  
   169  func fitsFloat64(x constant.Value) bool {
   170  	f, _ := constant.Float64Val(x)
   171  	return !math.IsInf(f, 0)
   172  }
   173  
   174  func roundFloat64(x constant.Value) constant.Value {
   175  	f, _ := constant.Float64Val(x)
   176  	if !math.IsInf(f, 0) {
   177  		return constant.MakeFloat64(f)
   178  	}
   179  	return nil
   180  }
   181  
   182  // representableConst reports whether x can be represented as
   183  // value of the given basic type and for the configuration
   184  // provided (only needed for int/uint sizes).
   185  //
   186  // If rounded != nil, *rounded is set to the rounded value of x for
   187  // representable floating-point and complex values, and to an Int
   188  // value for integer values; it is left alone otherwise.
   189  // It is ok to provide the addressof the first argument for rounded.
   190  func representableConst(x constant.Value, conf *Config, typ *Basic, rounded *constant.Value) bool {
   191  	if x.Kind() == constant.Unknown {
   192  		return true // avoid follow-up errors
   193  	}
   194  
   195  	switch {
   196  	case isInteger(typ):
   197  		x := constant.ToInt(x)
   198  		if x.Kind() != constant.Int {
   199  			return false
   200  		}
   201  		if rounded != nil {
   202  			*rounded = x
   203  		}
   204  		if x, ok := constant.Int64Val(x); ok {
   205  			switch typ.kind {
   206  			case Int:
   207  				var s = uint(conf.sizeof(typ)) * 8
   208  				return int64(-1)<<(s-1) <= x && x <= int64(1)<<(s-1)-1
   209  			case Int8:
   210  				const s = 8
   211  				return -1<<(s-1) <= x && x <= 1<<(s-1)-1
   212  			case Int16:
   213  				const s = 16
   214  				return -1<<(s-1) <= x && x <= 1<<(s-1)-1
   215  			case Int32:
   216  				const s = 32
   217  				return -1<<(s-1) <= x && x <= 1<<(s-1)-1
   218  			case Int64, UntypedInt:
   219  				return true
   220  			case Uint, Uintptr:
   221  				if s := uint(conf.sizeof(typ)) * 8; s < 64 {
   222  					return 0 <= x && x <= int64(1)<<s-1
   223  				}
   224  				return 0 <= x
   225  			case Uint8:
   226  				const s = 8
   227  				return 0 <= x && x <= 1<<s-1
   228  			case Uint16:
   229  				const s = 16
   230  				return 0 <= x && x <= 1<<s-1
   231  			case Uint32:
   232  				const s = 32
   233  				return 0 <= x && x <= 1<<s-1
   234  			case Uint64:
   235  				return 0 <= x
   236  			default:
   237  				unreachable()
   238  			}
   239  		}
   240  		// x does not fit into int64
   241  		switch n := constant.BitLen(x); typ.kind {
   242  		case Uint, Uintptr:
   243  			var s = uint(conf.sizeof(typ)) * 8
   244  			return constant.Sign(x) >= 0 && n <= int(s)
   245  		case Uint64:
   246  			return constant.Sign(x) >= 0 && n <= 64
   247  		case UntypedInt:
   248  			return true
   249  		}
   250  
   251  	case isFloat(typ):
   252  		x := constant.ToFloat(x)
   253  		if x.Kind() != constant.Float {
   254  			return false
   255  		}
   256  		switch typ.kind {
   257  		case Float32:
   258  			if rounded == nil {
   259  				return fitsFloat32(x)
   260  			}
   261  			r := roundFloat32(x)
   262  			if r != nil {
   263  				*rounded = r
   264  				return true
   265  			}
   266  		case Float64:
   267  			if rounded == nil {
   268  				return fitsFloat64(x)
   269  			}
   270  			r := roundFloat64(x)
   271  			if r != nil {
   272  				*rounded = r
   273  				return true
   274  			}
   275  		case UntypedFloat:
   276  			return true
   277  		default:
   278  			unreachable()
   279  		}
   280  
   281  	case isComplex(typ):
   282  		x := constant.ToComplex(x)
   283  		if x.Kind() != constant.Complex {
   284  			return false
   285  		}
   286  		switch typ.kind {
   287  		case Complex64:
   288  			if rounded == nil {
   289  				return fitsFloat32(constant.Real(x)) && fitsFloat32(constant.Imag(x))
   290  			}
   291  			re := roundFloat32(constant.Real(x))
   292  			im := roundFloat32(constant.Imag(x))
   293  			if re != nil && im != nil {
   294  				*rounded = constant.BinaryOp(re, token.ADD, constant.MakeImag(im))
   295  				return true
   296  			}
   297  		case Complex128:
   298  			if rounded == nil {
   299  				return fitsFloat64(constant.Real(x)) && fitsFloat64(constant.Imag(x))
   300  			}
   301  			re := roundFloat64(constant.Real(x))
   302  			im := roundFloat64(constant.Imag(x))
   303  			if re != nil && im != nil {
   304  				*rounded = constant.BinaryOp(re, token.ADD, constant.MakeImag(im))
   305  				return true
   306  			}
   307  		case UntypedComplex:
   308  			return true
   309  		default:
   310  			unreachable()
   311  		}
   312  
   313  	case isString(typ):
   314  		return x.Kind() == constant.String
   315  
   316  	case isBoolean(typ):
   317  		return x.Kind() == constant.Bool
   318  	}
   319  
   320  	return false
   321  }
   322  
   323  // representable checks that a constant operand is representable in the given basic type.
   324  func (check *Checker) representable(x *operand, typ *Basic) {
   325  	assert(x.mode == constant_)
   326  	if !representableConst(x.val, check.conf, typ, &x.val) {
   327  		var msg string
   328  		if isNumeric(x.typ) && isNumeric(typ) {
   329  			// numeric conversion : error msg
   330  			//
   331  			// integer -> integer : overflows
   332  			// integer -> float   : overflows (actually not possible)
   333  			// float   -> integer : truncated
   334  			// float   -> float   : overflows
   335  			//
   336  			if !isInteger(x.typ) && isInteger(typ) {
   337  				msg = "%s truncated to %s"
   338  			} else {
   339  				msg = "%s overflows %s"
   340  			}
   341  		} else {
   342  			msg = "cannot convert %s to %s"
   343  		}
   344  		check.errorf(x.pos(), msg, x, typ)
   345  		x.mode = invalid
   346  	}
   347  }
   348  
   349  // updateExprType updates the type of x to typ and invokes itself
   350  // recursively for the operands of x, depending on expression kind.
