github.com/aloncn/graphics-go@v0.0.1/src/go/types/lookup.go (about)

     1  // Copyright 2013 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // This file implements various field and method lookup functions.
     6  
     7  package types
     8  
     9  // LookupFieldOrMethod looks up a field or method with given package and name
    10  // in T and returns the corresponding *Var or *Func, an index sequence, and a
    11  // bool indicating if there were any pointer indirections on the path to the
    12  // field or method. If addressable is set, T is the type of an addressable
    13  // variable (only matters for method lookups).
    14  //
    15  // The last index entry is the field or method index in the (possibly embedded)
    16  // type where the entry was found, either:
    17  //
    18  //	1) the list of declared methods of a named type; or
    19  //	2) the list of all methods (method set) of an interface type; or
    20  //	3) the list of fields of a struct type.
    21  //
    22  // The earlier index entries are the indices of the anonymous struct fields
    23  // traversed to get to the found entry, starting at depth 0.
    24  //
    25  // If no entry is found, a nil object is returned. In this case, the returned
    26  // index and indirect values have the following meaning:
    27  //
    28  //	- If index != nil, the index sequence points to an ambiguous entry
    29  //	(the same name appeared more than once at the same embedding level).
    30  //
    31  //	- If indirect is set, a method with a pointer receiver type was found
    32  //      but there was no pointer on the path from the actual receiver type to
    33  //	the method's formal receiver base type, nor was the receiver addressable.
    34  //
    35  func LookupFieldOrMethod(T Type, addressable bool, pkg *Package, name string) (obj Object, index []int, indirect bool) {
    36  	// Methods cannot be associated to a named pointer type
    37  	// (spec: "The type denoted by T is called the receiver base type;
    38  	// it must not be a pointer or interface type and it must be declared
    39  	// in the same package as the method.").
    40  	// Thus, if we have a named pointer type, proceed with the underlying
    41  	// pointer type but discard the result if it is a method since we would
    42  	// not have found it for T (see also issue 8590).
    43  	if t, _ := T.(*Named); t != nil {
    44  		if p, _ := t.underlying.(*Pointer); p != nil {
    45  			obj, index, indirect = lookupFieldOrMethod(p, false, pkg, name)
    46  			if _, ok := obj.(*Func); ok {
    47  				return nil, nil, false
    48  			}
    49  			return
    50  		}
    51  	}
    52  
    53  	return lookupFieldOrMethod(T, addressable, pkg, name)
    54  }
    55  
    56  // TODO(gri) The named type consolidation and seen maps below must be
    57  //           indexed by unique keys for a given type. Verify that named
    58  //           types always have only one representation (even when imported
    59  //           indirectly via different packages.)
    60  
    61  func lookupFieldOrMethod(T Type, addressable bool, pkg *Package, name string) (obj Object, index []int, indirect bool) {
    62  	// WARNING: The code in this function is extremely subtle - do not modify casually!
    63  	//          This function and NewMethodSet should be kept in sync.
    64  
    65  	if name == "_" {
    66  		return // blank fields/methods are never found
    67  	}
    68  
    69  	typ, isPtr := deref(T)
    70  	named, _ := typ.(*Named)
    71  
    72  	// *typ where typ is an interface has no methods.
    73  	if isPtr {
    74  		utyp := typ
    75  		if named != nil {
    76  			utyp = named.underlying
    77  		}
    78  		if _, ok := utyp.(*Interface); ok {
    79  			return
    80  		}
    81  	}
    82  
    83  	// Start with typ as single entry at shallowest depth.
    84  	// If typ is not a named type, insert a nil type instead.
    85  	current := []embeddedType{{named, nil, isPtr, false}}
    86  
    87  	// named types that we have seen already, allocated lazily
    88  	var seen map[*Named]bool
    89  
    90  	// search current depth
    91  	for len(current) > 0 {
    92  		var next []embeddedType // embedded types found at current depth
    93  
    94  		// look for (pkg, name) in all types at current depth
    95  		for _, e := range current {
    96  			// The very first time only, e.typ may be nil.
    97  			// In this case, we don't have a named type and
    98  			// we simply continue with the underlying type.
    99  			if e.typ != nil {
   100  				if seen[e.typ] {
   101  					// We have seen this type before, at a more shallow depth
   102  					// (note that multiples of this type at the current depth
   103  					// were consolidated before). The type at that depth shadows
   104  					// this same type at the current depth, so we can ignore
   105  					// this one.
