github.com/aloncn/graphics-go@v0.0.1/src/math/big/natconv.go (about)

     1  // Copyright 2015 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // This file implements nat-to-string conversion functions.
     6  
     7  package big
     8  
     9  import (
    10  	"errors"
    11  	"fmt"
    12  	"io"
    13  	"math"
    14  	"sync"
    15  )
    16  
    17  const digits = "0123456789abcdefghijklmnopqrstuvwxyz"
    18  
    19  // Note: MaxBase = len(digits), but it must remain a rune constant
    20  //       for API compatibility.
    21  
    22  // MaxBase is the largest number base accepted for string conversions.
    23  const MaxBase = 'z' - 'a' + 10 + 1
    24  
    25  // maxPow returns (b**n, n) such that b**n is the largest power b**n <= _M.
    26  // For instance maxPow(10) == (1e19, 19) for 19 decimal digits in a 64bit Word.
    27  // In other words, at most n digits in base b fit into a Word.
    28  // TODO(gri) replace this with a table, generated at build time.
    29  func maxPow(b Word) (p Word, n int) {
    30  	p, n = b, 1 // assuming b <= _M
    31  	for max := _M / b; p <= max; {
    32  		// p == b**n && p <= max
    33  		p *= b
    34  		n++
    35  	}
    36  	// p == b**n && p <= _M
    37  	return
    38  }
    39  
    40  // pow returns x**n for n > 0, and 1 otherwise.
    41  func pow(x Word, n int) (p Word) {
    42  	// n == sum of bi * 2**i, for 0 <= i < imax, and bi is 0 or 1
    43  	// thus x**n == product of x**(2**i) for all i where bi == 1
    44  	// (Russian Peasant Method for exponentiation)
    45  	p = 1
    46  	for n > 0 {
    47  		if n&1 != 0 {
    48  			p *= x
    49  		}
    50  		x *= x
    51  		n >>= 1
    52  	}
    53  	return
    54  }
    55  
    56  // scan scans the number corresponding to the longest possible prefix
    57  // from r representing an unsigned number in a given conversion base.
    58  // It returns the corresponding natural number res, the actual base b,
    59  // a digit count, and a read or syntax error err, if any.
    60  //
    61  //	number   = [ prefix ] mantissa .
    62  //	prefix   = "0" [ "x" | "X" | "b" | "B" ] .
    63  //      mantissa = digits | digits "." [ digits ] | "." digits .
    64  //	digits   = digit { digit } .
    65  //	digit    = "0" ... "9" | "a" ... "z" | "A" ... "Z" .
    66  //
    67  // Unless fracOk is set, the base argument must be 0 or a value between
    68  // 2 and MaxBase. If fracOk is set, the base argument must be one of
    69  // 0, 2, 10, or 16. Providing an invalid base argument leads to a run-
    70  // time panic.
    71  //
    72  // For base 0, the number prefix determines the actual base: A prefix of
    73  // ``0x'' or ``0X'' selects base 16; if fracOk is not set, the ``0'' prefix
    74  // selects base 8, and a ``0b'' or ``0B'' prefix selects base 2. Otherwise
    75  // the selected base is 10 and no prefix is accepted.
    76  //
    77  // If fracOk is set, an octal prefix is ignored (a leading ``0'' simply
    78  // stands for a zero digit), and a period followed by a fractional part
    79  // is permitted. The result value is computed as if there were no period
    80  // present; and the count value is used to determine the fractional part.
    81  //
    82  // A result digit count > 0 corresponds to the number of (non-prefix) digits
    83  // parsed. A digit count <= 0 indicates the presence of a period (if fracOk
    84  // is set, only), and -count is the number of fractional digits found.
    85  // In this case, the actual value of the scanned number is res * b**count.
    86  //
    87  func (z nat) scan(r io.ByteScanner, base int, fracOk bool) (res nat, b, count int, err error) {
    88  	// reject illegal bases
    89  	baseOk := base == 0 ||
    90  		!fracOk && 2 <= base && base <= MaxBase ||
    91  		fracOk && (base == 2 || base == 10 || base == 16)
    92  	if !baseOk {
    93  		panic(fmt.Sprintf("illegal number base %d", base))
    94  	}
    95  
    96  	// one char look-ahead
    97  	ch, err := r.ReadByte()
    98  	if err != nil {
    99  		return
   100  	}
   101  
   102  	// determine actual base
   103  	b = base
   104  	if base == 0 {
   105  		// actual base is 10 unless there's a base prefix
   106  		b = 10
   107  		if ch == '0' {
   108  			count = 1
   109  			switch ch, err = r.ReadByte(); err {
   110  			case nil:
   111  				// possibly one of 0x, 0X, 0b, 0B
   112  				if !fracOk {
   113  					b = 8
   114  				}
   115  				switch ch {
   116  				case 'x', 'X':
   117  					b = 16
   118  				case 'b', 'B':
   119  					b = 2
   120  				}
   121  				switch b {
   122  				case 16, 2:
   123  					count = 0 // prefix is not counted
   124  					if ch, err = r.ReadByte(); err != nil {
   125  						// io.EOF is also an error in this case
   126  						return
   127  					}
   128  				case 8:
   129  					count = 0 // prefix is not counted
   130  				}
   131  			case io.EOF:
   132  				// input is "0"
   133  				res = z[:0]
   134  				err = nil
   135  				return
   136  			default:
   137  				// read error
   138  				return
   139  			}
   140  		}
   141  	}
   142  
   143  	// convert string
   144  	// Algorithm: Collect digits in groups of at most n digits in di
   145  	// and then use mulAddWW for every such group to add them to the
   146  	// result.