   351  // If typ is still an untyped and not the final type, updateExprType
   352  // only updates the recorded untyped type for x and possibly its
   353  // operands. Otherwise (i.e., typ is not an untyped type anymore,
   354  // or it is the final type for x), the type and value are recorded.
   355  // Also, if x is a constant, it must be representable as a value of typ,
   356  // and if x is the (formerly untyped) lhs operand of a non-constant
   357  // shift, it must be an integer value.
   358  //
   359  func (check *Checker) updateExprType(x ast.Expr, typ Type, final bool) {
   360  	old, found := check.untyped[x]
   361  	if !found {
   362  		return // nothing to do
   363  	}
   364  
   365  	// update operands of x if necessary
   366  	switch x := x.(type) {
   367  	case *ast.BadExpr,
   368  		*ast.FuncLit,
   369  		*ast.CompositeLit,
   370  		*ast.IndexExpr,
   371  		*ast.SliceExpr,
   372  		*ast.TypeAssertExpr,
   373  		*ast.StarExpr,
   374  		*ast.KeyValueExpr,
   375  		*ast.ArrayType,
   376  		*ast.StructType,
   377  		*ast.FuncType,
   378  		*ast.InterfaceType,
   379  		*ast.MapType,
   380  		*ast.ChanType:
   381  		// These expression are never untyped - nothing to do.
   382  		// The respective sub-expressions got their final types
   383  		// upon assignment or use.
   384  		if debug {
   385  			check.dump("%s: found old type(%s): %s (new: %s)", x.Pos(), x, old.typ, typ)
   386  			unreachable()
   387  		}
   388  		return
   389  
   390  	case *ast.CallExpr:
   391  		// Resulting in an untyped constant (e.g., built-in complex).
   392  		// The respective calls take care of calling updateExprType
   393  		// for the arguments if necessary.
   394  
   395  	case *ast.Ident, *ast.BasicLit, *ast.SelectorExpr:
   396  		// An identifier denoting a constant, a constant literal,
   397  		// or a qualified identifier (imported untyped constant).
   398  		// No operands to take care of.
   399  
   400  	case *ast.ParenExpr:
   401  		check.updateExprType(x.X, typ, final)
   402  
   403  	case *ast.UnaryExpr:
   404  		// If x is a constant, the operands were constants.
   405  		// They don't need to be updated since they never
   406  		// get "materialized" into a typed value; and they
   407  		// will be processed at the end of the type check.
   408  		if old.val != nil {
   409  			break
   410  		}
   411  		check.updateExprType(x.X, typ, final)
   412  
   413  	case *ast.BinaryExpr:
   414  		if old.val != nil {
   415  			break // see comment for unary expressions
   416  		}
   417  		if isComparison(x.Op) {
   418  			// The result type is independent of operand types
   419  			// and the operand types must have final types.
   420  		} else if isShift(x.Op) {
   421  			// The result type depends only on lhs operand.
   422  			// The rhs type was updated when checking the shift.
   423  			check.updateExprType(x.X, typ, final)
   424  		} else {
   425  			// The operand types match the result type.
   426  			check.updateExprType(x.X, typ, final)
   427  			check.updateExprType(x.Y, typ, final)
   428  		}
   429  
   430  	default:
   431  		unreachable()
   432  	}
   433  
   434  	// If the new type is not final and still untyped, just
   435  	// update the recorded type.
   436  	if !final && isUntyped(typ) {
   437  		old.typ = typ.Underlying().(*Basic)
   438  		check.untyped[x] = old
   439  		return
   440  	}
   441  
   442  	// Otherwise we have the final (typed or untyped type).
   443  	// Remove it from the map of yet untyped expressions.
   444  	delete(check.untyped, x)
   445  
   446  	// If x is the lhs of a shift, its final type must be integer.
   447  	// We already know from the shift check that it is representable
   448  	// as an integer if it is a constant.
   449  	if old.isLhs && !isInteger(typ) {
   450  		check.invalidOp(x.Pos(), "shifted operand %s (type %s) must be integer", x, typ)
   451  		return
   452  	}
   453  
   454  	// Everything's fine, record final type and value for x.
   455  	check.recordTypeAndValue(x, old.mode, typ, old.val)
   456  }
   457  
   458  // updateExprVal updates the value of x to val.
   459  func (check *Checker) updateExprVal(x ast.Expr, val constant.Value) {
   460  	if info, ok := check.untyped[x]; ok {
   461  		info.val = val
   462  		check.untyped[x] = info
   463  	}
   464  }
   465  
   466  // convertUntyped attempts to set the type of an untyped value to the target type.
   467  func (check *Checker) convertUntyped(x *operand, target Type) {
   468  	if x.mode == invalid || isTyped(x.typ) || target == Typ[Invalid] {
   469  		return
   470  	}
   471  
   472  	// TODO(gri) Sloppy code - clean up. This function is central
   473  	//           to assignment and expression checking.
   474  
   475  	if isUntyped(target) {
   476  		// both x and target are untyped
   477  		xkind := x.typ.(*Basic).kind
   478  		tkind := target.(*Basic).kind
   479  		if isNumeric(x.typ) && isNumeric(target) {
   480  			if xkind < tkind {
   481  				x.typ = target
   482  				check.updateExprType(x.expr, target, false)
   483  			}
   484  		} else if xkind != tkind {
   485  			goto Error
   486  		}
   487  		return
   488  	}
   489  
   490  	// typed target
   491  	switch t := target.Underlying().(type) {
   492  	case *Basic:
   493  		if x.mode == constant_ {
   494  			check.representable(x, t)
   495  			if x.mode == invalid {
   496  				return
   497  			}
   498  			// expression value may have been rounded - update if needed
   499  			check.updateExprVal(x.expr, x.val)
   500  		} else {
   501  			// Non-constant untyped values may appear as the
   502  			// result of comparisons (untyped bool), intermediate
   503  			// (delayed-checked) rhs operands of shifts, and as
   504  			// the value nil.