   106  					continue
   107  				}
   108  				if seen == nil {
   109  					seen = make(map[*Named]bool)
   110  				}
   111  				seen[e.typ] = true
   112  
   113  				// look for a matching attached method
   114  				if i, m := lookupMethod(e.typ.methods, pkg, name); m != nil {
   115  					// potential match
   116  					assert(m.typ != nil)
   117  					index = concat(e.index, i)
   118  					if obj != nil || e.multiples {
   119  						return nil, index, false // collision
   120  					}
   121  					obj = m
   122  					indirect = e.indirect
   123  					continue // we can't have a matching field or interface method
   124  				}
   125  
   126  				// continue with underlying type
   127  				typ = e.typ.underlying
   128  			}
   129  
   130  			switch t := typ.(type) {
   131  			case *Struct:
   132  				// look for a matching field and collect embedded types
   133  				for i, f := range t.fields {
   134  					if f.sameId(pkg, name) {
   135  						assert(f.typ != nil)
   136  						index = concat(e.index, i)
   137  						if obj != nil || e.multiples {
   138  							return nil, index, false // collision
   139  						}
   140  						obj = f
   141  						indirect = e.indirect
   142  						continue // we can't have a matching interface method
   143  					}
   144  					// Collect embedded struct fields for searching the next
   145  					// lower depth, but only if we have not seen a match yet
   146  					// (if we have a match it is either the desired field or
   147  					// we have a name collision on the same depth; in either
   148  					// case we don't need to look further).
   149  					// Embedded fields are always of the form T or *T where
   150  					// T is a named type. If e.typ appeared multiple times at
   151  					// this depth, f.typ appears multiple times at the next
   152  					// depth.
   153  					if obj == nil && f.anonymous {
   154  						// Ignore embedded basic types - only user-defined
   155  						// named types can have methods or struct fields.
   156  						typ, isPtr := deref(f.typ)
   157  						if t, _ := typ.(*Named); t != nil {
   158  							next = append(next, embeddedType{t, concat(e.index, i), e.indirect || isPtr, e.multiples})
   159  						}
   160  					}
   161  				}
   162  
   163  			case *Interface:
   164  				// look for a matching method
   165  				// TODO(gri) t.allMethods is sorted - use binary search
   166  				if i, m := lookupMethod(t.allMethods, pkg, name); m != nil {
   167  					assert(m.typ != nil)
   168  					index = concat(e.index, i)
   169  					if obj != nil || e.multiples {
   170  						return nil, index, false // collision
   171  					}
   172  					obj = m
   173  					indirect = e.indirect
   174  				}
   175  			}
   176  		}
   177  
   178  		if obj != nil {
   179  			// found a potential match
   180  			// spec: "A method call x.m() is valid if the method set of (the type of) x
   181  			//        contains m and the argument list can be assigned to the parameter
   182  			//        list of m. If x is addressable and &x's method set contains m, x.m()
   183  			//        is shorthand for (&x).m()".
   184  			if f, _ := obj.(*Func); f != nil && ptrRecv(f) && !indirect && !addressable {
   185  				return nil, nil, true // pointer/addressable receiver required
   186  			}
   187  			return
   188  		}
   189  
   190  		current = consolidateMultiples(next)
   191  	}
   192  
   193  	return nil, nil, false // not found
   194  }
   195  
   196  // embeddedType represents an embedded named type
   197  type embeddedType struct {
   198  	typ       *Named // nil means use the outer typ variable instead
   199  	index     []int  // embedded field indices, starting with index at depth 0
   200  	indirect  bool   // if set, there was a pointer indirection on the path to this field
   201  	multiples bool   // if set, typ appears multiple times at this depth
   202  }
   203  
   204  // consolidateMultiples collects multiple list entries with the same type
   205  // into a single entry marked as containing multiples. The result is the
   206  // consolidated list.
   207  func consolidateMultiples(list []embeddedType) []embeddedType {
   208  	if len(list) <= 1 {
   209  		return list // at most one entry - nothing to do
   210  	}
   211  
   212  	n := 0                       // number of entries w/ unique type
   213  	prev := make(map[*Named]int) // index at which type was previously seen
   214  	for _, e := range list {
   215  		if i, found := prev[e.typ]; found {
   216  			list[i].multiples = true
   217  			// ignore this entry
   218  		} else {
   219  			prev[e.typ] = n
   220  			list[n] = e
   221  			n++
   222  		}
   223  	}
   224  	return list[:n]
   225  }
   226  
   227  // MissingMethod returns (nil, false) if V implements T, otherwise it
   228  // returns a missing method required by T and whether it is missing or
   229  // just has the wrong type.