   147  	z = z[:0]
   148  	b1 := Word(b)
   149  	bn, n := maxPow(b1) // at most n digits in base b1 fit into Word
   150  	di := Word(0)       // 0 <= di < b1**i < bn
   151  	i := 0              // 0 <= i < n
   152  	dp := -1            // position of decimal point
   153  	for {
   154  		if fracOk && ch == '.' {
   155  			fracOk = false
   156  			dp = count
   157  			// advance
   158  			if ch, err = r.ReadByte(); err != nil {
   159  				if err == io.EOF {
   160  					err = nil
   161  					break
   162  				}
   163  				return
   164  			}
   165  		}
   166  
   167  		// convert rune into digit value d1
   168  		var d1 Word
   169  		switch {
   170  		case '0' <= ch && ch <= '9':
   171  			d1 = Word(ch - '0')
   172  		case 'a' <= ch && ch <= 'z':
   173  			d1 = Word(ch - 'a' + 10)
   174  		case 'A' <= ch && ch <= 'Z':
   175  			d1 = Word(ch - 'A' + 10)
   176  		default:
   177  			d1 = MaxBase + 1
   178  		}
   179  		if d1 >= b1 {
   180  			r.UnreadByte() // ch does not belong to number anymore
   181  			break
   182  		}
   183  		count++
   184  
   185  		// collect d1 in di
   186  		di = di*b1 + d1
   187  		i++
   188  
   189  		// if di is "full", add it to the result
   190  		if i == n {
   191  			z = z.mulAddWW(z, bn, di)
   192  			di = 0
   193  			i = 0
   194  		}
   195  
   196  		// advance
   197  		if ch, err = r.ReadByte(); err != nil {
   198  			if err == io.EOF {
   199  				err = nil
   200  				break
   201  			}
   202  			return
   203  		}
   204  	}
   205  
   206  	if count == 0 {
   207  		// no digits found
   208  		switch {
   209  		case base == 0 && b == 8:
   210  			// there was only the octal prefix 0 (possibly followed by digits > 7);
   211  			// count as one digit and return base 10, not 8
   212  			count = 1
   213  			b = 10
   214  		case base != 0 || b != 8:
   215  			// there was neither a mantissa digit nor the octal prefix 0
   216  			err = errors.New("syntax error scanning number")
   217  		}
   218  		return
   219  	}
   220  	// count > 0
   221  
   222  	// add remaining digits to result
   223  	if i > 0 {
   224  		z = z.mulAddWW(z, pow(b1, i), di)
   225  	}
   226  	res = z.norm()
   227  
   228  	// adjust for fraction, if any
   229  	if dp >= 0 {
   230  		// 0 <= dp <= count > 0
   231  		count = dp - count
   232  	}
   233  
   234  	return
   235  }
   236  
   237  // utoa converts x to an ASCII representation in the given base;
   238  // base must be between 2 and MaxBase, inclusive.
   239  func (x nat) utoa(base int) []byte {
   240  	return x.itoa(false, base)
   241  }
   242  
   243  // itoa is like utoa but it prepends a '-' if neg && x != 0.