   505  			switch x.typ.(*Basic).kind {
   506  			case UntypedBool:
   507  				if !isBoolean(target) {
   508  					goto Error
   509  				}
   510  			case UntypedInt, UntypedRune, UntypedFloat, UntypedComplex:
   511  				if !isNumeric(target) {
   512  					goto Error
   513  				}
   514  			case UntypedString:
   515  				// Non-constant untyped string values are not
   516  				// permitted by the spec and should not occur.
   517  				unreachable()
   518  			case UntypedNil:
   519  				// Unsafe.Pointer is a basic type that includes nil.
   520  				if !hasNil(target) {
   521  					goto Error
   522  				}
   523  			default:
   524  				goto Error
   525  			}
   526  		}
   527  	case *Interface:
   528  		if !x.isNil() && !t.Empty() /* empty interfaces are ok */ {
   529  			goto Error
   530  		}
   531  		// Update operand types to the default type rather then
   532  		// the target (interface) type: values must have concrete
   533  		// dynamic types. If the value is nil, keep it untyped
   534  		// (this is important for tools such as go vet which need
   535  		// the dynamic type for argument checking of say, print
   536  		// functions)
   537  		if x.isNil() {
   538  			target = Typ[UntypedNil]
   539  		} else {
   540  			// cannot assign untyped values to non-empty interfaces
   541  			if !t.Empty() {
   542  				goto Error
   543  			}
   544  			target = defaultType(x.typ)
   545  		}
   546  	case *Pointer, *Signature, *Slice, *Map, *Chan:
   547  		if !x.isNil() {
   548  			goto Error
   549  		}
   550  		// keep nil untyped - see comment for interfaces, above
   551  		target = Typ[UntypedNil]
   552  	default:
   553  		goto Error
   554  	}
   555  
   556  	x.typ = target
   557  	check.updateExprType(x.expr, target, true) // UntypedNils are final
   558  	return
   559  
   560  Error:
   561  	check.errorf(x.pos(), "cannot convert %s to %s", x, target)
   562  	x.mode = invalid
   563  }
   564  
   565  func (check *Checker) comparison(x, y *operand, op token.Token) {
   566  	// spec: "In any comparison, the first operand must be assignable
   567  	// to the type of the second operand, or vice versa."
   568  	err := ""
   569  	if x.assignableTo(check.conf, y.typ, nil) || y.assignableTo(check.conf, x.typ, nil) {
   570  		defined := false
   571  		switch op {
   572  		case token.EQL, token.NEQ:
   573  			// spec: "The equality operators == and != apply to operands that are comparable."
   574  			defined = Comparable(x.typ) || x.isNil() && hasNil(y.typ) || y.isNil() && hasNil(x.typ)
   575  		case token.LSS, token.LEQ, token.GTR, token.GEQ:
   576  			// spec: The ordering operators <, <=, >, and >= apply to operands that are ordered."
   577  			defined = isOrdered(x.typ)
   578  		default:
   579  			unreachable()
   580  		}
   581  		if !defined {
   582  			typ := x.typ
   583  			if x.isNil() {
   584  				typ = y.typ
   585  			}
   586  			err = check.sprintf("operator %s not defined for %s", op, typ)
   587  		}
   588  	} else {
   589  		err = check.sprintf("mismatched types %s and %s", x.typ, y.typ)
   590  	}
   591  
   592  	if err != "" {
   593  		check.errorf(x.pos(), "cannot compare %s %s %s (%s)", x.expr, op, y.expr, err)
   594  		x.mode = invalid
   595  		return
   596  	}
   597  
   598  	if x.mode == constant_ && y.mode == constant_ {
   599  		x.val = constant.MakeBool(constant.Compare(x.val, op, y.val))
   600  		// The operands are never materialized; no need to update
   601  		// their types.
   602  	} else {
   603  		x.mode = value
   604  		// The operands have now their final types, which at run-
   605  		// time will be materialized. Update the expression trees.
   606  		// If the current types are untyped, the materialized type
   607  		// is the respective default type.
   608  		check.updateExprType(x.expr, defaultType(x.typ), true)
   609  		check.updateExprType(y.expr, defaultType(y.typ), true)
   610  	}
   611  
   612  	// spec: "Comparison operators compare two operands and yield
   613  	//        an untyped boolean value."
   614  	x.typ = Typ[UntypedBool]
   615  }
   616  
   617  func (check *Checker) shift(x, y *operand, e *ast.BinaryExpr, op token.Token) {
   618  	untypedx := isUntyped(x.typ)
   619  
   620  	var xval constant.Value
   621  	if x.mode == constant_ {
   622  		xval = constant.ToInt(x.val)
   623  	}
   624  
   625  	if isInteger(x.typ) || untypedx && xval != nil && xval.Kind() == constant.Int {
   626  		// The lhs is of integer type or an untyped constant representable
   627  		// as an integer. Nothing to do.
   628  	} else {
   629  		// shift has no chance
   630  		check.invalidOp(x.pos(), "shifted operand %s must be integer", x)
   631  		x.mode = invalid
   632  		return
   633  	}
   634  
   635  	// spec: "The right operand in a shift expression must have unsigned
   636  	// integer type or be an untyped constant that can be converted to
   637  	// unsigned integer type."
   638  	switch {
   639  	case isUnsigned(y.typ):
   640  		// nothing to do
   641  	case isUntyped(y.typ):
   642  		check.convertUntyped(y, Typ[UntypedInt])
   643  		if y.mode == invalid {
   644  			x.mode = invalid
   645  			return
   646  		}
   647  	default:
   648  		check.invalidOp(y.pos(), "shift count %s must be unsigned integer", y)
   649  		x.mode = invalid
   650  		return
   651  	}
   652  
   653  	if x.mode == constant_ {
   654  		if y.mode == constant_ {
   655  			// rhs must be an integer value
   656  			yval := constant.ToInt(y.val)
   657  			if yval.Kind() != constant.Int {
   658  				check.invalidOp(y.pos(), "shift count %s must be unsigned integer", y)
   659  				x.mode = invalid
   660  				return
   661  			}
   662  			// rhs must be within reasonable bounds
   663  			const stupidShift = 1023 - 1 + 52 // so we can express smallestFloat64
   664  			s, ok := constant.Uint64Val(yval)
   665  			if !ok || s > stupidShift {
   666  				check.invalidOp(y.pos(), "stupid shift count %s", y)
   667  				x.mode = invalid
   668  				return
   669  			}
   670  			// The lhs is representable as an integer but may not be an integer
   671  			// (e.g., 2.0, an untyped float) - this can only happen for untyped
   672  			// non-integer numeric constants. Correct the type so that the shift
   673  			// result is of integer type.
