github.com/aloncn/graphics-go@v0.0.1/src/go/types/operand.go (about) 1 // Copyright 2012 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // This file defines operands and associated operations. 6 7 package types 8 9 import ( 10 "bytes" 11 "go/ast" 12 "go/constant" 13 "go/token" 14 ) 15 16 // An operandMode specifies the (addressing) mode of an operand. 17 type operandMode byte 18 19 const ( 20 invalid operandMode = iota // operand is invalid 21 novalue // operand represents no value (result of a function call w/o result) 22 builtin // operand is a built-in function 23 typexpr // operand is a type 24 constant_ // operand is a constant; the operand's typ is a Basic type 25 variable // operand is an addressable variable 26 mapindex // operand is a map index expression (acts like a variable on lhs, commaok on rhs of an assignment) 27 value // operand is a computed value 28 commaok // like value, but operand may be used in a comma,ok expression 29 ) 30 31 var operandModeString = [...]string{ 32 invalid: "invalid operand", 33 novalue: "no value", 34 builtin: "built-in", 35 typexpr: "type", 36 constant_: "constant", 37 variable: "variable", 38 mapindex: "map index expression", 39 value: "value", 40 commaok: "comma, ok expression", 41 } 42 43 // An operand represents an intermediate value during type checking. 44 // Operands have an (addressing) mode, the expression evaluating to 45 // the operand, the operand's type, a value for constants, and an id 46 // for built-in functions. 47 // The zero value of operand is a ready to use invalid operand. 48 // 49 type operand struct { 50 mode operandMode 51 expr ast.Expr 52 typ Type 53 val constant.Value 54 id builtinId 55 } 56 57 // pos returns the position of the expression corresponding to x. 58 // If x is invalid the position is token.NoPos. 59 // 60 func (x *operand) pos() token.Pos { 61 // x.expr may not be set if x is invalid 62 if x.expr == nil { 63 return token.NoPos 64 } 65 return x.expr.Pos() 66 } 67 68 // Operand string formats 69 // (not all "untyped" cases can appear due to the type system, 70 // but they fall out naturally here) 71 // 72 // mode format 73 // 74 // invalid <expr> ( <mode> ) 75 // novalue <expr> ( <mode> ) 76 // builtin <expr> ( <mode> ) 77 // typexpr <expr> ( <mode> ) 78 // 79 // constant <expr> (<untyped kind> <mode> ) 80 // constant <expr> ( <mode> of type <typ>) 81 // constant <expr> (<untyped kind> <mode> <val> ) 82 // constant <expr> ( <mode> <val> of type <typ>) 83 // 84 // variable <expr> (<untyped kind> <mode> ) 85 // variable <expr> ( <mode> of type <typ>) 86 // 87 // mapindex <expr> (<untyped kind> <mode> ) 88 // mapindex <expr> ( <mode> of type <typ>) 89 // 90 // value <expr> (<untyped kind> <mode> ) 91 // value <expr> ( <mode> of type <typ>) 92 // 93 // commaok <expr> (<untyped kind> <mode> ) 94 // commaok <expr> ( <mode> of type <typ>) 95 // 96 func operandString(x *operand, qf Qualifier) string { 97 var buf bytes.Buffer 98 99 var expr string 100 if x.expr != nil { 101 expr = ExprString(x.expr) 102 } else { 103 switch x.mode { 104 case builtin: 105 expr = predeclaredFuncs[x.id].name 106 case typexpr: 107 expr = TypeString(x.typ, qf) 108 case constant_: 109 expr = x.val.String() 110 } 111 } 112 113 // <expr> ( 114 if expr != "" { 115 buf.WriteString(expr) 116 buf.WriteString(" (") 117 } 118 119 // <untyped kind> 120 hasType := false 121 switch x.mode { 122 case invalid, novalue, builtin, typexpr: 123 // no type 124 default: 125 // has type 126 if isUntyped(x.typ) { 127 buf.WriteString(x.typ.