github.com/aloncn/graphics-go@v0.0.1/src/go/types/predicates.go (about) 1 // Copyright 2012 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // This file implements commonly used type predicates. 6 7 package types 8 9 import "sort" 10 11 func isNamed(typ Type) bool { 12 if _, ok := typ.(*Basic); ok { 13 return ok 14 } 15 _, ok := typ.(*Named) 16 return ok 17 } 18 19 func isBoolean(typ Type) bool { 20 t, ok := typ.Underlying().(*Basic) 21 return ok && t.info&IsBoolean != 0 22 } 23 24 func isInteger(typ Type) bool { 25 t, ok := typ.Underlying().(*Basic) 26 return ok && t.info&IsInteger != 0 27 } 28 29 func isUnsigned(typ Type) bool { 30 t, ok := typ.Underlying().(*Basic) 31 return ok && t.info&IsUnsigned != 0 32 } 33 34 func isFloat(typ Type) bool { 35 t, ok := typ.Underlying().(*Basic) 36 return ok && t.info&IsFloat != 0 37 } 38 39 func isComplex(typ Type) bool { 40 t, ok := typ.Underlying().(*Basic) 41 return ok && t.info&IsComplex != 0 42 } 43 44 func isNumeric(typ Type) bool { 45 t, ok := typ.Underlying().(*Basic) 46 return ok && t.info&IsNumeric != 0 47 } 48 49 func isString(typ Type) bool { 50 t, ok := typ.Underlying().(*Basic) 51 return ok && t.info&IsString != 0 52 } 53 54 func isTyped(typ Type) bool { 55 t, ok := typ.Underlying().(*Basic) 56 return !ok || t.info&IsUntyped == 0 57 } 58 59 func isUntyped(typ Type) bool { 60 t, ok := typ.Underlying().(*Basic) 61 return ok && t.info&IsUntyped != 0 62 } 63 64 func isOrdered(typ Type) bool { 65 t, ok := typ.Underlying().(*Basic) 66 return ok && t.info&IsOrdered != 0 67 } 68 69 func isConstType(typ Type) bool { 70 t, ok := typ.Underlying().(*Basic) 71 return ok && t.info&IsConstType != 0 72 } 73 74 // IsInterface reports whether typ is an interface type. 75 func IsInterface(typ Type) bool { 76 _, ok := typ.Underlying().(*Interface) 77 return ok 78 } 79 80 // Comparable reports whether values of type T are comparable. 81 func Comparable(T Type) bool { 82 switch t := T.Underlying().(type) { 83 case *Basic: 84 // assume invalid types to be comparable 85 // to avoid follow-up errors 86 return t.kind != UntypedNil 87 case *Pointer, *Interface, *Chan: 88 return true 89 case *Struct: 90 for _, f := range t.fields { 91 if !Comparable(f.typ) { 92 return false 93 } 94 } 95 return true 96 case *Array: 97 return Comparable(t.elem) 98 } 99 return false 100 } 101 102 // hasNil reports whether a type includes the nil value. 103 func hasNil(typ Type) bool { 104 switch t := typ.Underlying().(type) { 105 case *Basic: 106 return t.kind == UnsafePointer 107 case *Slice, *Pointer, *Signature, *Interface, *Map, *Chan: 108 return true 109 } 110 return false 111 } 112 113 // Identical reports whether x and y are identical. 114 func Identical(x, y Type) bool { 115 return identical(x, y, nil) 116 } 117 118 // An ifacePair is a node in a stack of interface type pairs compared for identity. 119 type ifacePair struct { 120 x, y *Interface 121 prev *ifacePair 122 } 123 124 func (p *ifacePair) identical(q *ifacePair) bool { 125 return p.x == q.x && p.y == q.y || p.x == q.y && p.y == q.x 126 } 127 128 func identical(x, y Type, p *ifacePair) bool { 129 if x == y { 130 return true 131 } 132 133 switch x := x.(type) { 134 case *Basic: 135 // Basic types are singletons except for the rune and byte 136 // aliases, thus we cannot solely rely on the x == y check 137 // above. 138 if y, ok := y.(*Basic); ok { 139 return x.kind == y.kind 140 } 141 142 case *Array: 143 // Two array types are identical if they have identical element types 144 // and the same array length. 145 if y, ok := y.(*Array); ok { 146 return x.len == y.len && identical(x.elem, y.elem, p) 147 } 148 149 case *Slice: 150 // Two slice types are identical if they have identical element types. 151 if y, ok := y.(*Slice); ok { 152 return identical(x.elem, y.elem, p) 153 } 154 155 case *Struct: 156 // Two struct types are identical if they have the same sequence of fields, 157 // and if corresponding fields have the same names, and identical types, 158 // and identical tags. Two anonymous fields are considered to have the same 159 // name. Lower-case field names from different packages are always different. 160 if y, ok := y.