   674  			if !isInteger(x.typ) {
   675  				x.typ = Typ[UntypedInt]
   676  			}
   677  			// x is a constant so xval != nil and it must be of Int kind.
   678  			x.val = constant.Shift(xval, op, uint(s))
   679  			// Typed constants must be representable in
   680  			// their type after each constant operation.
   681  			if isTyped(x.typ) {
   682  				if e != nil {
   683  					x.expr = e // for better error message
   684  				}
   685  				check.representable(x, x.typ.Underlying().(*Basic))
   686  			}
   687  			return
   688  		}
   689  
   690  		// non-constant shift with constant lhs
   691  		if untypedx {
   692  			// spec: "If the left operand of a non-constant shift
   693  			// expression is an untyped constant, the type of the
   694  			// constant is what it would be if the shift expression
   695  			// were replaced by its left operand alone.".
   696  			//
   697  			// Delay operand checking until we know the final type
   698  			// by marking the lhs expression as lhs shift operand.
   699  			//
   700  			// Usually (in correct programs), the lhs expression
   701  			// is in the untyped map. However, it is possible to
   702  			// create incorrect programs where the same expression
   703  			// is evaluated twice (via a declaration cycle) such
   704  			// that the lhs expression type is determined in the
   705  			// first round and thus deleted from the map, and then
   706  			// not found in the second round (double insertion of
   707  			// the same expr node still just leads to one entry for
   708  			// that node, and it can only be deleted once).
   709  			// Be cautious and check for presence of entry.
   710  			// Example: var e, f = int(1<<""[f]) // issue 11347
   711  			if info, found := check.untyped[x.expr]; found {
   712  				info.isLhs = true
   713  				check.untyped[x.expr] = info
   714  			}
   715  			// keep x's type
   716  			x.mode = value
   717  			return
   718  		}
   719  	}
   720  
   721  	// constant rhs must be >= 0
   722  	if y.mode == constant_ && constant.Sign(y.val) < 0 {
   723  		check.invalidOp(y.pos(), "shift count %s must not be negative", y)
   724  	}
   725  
   726  	// non-constant shift - lhs must be an integer
   727  	if !isInteger(x.typ) {
   728  		check.invalidOp(x.pos(), "shifted operand %s must be integer", x)
   729  		x.mode = invalid
   730  		return
   731  	}
   732  
   733  	x.mode = value
   734  }
   735  
   736  var binaryOpPredicates = opPredicates{
   737  	token.ADD: func(typ Type) bool { return isNumeric(typ) || isString(typ) },
   738  	token.SUB: isNumeric,
   739  	token.MUL: isNumeric,
   740  	token.QUO: isNumeric,
   741  	token.REM: isInteger,
   742  
   743  	token.AND:     isInteger,
   744  	token.OR:      isInteger,
   745  	token.XOR:     isInteger,
   746  	token.AND_NOT: isInteger,
   747  
   748  	token.LAND: isBoolean,
   749  	token.LOR:  isBoolean,
   750  }
   751  
   752  // The binary expression e may be nil. It's passed in for better error messages only.
   753  func (check *Checker) binary(x *operand, e *ast.BinaryExpr, lhs, rhs ast.Expr, op token.Token) {
   754  	var y operand
   755  
   756  	check.expr(x, lhs)
   757  	check.expr(&y, rhs)
   758  
   759  	if x.mode == invalid {
   760  		return
   761  	}
   762  	if y.mode == invalid {
   763  		x.mode = invalid
   764  		x.expr = y.expr
   765  		return
   766  	}
   767  
   768  	if isShift(op) {
   769  		check.shift(x, &y, e, op)
   770  		return
   771  	}
   772  
   773  	check.convertUntyped(x, y.typ)
   774  	if x.mode == invalid {
   775  		return
   776  	}
   777  	check.convertUntyped(&y, x.typ)
   778  	if y.mode == invalid {
   779  		x.mode = invalid
   780  		return
   781  	}
   782  
   783  	if isComparison(op) {
   784  		check.comparison(x, &y, op)
   785  		return
   786  	}
   787  
   788  	if !Identical(x.typ, y.typ) {
   789  		// only report an error if we have valid types
   790  		// (otherwise we had an error reported elsewhere already)
   791  		if x.typ != Typ[Invalid] && y.typ != Typ[Invalid] {
   792  			check.invalidOp(x.pos(), "mismatched types %s and %s", x.typ, y.typ)
   793  		}
   794  		x.mode = invalid
   795  		return
   796  	}
   797  
   798  	if !check.op(binaryOpPredicates, x, op) {
   799  		x.mode = invalid
   800  		return
   801  	}
   802  
   803  	if (op == token.QUO || op == token.REM) && (x.mode == constant_ || isInteger(x.typ)) && y.mode == constant_ && constant.Sign(y.val) == 0 {
   804  		check.invalidOp(y.pos(), "division by zero")
   805  		x.mode = invalid
   806  		return
   807  	}
   808  
   809  	if x.mode == constant_ && y.mode == constant_ {
   810  		xval := x.val
   811  		yval := y.val
   812  		typ := x.typ.Underlying().(*Basic)
   813  		// force integer division of integer operands
   814  		if op == token.QUO && isInteger(typ) {
   815  			op = token.QUO_ASSIGN
   816  		}
   817  		x.val = constant.BinaryOp(xval, op, yval)
   818  		// Typed constants must be representable in
   819  		// their type after each constant operation.
   820  		if isTyped(typ) {
   821  			if e != nil {
   822  				x.expr = e // for better error message
   823  			}
   824  			check.representable(x, typ)
   825  		}
   826  		return
   827  	}
   828  
   829  	x.mode = value
   830  	// x.typ is unchanged
   831  }
   832  
   833  // index checks an index expression for validity.
   834  // If max >= 0, it is the upper bound for index.
   835  // If index is valid and the result i >= 0, then i is the constant value of index.