(*Basic).name) 128 buf.WriteByte(' ') 129 break 130 } 131 hasType = true 132 } 133 134 // <mode> 135 buf.WriteString(operandModeString[x.mode]) 136 137 // <val> 138 if x.mode == constant_ { 139 if s := x.val.String(); s != expr { 140 buf.WriteByte(' ') 141 buf.WriteString(s) 142 } 143 } 144 145 // <typ> 146 if hasType { 147 if x.typ != Typ[Invalid] { 148 buf.WriteString(" of type ") 149 WriteType(&buf, x.typ, qf) 150 } else { 151 buf.WriteString(" with invalid type") 152 } 153 } 154 155 // ) 156 if expr != "" { 157 buf.WriteByte(')') 158 } 159 160 return buf.String() 161 } 162 163 func (x *operand) String() string { 164 return operandString(x, nil) 165 } 166 167 // setConst sets x to the untyped constant for literal lit. 168 func (x *operand) setConst(tok token.Token, lit string) { 169 var kind BasicKind 170 switch tok { 171 case token.INT: 172 kind = UntypedInt 173 case token.FLOAT: 174 kind = UntypedFloat 175 case token.IMAG: 176 kind = UntypedComplex 177 case token.CHAR: 178 kind = UntypedRune 179 case token.STRING: 180 kind = UntypedString 181 default: 182 unreachable() 183 } 184 185 x.mode = constant_ 186 x.typ = Typ[kind] 187 x.val = constant.MakeFromLiteral(lit, tok, 0) 188 } 189 190 // isNil reports whether x is the nil value. 191 func (x *operand) isNil() bool { 192 return x.mode == value && x.typ == Typ[UntypedNil] 193 } 194 195 // TODO(gri) The functions operand.assignableTo, checker.convertUntyped, 196 // checker.representable, and checker.assignment are 197 // overlapping in functionality. Need to simplify and clean up. 198 199 // assignableTo reports whether x is assignable to a variable of type T. 200 // If the result is false and a non-nil reason is provided, it may be set 201 // to a more detailed explanation of the failure (result != ""). 202 func (x *operand) assignableTo(conf *Config, T Type, reason *string) bool { 203 if x.mode == invalid || T == Typ[Invalid] { 204 return true // avoid spurious errors 205 } 206 207 V := x.typ 208 209 // x's type is identical to T 210 if Identical(V, T) { 211 return true 212 } 213 214 Vu := V.Underlying() 215 Tu := T.Underlying() 216 217 // x is an untyped value representable by a value of type T 218 // TODO(gri) This is borrowing from checker.convertUntyped and 219 // checker.representable. Need to clean up. 220 if isUntyped(Vu) { 221 switch t := Tu.(type) { 222 case *Basic: 223 if x.isNil() && t.kind == UnsafePointer { 224 return true 225 } 226 if x.mode == constant_ { 227 return representableConst(x.val, conf, t, nil) 228 } 229 // The result of a comparison is an untyped boolean, 230 // but may not be a constant. 231 if Vb, _ := Vu.(*Basic); Vb != nil { 232 return Vb.kind == UntypedBool && isBoolean(Tu) 233 } 234 case *Interface: 235 return x.isNil() || t.Empty() 236 case *Pointer, *Signature, *Slice, *Map, *Chan: 237 return x.isNil() 238 } 239 } 240 // Vu is typed 241 242 // x's type V and T have identical underlying types 243 // and at least one of V or T is not a named type 244 if Identical(Vu, Tu) && (!isNamed(V) || !isNamed(T)) { 245 return true 246 } 247 248 // T is an interface type and x implements T 249 if Ti, ok := Tu.(*Interface); ok { 250 if m, wrongType := MissingMethod(x.typ, Ti, true); m != nil /* Implements(x.typ, Ti) */ { 251 if reason != nil { 252 if wrongType { 253 *reason = "wrong type for method " + m.Name() 254 } else { 255 *reason = "missing method " + m.Name() 256 } 257 } 258 return false 259 } 260 return true 261 } 262 263 // x is a bidirectional channel value, T is a channel 264 // type, x's type V and T have identical element types, 265 // and at least one of V or T is not a named type 266 if Vc, ok := Vu.(*Chan); ok && Vc.dir == SendRecv { 267 if Tc, ok := Tu.(*Chan); ok && Identical(Vc.elem, Tc.elem) { 268 return !isNamed(V) || !isNamed(T) 269 } 270 } 271 272 return false 273 }