(*Struct); ok { 161 if x.NumFields() == y.NumFields() { 162 for i, f := range x.fields { 163 g := y.fields[i] 164 if f.anonymous != g.anonymous || 165 x.Tag(i) != y.Tag(i) || 166 !f.sameId(g.pkg, g.name) || 167 !identical(f.typ, g.typ, p) { 168 return false 169 } 170 } 171 return true 172 } 173 } 174 175 case *Pointer: 176 // Two pointer types are identical if they have identical base types. 177 if y, ok := y.(*Pointer); ok { 178 return identical(x.base, y.base, p) 179 } 180 181 case *Tuple: 182 // Two tuples types are identical if they have the same number of elements 183 // and corresponding elements have identical types. 184 if y, ok := y.(*Tuple); ok { 185 if x.Len() == y.Len() { 186 if x != nil { 187 for i, v := range x.vars { 188 w := y.vars[i] 189 if !identical(v.typ, w.typ, p) { 190 return false 191 } 192 } 193 } 194 return true 195 } 196 } 197 198 case *Signature: 199 // Two function types are identical if they have the same number of parameters 200 // and result values, corresponding parameter and result types are identical, 201 // and either both functions are variadic or neither is. Parameter and result 202 // names are not required to match. 203 if y, ok := y.(*Signature); ok { 204 return x.variadic == y.variadic && 205 identical(x.params, y.params, p) && 206 identical(x.results, y.results, p) 207 } 208 209 case *Interface: 210 // Two interface types are identical if they have the same set of methods with 211 // the same names and identical function types. Lower-case method names from 212 // different packages are always different. The order of the methods is irrelevant. 213 if y, ok := y.(*Interface); ok { 214 a := x.allMethods 215 b := y.allMethods 216 if len(a) == len(b) { 217 // Interface types are the only types where cycles can occur 218 // that are not "terminated" via named types; and such cycles 219 // can only be created via method parameter types that are 220 // anonymous interfaces (directly or indirectly) embedding 221 // the current interface. Example: 222 // 223 // type T interface { 224 // m() interface{T} 225 // } 226 // 227 // If two such (differently named) interfaces are compared, 228 // endless recursion occurs if the cycle is not detected. 229 // 230 // If x and y were compared before, they must be equal 231 // (if they were not, the recursion would have stopped); 232 // search the ifacePair stack for the same pair. 233 // 234 // This is a quadratic algorithm, but in practice these stacks 235 // are extremely short (bounded by the nesting depth of interface 236 // type declarations that recur via parameter types, an extremely 237 // rare occurrence). An alternative implementation might use a 238 // "visited" map, but that is probably less efficient overall. 239 q := &ifacePair{x, y, p} 240 for p != nil { 241 if p.identical(q) { 242 return true // same pair was compared before 243 } 244 p = p.prev 245 } 246 if debug { 247 assert(sort.IsSorted(byUniqueMethodName(a))) 248 assert(sort.IsSorted(byUniqueMethodName(b))) 249 } 250 for i, f := range a { 251 g := b[i] 252 if f.Id() != g.Id() || !identical(f.typ, g.typ, q) { 253 return false 254 } 255 } 256 return true 257 } 258 } 259 260 case *Map: 261 // Two map types are identical if they have identical key and value types. 262 if y, ok := y.(*Map); ok { 263 return identical(x.key, y.key, p) && identical(x.elem, y.elem, p) 264 } 265 266 case *Chan: 267 // Two channel types are identical if they have identical value types 268 // and the same direction. 269 if y, ok := y.(*Chan); ok { 270 return x.dir == y.dir && identical(x.elem, y.elem, p) 271 } 272 273 case *Named: 274 // Two named types are identical if their type names originate 275 // in the same type declaration. 276 if y, ok := y.(*Named); ok { 277 return x.obj == y.obj 278 } 279 280 default: 281 unreachable() 282 } 283 284 return false 285 } 286 287 // defaultType returns the default "typed" type for an "untyped" type; 288 // it returns the incoming type for all other types. The default type 289 // for untyped nil is untyped nil. 290 // 291 func defaultType(typ Type) Type { 292 if t, ok := typ.(*Basic); ok { 293 switch t.kind { 294 case UntypedBool: 295 return Typ[Bool] 296 case UntypedInt: 297 return Typ[Int] 298 case UntypedRune: 299 return universeRune // use 'rune' name 300 case UntypedFloat: 301 return Typ[Float64] 302 case UntypedComplex: 303 return Typ[Complex128] 304 case UntypedString: 305 return Typ[String] 306 } 307 } 308 return typ 309 }