   836  func (check *Checker) index(index ast.Expr, max int64) (i int64, valid bool) {
   837  	var x operand
   838  	check.expr(&x, index)
   839  	if x.mode == invalid {
   840  		return
   841  	}
   842  
   843  	// an untyped constant must be representable as Int
   844  	check.convertUntyped(&x, Typ[Int])
   845  	if x.mode == invalid {
   846  		return
   847  	}
   848  
   849  	// the index must be of integer type
   850  	if !isInteger(x.typ) {
   851  		check.invalidArg(x.pos(), "index %s must be integer", &x)
   852  		return
   853  	}
   854  
   855  	// a constant index i must be in bounds
   856  	if x.mode == constant_ {
   857  		if constant.Sign(x.val) < 0 {
   858  			check.invalidArg(x.pos(), "index %s must not be negative", &x)
   859  			return
   860  		}
   861  		i, valid = constant.Int64Val(constant.ToInt(x.val))
   862  		if !valid || max >= 0 && i >= max {
   863  			check.errorf(x.pos(), "index %s is out of bounds", &x)
   864  			return i, false
   865  		}
   866  		// 0 <= i [ && i < max ]
   867  		return i, true
   868  	}
   869  
   870  	return -1, true
   871  }
   872  
   873  // indexElts checks the elements (elts) of an array or slice composite literal
   874  // against the literal's element type (typ), and the element indices against
   875  // the literal length if known (length >= 0). It returns the length of the
   876  // literal (maximum index value + 1).
   877  //
   878  func (check *Checker) indexedElts(elts []ast.Expr, typ Type, length int64) int64 {
   879  	visited := make(map[int64]bool, len(elts))
   880  	var index, max int64
   881  	for _, e := range elts {
   882  		// determine and check index
   883  		validIndex := false
   884  		eval := e
   885  		if kv, _ := e.(*ast.KeyValueExpr); kv != nil {
   886  			if i, ok := check.index(kv.Key, length); ok {
   887  				if i >= 0 {
   888  					index = i
   889  					validIndex = true
   890  				} else {
   891  					check.errorf(e.Pos(), "index %s must be integer constant", kv.Key)
   892  				}
   893  			}
   894  			eval = kv.Value
   895  		} else if length >= 0 && index >= length {
   896  			check.errorf(e.Pos(), "index %d is out of bounds (>= %d)", index, length)
   897  		} else {
   898  			validIndex = true
   899  		}
   900  
   901  		// if we have a valid index, check for duplicate entries
   902  		if validIndex {
   903  			if visited[index] {
   904  				check.errorf(e.Pos(), "duplicate index %d in array or slice literal", index)
   905  			}
   906  			visited[index] = true
   907  		}
   908  		index++
   909  		if index > max {
   910  			max = index
   911  		}
   912  
   913  		// check element against composite literal element type
   914  		var x operand
   915  		check.exprWithHint(&x, eval, typ)
   916  		check.assignment(&x, typ, "array or slice literal")
   917  	}
   918  	return max
   919  }
   920  
   921  // exprKind describes the kind of an expression; the kind
   922  // determines if an expression is valid in 'statement context'.
   923  type exprKind int
   924  
   925  const (
   926  	conversion exprKind = iota
   927  	expression
   928  	statement
   929  )
   930  
   931  // rawExpr typechecks expression e and initializes x with the expression
   932  // value or type. If an error occurred, x.mode is set to invalid.
   933  // If hint != nil, it is the type of a composite literal element.
   934  //
   935  func (check *Checker) rawExpr(x *operand, e ast.Expr, hint Type) exprKind {
   936  	if trace {
   937  		check.trace(e.Pos(), "%s", e)
   938  		check.indent++
   939  		defer func() {
   940  			check.indent--
   941  			check.trace(e.Pos(), "=> %s", x)
   942  		}()
   943  	}
   944  
   945  	kind := check.exprInternal(x, e, hint)
   946  
   947  	// convert x into a user-friendly set of values
   948  	// TODO(gri) this code can be simplified
   949  	var typ Type
   950  	var val constant.Value
   951  	switch x.mode {
   952  	case invalid:
   953  		typ = Typ[Invalid]
   954  	case novalue:
   955  		typ = (*Tuple)(nil)
   956  	case constant_:
   957  		typ = x.typ
   958  		val = x.val
   959  	default:
   960  		typ = x.typ
   961  	}
   962  	assert(x.expr != nil && typ != nil)
   963  
   964  	if isUntyped(typ) {
   965  		// delay type and value recording until we know the type
   966  		// or until the end of type checking
   967  		check.rememberUntyped(x.expr, false, x.mode, typ.(*Basic), val)
   968  	} else {
   969  		check.recordTypeAndValue(e, x.mode, typ, val)
   970  	}
   971  
   972  	return kind
   973  }
   974  
   975  // exprInternal contains the core of type checking of expressions.
   976  // Must only be called by rawExpr.
   977  //
   978  func (check *Checker) exprInternal(x *operand, e ast.Expr, hint Type) exprKind {
   979  	// make sure x has a valid state in case of bailout
   980  	// (was issue 5770)
   981  	x.mode = invalid
   982  	x.typ = Typ[Invalid]
   983  
   984  	switch e := e.(type) {
   985  	case *ast.BadExpr:
   986  		goto Error // error was reported before
   987  
   988  	case *ast.Ident:
   989  		check.ident(x, e, nil, nil)
   990  
   991  	case *ast.Ellipsis:
   992  		// ellipses are handled explicitly where they are legal
   993  		// (array composite literals and parameter lists)
   994  		check.error(e.Pos(), "invalid use of '...'")
   995  		goto Error
   996  
   997  	case *ast.BasicLit:
   998  		x.setConst(e.Kind, e.Value)
   999  		if x.mode == invalid {
  1000  			check.invalidAST(e.Pos(), "invalid literal %v", e.Value)
  1001  			goto Error
  1002  		}
  1003  
  1004  	case *ast.FuncLit:
  1005  		if sig, ok := check.typ(e.Type).(*Signature); ok {
  1006  			// Anonymous functions are considered part of the
  1007  			// init expression/func declaration which contains
  1008  			// them: use existing package-level declaration info.
  1009  			check.funcBody(check.decl, "", sig, e.Body)
  1010  			x.mode = value
  1011  			x.typ = sig
  1012  		} else {
  1013  			check.invalidAST(e.Pos(), "invalid function literal %s", e)
  1014  			goto Error
  1015  		}
  1016  
  1017  	case *ast.CompositeLit:
  1018  		typ := hint
  1019  		openArray := false
  1020  		if e.Type != nil {
  1021  			// [...]T array types may only appear with composite literals.
  1022  			// Check for them here so we don't have to handle ... in general.