   230  //
   231  // For non-interface types V, or if static is set, V implements T if all
   232  // methods of T are present in V. Otherwise (V is an interface and static
   233  // is not set), MissingMethod only checks that methods of T which are also
   234  // present in V have matching types (e.g., for a type assertion x.(T) where
   235  // x is of interface type V).
   236  //
   237  func MissingMethod(V Type, T *Interface, static bool) (method *Func, wrongType bool) {
   238  	// fast path for common case
   239  	if T.Empty() {
   240  		return
   241  	}
   242  
   243  	// TODO(gri) Consider using method sets here. Might be more efficient.
   244  
   245  	if ityp, _ := V.Underlying().(*Interface); ityp != nil {
   246  		// TODO(gri) allMethods is sorted - can do this more efficiently
   247  		for _, m := range T.allMethods {
   248  			_, obj := lookupMethod(ityp.allMethods, m.pkg, m.name)
   249  			switch {
   250  			case obj == nil:
   251  				if static {
   252  					return m, false
   253  				}
   254  			case !Identical(obj.Type(), m.typ):
   255  				return m, true
   256  			}
   257  		}
   258  		return
   259  	}
   260  
   261  	// A concrete type implements T if it implements all methods of T.
   262  	for _, m := range T.allMethods {
   263  		obj, _, _ := lookupFieldOrMethod(V, false, m.pkg, m.name)
   264  
   265  		f, _ := obj.(*Func)
   266  		if f == nil {
   267  			return m, false
   268  		}
   269  
   270  		if !Identical(f.typ, m.typ) {
   271  			return m, true
   272  		}
   273  	}
   274  
   275  	return
   276  }
   277  
   278  // assertableTo reports whether a value of type V can be asserted to have type T.
   279  // It returns (nil, false) as affirmative answer. Otherwise it returns a missing
   280  // method required by V and whether it is missing or just has the wrong type.
   281  func assertableTo(V *Interface, T Type) (method *Func, wrongType bool) {
   282  	// no static check is required if T is an interface
   283  	// spec: "If T is an interface type, x.(T) asserts that the
   284  	//        dynamic type of x implements the interface T."
   285  	if _, ok := T.Underlying().(*Interface); ok && !strict {
   286  		return
   287  	}
   288  	return MissingMethod(T, V, false)
   289  }
   290  
   291  // deref dereferences typ if it is a *Pointer and returns its base and true.
   292  // Otherwise it returns (typ, false).
   293  func deref(typ Type) (Type, bool) {
   294  	if p, _ := typ.(*Pointer); p != nil {
   295  		return p.base, true
   296  	}
   297  	return typ, false
   298  }
   299  
   300  // derefStructPtr dereferences typ if it is a (named or unnamed) pointer to a
   301  // (named or unnamed) struct and returns its base. Otherwise it returns typ.
   302  func derefStructPtr(typ Type) Type {
   303  	if p, _ := typ.Underlying().(*Pointer); p != nil {
   304  		if _, ok := p.base.Underlying().(*Struct); ok {
   305  			return p.base
   306  		}
   307  	}
   308  	return typ
   309  }
   310  
   311  // concat returns the result of concatenating list and i.
   312  // The result does not share its underlying array with list.
   313  func concat(list []int, i int) []int {
   314  	var t []int
   315  	t = append(t, list...)
   316  	return append(t, i)
   317  }
   318  
   319  // fieldIndex returns the index for the field with matching package and name, or a value < 0.
   320  func fieldIndex(fields []*Var, pkg *Package, name string) int {
   321  	if name != "_" {
   322  		for i, f := range fields {
   323  			if f.sameId(pkg, name) {
   324  				return i
   325  			}
   326  		}
   327  	}
   328  	return -1
   329  }
   330  
   331  // lookupMethod returns the index of and method with matching package and name, or (-1, nil).
   332  func lookupMethod(methods []*Func, pkg *Package, name string) (int, *Func) {
   333  	if name != "_" {
   334  		for i, m := range methods {
   335  			if m.sameId(pkg, name) {
   336  				return i, m
   337  			}
   338  		}
   339  	}
   340  	return -1, nil
   341  }