  1023  			typ = nil
  1024  			if atyp, _ := e.Type.(*ast.ArrayType); atyp != nil && atyp.Len != nil {
  1025  				if ellip, _ := atyp.Len.(*ast.Ellipsis); ellip != nil && ellip.Elt == nil {
  1026  					// We have an "open" [...]T array type.
  1027  					// Create a new ArrayType with unknown length (-1)
  1028  					// and finish setting it up after analyzing the literal.
  1029  					typ = &Array{len: -1, elem: check.typ(atyp.Elt)}
  1030  					openArray = true
  1031  				}
  1032  			}
  1033  			if typ == nil {
  1034  				typ = check.typ(e.Type)
  1035  			}
  1036  		}
  1037  		if typ == nil {
  1038  			// TODO(gri) provide better error messages depending on context
  1039  			check.error(e.Pos(), "missing type in composite literal")
  1040  			goto Error
  1041  		}
  1042  
  1043  		switch typ, _ := deref(typ); utyp := typ.Underlying().(type) {
  1044  		case *Struct:
  1045  			if len(e.Elts) == 0 {
  1046  				break
  1047  			}
  1048  			fields := utyp.fields
  1049  			if _, ok := e.Elts[0].(*ast.KeyValueExpr); ok {
  1050  				// all elements must have keys
  1051  				visited := make([]bool, len(fields))
  1052  				for _, e := range e.Elts {
  1053  					kv, _ := e.(*ast.KeyValueExpr)
  1054  					if kv == nil {
  1055  						check.error(e.Pos(), "mixture of field:value and value elements in struct literal")
  1056  						continue
  1057  					}
  1058  					key, _ := kv.Key.(*ast.Ident)
  1059  					if key == nil {
  1060  						check.errorf(kv.Pos(), "invalid field name %s in struct literal", kv.Key)
  1061  						continue
  1062  					}
  1063  					i := fieldIndex(utyp.fields, check.pkg, key.Name)
  1064  					if i < 0 {
  1065  						check.errorf(kv.Pos(), "unknown field %s in struct literal", key.Name)
  1066  						continue
  1067  					}
  1068  					fld := fields[i]
  1069  					check.recordUse(key, fld)
  1070  					// 0 <= i < len(fields)
  1071  					if visited[i] {
  1072  						check.errorf(kv.Pos(), "duplicate field name %s in struct literal", key.Name)
  1073  						continue
  1074  					}
  1075  					visited[i] = true
  1076  					check.expr(x, kv.Value)
  1077  					etyp := fld.typ
  1078  					check.assignment(x, etyp, "struct literal")
  1079  				}
  1080  			} else {
  1081  				// no element must have a key
  1082  				for i, e := range e.Elts {
  1083  					if kv, _ := e.(*ast.KeyValueExpr); kv != nil {
  1084  						check.error(kv.Pos(), "mixture of field:value and value elements in struct literal")
  1085  						continue
  1086  					}
  1087  					check.expr(x, e)
  1088  					if i >= len(fields) {
  1089  						check.error(x.pos(), "too many values in struct literal")
  1090  						break // cannot continue
  1091  					}
  1092  					// i < len(fields)
  1093  					fld := fields[i]
  1094  					if !fld.Exported() && fld.pkg != check.pkg {
  1095  						check.errorf(x.pos(), "implicit assignment to unexported field %s in %s literal", fld.name, typ)
  1096  						continue
  1097  					}
  1098  					etyp := fld.typ
  1099  					check.assignment(x, etyp, "struct literal")
  1100  				}
  1101  				if len(e.Elts) < len(fields) {
  1102  					check.error(e.Rbrace, "too few values in struct literal")
  1103  					// ok to continue
  1104  				}
  1105  			}
  1106  
  1107  		case *Array:
  1108  			n := check.indexedElts(e.Elts, utyp.elem, utyp.len)
  1109  			// if we have an "open" [...]T array, set the length now that we know it
  1110  			if openArray {
  1111  				utyp.len = n
  1112  			}
  1113  
  1114  		case *Slice:
  1115  			check.indexedElts(e.Elts, utyp.elem, -1)
  1116  
  1117  		case *Map:
  1118  			visited := make(map[interface{}][]Type, len(e.Elts))
  1119  			for _, e := range e.Elts {
  1120  				kv, _ := e.(*ast.KeyValueExpr)
  1121  				if kv == nil {
  1122  					check.error(e.Pos(), "missing key in map literal")
  1123  					continue
  1124  				}
  1125  				check.exprWithHint(x, kv.Key, utyp.key)
  1126  				check.assignment(x, utyp.key, "map literal")
  1127  				if x.mode == invalid {
  1128  					continue
  1129  				}
  1130  				if x.mode == constant_ {
  1131  					duplicate := false
  1132  					// if the key is of interface type, the type is also significant when checking for duplicates
  1133  					if _, ok := utyp.key.Underlying().(*Interface); ok {
  1134  						for _, vtyp := range visited[x.val] {
  1135  							if Identical(vtyp, x.typ) {
  1136  								duplicate = true
  1137  								break
  1138  							}
  1139  						}
  1140  						visited[x.val] = append(visited[x.val], x.typ)
  1141  					} else {
  1142  						_, duplicate = visited[x.val]
  1143  						visited[x.val] = nil
  1144  					}
  1145  					if duplicate {
  1146  						check.errorf(x.pos(), "duplicate key %s in map literal", x.val)
  1147  						continue
  1148  					}
  1149  				}
  1150  				check.exprWithHint(x, kv.Value, utyp.elem)
  1151  				check.assignment(x, utyp.elem, "map literal")
  1152  			}
  1153  
  1154  		default:
  1155  			// if utyp is invalid, an error was reported before
  1156  			if utyp != Typ[Invalid] {
  1157  				check.errorf(e.Pos(), "invalid composite literal type %s", typ)
  1158  				goto Error
  1159  			}
  1160  		}
  1161  
  1162  		x.mode = value
  1163  		x.typ = typ
  1164  
  1165  	case *ast.ParenExpr:
  1166  		kind := check.rawExpr(x, e.X, nil)
  1167  		x.expr = e
  1168  		return kind
  1169  
  1170  	case *ast.SelectorExpr:
  1171  		check.selector(x, e)
  1172  
  1173  	case *ast.IndexExpr:
  1174  		check.expr(x, e.X)
  1175  		if x.mode == invalid {
  1176  			goto Error
  1177  		}
  1178  
  1179  		valid := false
  1180  		length := int64(-1) // valid if >= 0
  1181  		switch typ := x.typ.Underlying().(type) {
  1182  		case *Basic:
  1183  			if isString(typ) {
  1184  				valid = true
  1185  				if x.mode == constant_ {
  1186  					length = int64(len(constant.StringVal(x.val)))
  1187  				}
  1188  				// an indexed string always yields a byte value
  1189  				// (not a constant) even if the string and the
  1190  				// index are constant
  1191  				x.mode = value
  1192  				x.typ = universeByte // use 'byte' name
  1193  			}
  1194  
  1195  		case *Array:
  1196  			valid = true
  1197  			length = typ.len
  1198  			if x.mode != variable {
  1199  				x.mode = value
  1200  			}
  1201  			x.typ = typ.elem
  1202  
  1203  		case *Pointer:
  1204  			if typ, _ := typ.base.Underlying().(*Array); typ != nil {
  1205  				valid = true
  1206  				length = typ.len
  1207  				x.mode = variable
  1208  				x.typ = typ.elem
  1209  			}
  1210  
  1211  		case *Slice:
  1212  			valid = true
  1213  			x.mode = variable
  1214  			x.typ = typ.elem
  1215  
  1216  		case *Map:
  1217  			var key operand
  1218  			check.expr(&key, e.Index)
  1219  			check.assignment(&key, typ.key, "map index")
  1220  			if x.mode == invalid {
  1221  				goto Error
  1222  			}
  1223  			x.mode = mapindex
  1224  			x.typ = typ.elem
  1225  			x.expr = e
  1226  			return expression
  1227  		}
  1228  
  1229  		if !valid {
  1230  			check.invalidOp(x.pos(), "cannot index %s", x)
  1231  			goto Error
  1232  		}
  1233  
  1234  		if e.Index == nil {
  1235  			check.invalidAST(e.Pos(), "missing index for %s", x)
  1236  			goto Error
  1237  		}
  1238  
  1239  		check.index(e.Index, length)
  1240  		// ok to continue
  1241  
  1242  	case *ast.SliceExpr:
  1243  		check.expr(x, e.X)
  1244  		if x.mode == invalid {
  1245  			goto Error
  1246  		}
  1247  
  1248  		valid := false
  1249  		length := int64(-1) // valid if >= 0
  1250  		switch typ := x.typ.Underlying().(type) {
  1251  		case *Basic:
  1252  			if isString(typ) {
  1253  				if e.Slice3 {
  1254  					check.invalidOp(x.pos(), "3-index slice of string")
  1255  					goto Error
  1256  				}
  1257  				valid = true
  1258  				if x.mode == constant_ {
  1259  					length = int64(len(constant.StringVal(x.val)))
  1260  				}
  1261  				// spec: "For untyped string operands the result
  1262  				// is a non-constant value of type string."
  1263  				if typ.kind == UntypedString {
  1264  					x.typ = Typ[String]
  1265  				}
  1266  			}
  1267  
  1268  		case *Array:
  1269  			valid = true
  1270  			length = typ.len
  1271  			if x.mode != variable {
  1272  				check.invalidOp(x.pos(), "cannot slice %s (value not addressable)", x)
  1273  				goto Error
  1274  			}
  1275  			x.typ = &Slice{elem: typ.elem}
  1276  
  1277  		case *Pointer:
  1278  			if typ, _ := typ.base.Underlying().(*Array); typ != nil {
  1279  				valid = true
  1280  				length = typ.len
  1281  				x.typ = &Slice{elem: typ.elem}
  1282  			}
  1283  
  1284  		case *Slice:
  1285  			valid = true
  1286  			// x.typ doesn't change
  1287  		}
  1288  
  1289  		if !valid {
  1290  			check.invalidOp(x.pos(), "cannot slice %s", x)
  1291  			goto Error
  1292  		}
  1293  
  1294  		x.mode = value
  1295  
  1296  		// spec: "Only the first index may be omitted; it defaults to 0."
  1297  		if e.Slice3 && (e.High == nil || e.Max == nil) {
  1298  			check.error(e.Rbrack, "2nd and 3rd index required in 3-index slice")
  1299  			goto Error
  1300  		}
  1301  
  1302  		// check indices
  1303  		var ind [3]int64
  1304  		for i, expr := range []ast.Expr{e.Low, e.High, e.Max} {
  1305  			x := int64(-1)
  1306  			switch {
  1307  			case expr != nil:
  1308  				// The "capacity" is only known statically for strings, arrays,
  1309  				// and pointers to arrays, and it is the same as the length for
  1310  				// those types.
  1311  				max := int64(-1)
  1312  				if length >= 0 {
  1313  					max = length + 1
  1314  				}
  1315  				if t, ok := check.index(expr, max); ok && t >= 0 {
  1316  					x = t
  1317  				}
  1318  			case i == 0:
  1319  				// default is 0 for the first index
  1320  				x = 0
  1321  			case length >= 0:
  1322  				// default is length (== capacity) otherwise
  1323  				x = length
  1324  			}
  1325  			ind[i] = x
  1326  		}
  1327  
  1328  		// constant indices must be in range
  1329  		// (check.index already checks that existing indices >= 0)
  1330  	L:
  1331  		for i, x := range ind[:len(ind)-1] {
  1332  			if x > 0 {
  1333  				for _, y := range ind[i+1:] {
  1334  					if y >= 0 && x > y {
  1335  						check.errorf(e.Rbrack, "invalid slice indices: %d > %d", x, y)
  1336  						break L // only report one error, ok to continue
  1337  					}
  1338  				}
  1339  			}
  1340  		}
  1341  
  1342  	case *ast.TypeAssertExpr:
  1343  		check.expr(x, e.X)
  1344  		if x.mode == invalid {
  1345  			goto Error
  1346  		}
  1347  		xtyp, _ := x.typ.Underlying().(*Interface)
  1348  		if xtyp == nil {
  1349  			check.invalidOp(x.pos(), "%s is not an interface", x)
  1350  			goto Error
  1351  		}
  1352  		// x.(type) expressions are handled explicitly in type switches
  1353  		if e.Type == nil {
  1354  			check.invalidAST(e.Pos(), "use of .(type) outside type switch")
  1355  			goto Error
  1356  		}
  1357  		T := check.typ(e.Type)
  1358  		if T == Typ[Invalid] {
  1359  			goto Error
  1360  		}
  1361  		check.typeAssertion(x.pos(), x, xtyp, T)
  1362  		x.mode = commaok
  1363  		x.typ = T
  1364  
  1365  	case *ast.CallExpr:
  1366  		return check.call(x, e)
  1367  
  1368  	case *ast.StarExpr:
  1369  		check.exprOrType(x, e.X)
  1370  		switch x.mode {
  1371  		case invalid:
  1372  			goto Error
  1373  		case typexpr:
  1374  			x.typ = &Pointer{base: x.typ}
  1375  		default:
  1376  			if typ, ok := x.typ.Underlying().(*Pointer); ok {
  1377  				x.mode = variable
  1378  				x.typ = typ.base
  1379  			} else {
  1380  				check.invalidOp(x.pos(), "cannot indirect %s", x)
  1381  				goto Error
  1382  			}
  1383  		}
  1384  
  1385  	case *ast.UnaryExpr:
  1386  		check.expr(x, e.X)
  1387  		if x.mode == invalid {
  1388  			goto Error
  1389  		}
  1390  		check.unary(x, e, e.Op)
  1391  		if x.mode == invalid {
  1392  			goto Error
  1393  		}
  1394  		if e.Op == token.ARROW {
  1395  			x.expr = e
  1396  			return statement // receive operations may appear in statement context
  1397  		}
  1398  
  1399  	case *ast.BinaryExpr:
  1400  		check.binary(x, e, e.X, e.Y, e.Op)
  1401  		if x.mode == invalid {
  1402  			goto Error
  1403  		}
  1404  
  1405  	case *ast.KeyValueExpr:
  1406  		// key:value expressions are handled in composite literals
  1407  		check.invalidAST(e.Pos(), "no key:value expected")
  1408  		goto Error
  1409  
  1410  	case *ast.ArrayType, *ast.StructType, *ast.FuncType,
  1411  		*ast.InterfaceType, *ast.MapType, *ast.ChanType:
  1412  		x.mode = typexpr
  1413  		x.typ = check.typ(e)
  1414  		// Note: rawExpr (caller of exprInternal) will call check.recordTypeAndValue
  1415  		// even though check.typ has already called it. This is fine as both
  1416  		// times the same expression and type are recorded. It is also not a
  1417  		// performance issue because we only reach here for composite literal
  1418  		// types, which are comparatively rare.
  1419  
  1420  	default:
  1421  		panic(fmt.Sprintf("%s: unknown expression type %T", check.fset.Position(e.Pos()), e))
  1422  	}
  1423  
  1424  	// everything went well
  1425  	x.expr = e
  1426  	return expression
  1427  
  1428  Error:
  1429  	x.mode = invalid
  1430  	x.expr = e
  1431  	return statement // avoid follow-up errors
  1432  }
  1433  
  1434  // typeAssertion checks that x.(T) is legal; xtyp must be the type of x.
  1435  func (check *Checker) typeAssertion(pos token.Pos, x *operand, xtyp *Interface, T Type) {
  1436  	method, wrongType := assertableTo(xtyp, T)
  1437  	if method == nil {
  1438  		return
  1439  	}
  1440  
  1441  	var msg string
  1442  	if wrongType {
  1443  		msg = "wrong type for method"
  1444  	} else {
  1445  		msg = "missing method"
  1446  	}
  1447  	check.errorf(pos, "%s cannot have dynamic type %s (%s %s)", x, T, msg, method.name)
  1448  }
  1449  
  1450  func (check *Checker) singleValue(x *operand) {
  1451  	if x.mode == value {
  1452  		// tuple types are never named - no need for underlying type below
  1453  		if t, ok := x.typ.(*Tuple); ok {
  1454  			assert(t.Len() != 1)
  1455  			check.errorf(x.pos(), "%d-valued %s where single value is expected", t.Len(), x)
  1456  			x.mode = invalid
  1457  		}
  1458  	}
  1459  }
  1460  
  1461  // expr typechecks expression e and initializes x with the expression value.
  1462  // The result must be a single value.
  1463  // If an error occurred, x.mode is set to invalid.
  1464  //
  1465  func (check *Checker) expr(x *operand, e ast.Expr) {
  1466  	check.multiExpr(x, e)
  1467  	check.singleValue(x)
  1468  }
  1469  
  1470  // multiExpr is like expr but the result may be a multi-value.
  1471  func (check *Checker) multiExpr(x *operand, e ast.Expr) {
  1472  	check.rawExpr(x, e, nil)
  1473  	var msg string
  1474  	switch x.mode {
  1475  	default:
  1476  		return
  1477  	case novalue:
  1478  		msg = "%s used as value"
  1479  	case builtin:
  1480  		msg = "%s must be called"
  1481  	case typexpr:
  1482  		msg = "%s is not an expression"
  1483  	}
  1484  	check.errorf(x.pos(), msg, x)
  1485  	x.mode = invalid
  1486  }
  1487  
  1488  // exprWithHint typechecks expression e and initializes x with the expression value;
  1489  // hint is the type of a composite literal element.
  1490  // If an error occurred, x.mode is set to invalid.
  1491  //
  1492  func (check *Checker) exprWithHint(x *operand, e ast.Expr, hint Type) {
  1493  	assert(hint != nil)
  1494  	check.rawExpr(x, e, hint)
  1495  	check.singleValue(x)
  1496  	var msg string
  1497  	switch x.mode {
  1498  	default:
  1499  		return
  1500  	case novalue:
  1501  		msg = "%s used as value"
  1502  	case builtin:
  1503  		msg = "%s must be called"
  1504  	case typexpr:
  1505  		msg = "%s is not an expression"
  1506  	}
  1507  	check.errorf(x.pos(), msg, x)
  1508  	x.mode = invalid
  1509  }
  1510  
  1511  // exprOrType typechecks expression or type e and initializes x with the expression value or type.
  1512  // If an error occurred, x.mode is set to invalid.
  1513  //
  1514  func (check *Checker) exprOrType(x *operand, e ast.Expr) {
  1515  	check.rawExpr(x, e, nil)
  1516  	check.singleValue(x)
  1517  	if x.mode == novalue {
  1518  		check.errorf(x.pos(), "%s used as value or type", x)
  1519  		x.mode = invalid
  1520  	}
  1521  }