   244  func (x nat) itoa(neg bool, base int) []byte {
   245  	if base < 2 || base > MaxBase {
   246  		panic("invalid base")
   247  	}
   248  
   249  	// x == 0
   250  	if len(x) == 0 {
   251  		return []byte("0")
   252  	}
   253  	// len(x) > 0
   254  
   255  	// allocate buffer for conversion
   256  	i := int(float64(x.bitLen())/math.Log2(float64(base))) + 1 // off by 1 at most
   257  	if neg {
   258  		i++
   259  	}
   260  	s := make([]byte, i)
   261  
   262  	// convert power of two and non power of two bases separately
   263  	if b := Word(base); b == b&-b {
   264  		// shift is base b digit size in bits
   265  		shift := trailingZeroBits(b) // shift > 0 because b >= 2
   266  		mask := Word(1<<shift - 1)
   267  		w := x[0]         // current word
   268  		nbits := uint(_W) // number of unprocessed bits in w
   269  
   270  		// convert less-significant words (include leading zeros)
   271  		for k := 1; k < len(x); k++ {
   272  			// convert full digits
   273  			for nbits >= shift {
   274  				i--
   275  				s[i] = digits[w&mask]
   276  				w >>= shift
   277  				nbits -= shift
   278  			}
   279  
   280  			// convert any partial leading digit and advance to next word
   281  			if nbits == 0 {
   282  				// no partial digit remaining, just advance
   283  				w = x[k]
   284  				nbits = _W
   285  			} else {
   286  				// partial digit in current word w (== x[k-1]) and next word x[k]
   287  				w |= x[k] << nbits
   288  				i--
   289  				s[i] = digits[w&mask]
   290  
   291  				// advance
   292  				w = x[k] >> (shift - nbits)
   293  				nbits = _W - (shift - nbits)
   294  			}
   295  		}
   296  
   297  		// convert digits of most-significant word w (omit leading zeros)
   298  		for w != 0 {
   299  			i--
   300  			s[i] = digits[w&mask]
   301  			w >>= shift
   302  		}
   303  
   304  	} else {
   305  		bb, ndigits := maxPow(Word(b))
   306  
   307  		// construct table of successive squares of bb*leafSize to use in subdivisions
   308  		// result (table != nil) <=> (len(x) > leafSize > 0)
   309  		table := divisors(len(x), b, ndigits, bb)
   310  
   311  		// preserve x, create local copy for use by convertWords
   312  		q := nat(nil).set(x)
   313  
   314  		// convert q to string s in base b
   315  		q.convertWords(s, b, ndigits, bb, table)
   316  
   317  		// strip leading zeros
   318  		// (x != 0; thus s must contain at least one non-zero digit
   319  		// and the loop will terminate)
   320  		i = 0
   321  		for s[i] == '0' {
   322  			i++
   323  		}
   324  	}
   325  
   326  	if neg {
   327  		i--
   328  		s[i] = '-'
   329  	}
   330  
   331  	return s[i:]
   332  }
   333  
   334  // Convert words of q to base b digits in s. If q is large, it is recursively "split in half"
   335  // by nat/nat division using tabulated divisors. Otherwise, it is converted iteratively using
   336  // repeated nat/Word division.
   337  //
   338  // The iterative method processes n Words by n divW() calls, each of which visits every Word in the
   339  // incrementally shortened q for a total of n + (n-1) + (n-2) ... + 2 + 1, or n(n+1)/2 divW()'s.
   340  // Recursive conversion divides q by its approximate square root, yielding two parts, each half
   341  // the size of q. Using the iterative method on both halves means 2 * (n/2)(n/2 + 1)/2 divW()'s
   342  // plus the expensive long div(). Asymptotically, the ratio is favorable at 1/2 the divW()'s, and
   343  // is made better by splitting the subblocks recursively. Best is to split blocks until one more
   344  // split would take longer (because of the nat/nat div()) than the twice as many divW()'s of the
   345  // iterative approach. This threshold is represented by leafSize. Benchmarking of leafSize in the
   346  // range 2..64 shows that values of 8 and 16 work well, with a 4x speedup at medium lengths and
   347  // ~30x for 20000 digits. Use nat_test.go's BenchmarkLeafSize tests to optimize leafSize for
   348  // specific hardware.
   349  //
   350  func (q nat) convertWords(s []byte, b Word, ndigits int, bb Word, table []divisor) {
   351  	// split larger blocks recursively
   352  	if table != nil {
   353  		// len(q) > leafSize > 0
   354  		var r nat
   355  		index := len(table) - 1
   356  		for len(q) > leafSize {
   357  			// find divisor close to sqrt(q) if possible, but in any case < q
   358  			maxLength := q.bitLen()     // ~= log2 q, or at of least largest possible q of this bit length
   359  			minLength := maxLength >> 1 // ~= log2 sqrt(q)
   360  			for index > 0 && table[index-1].nbits > minLength {
   361  				index-- // desired
   362  			}
   363  			if table[index].nbits >= maxLength && table[index].bbb.cmp(q) >= 0 {
   364  				index--
   365  				if index < 0 {
   366  					panic("internal inconsistency")
   367  				}
   368  			}
   369  
   370  			// split q into the two digit number (q'*bbb + r) to form independent subblocks
   371  			q, r = q.div(r, q, table[index].bbb)
   372  
   373  			// convert subblocks and collect results in s[:h] and s[h:]
   374  			h := len(s) - table[index].ndigits
   375  			r.convertWords(s[h:], b, ndigits, bb, table[0:index])
   376  			s = s[:h] // == q.convertWords(s, b, ndigits, bb, table[0:index+1])
   377  		}
   378  	}
   379  
   380  	// having split any large blocks now process the remaining (small) block iteratively
   381  	i := len(s)
   382  	var r Word
   383  	if b == 10 {
   384  		// hard-coding for 10 here speeds this up by 1.25x (allows for / and % by constants)
   385  		for len(q) > 0 {
   386  			// extract least significant, base bb "digit"
   387  			q, r = q.divW(q, bb)
   388  			for j := 0; j < ndigits && i > 0; j++ {
   389  				i--
   390  				// avoid % computation since r%10 == r - int(r/10)*10;
   391  				// this appears to be faster for BenchmarkString10000Base10
   392  				// and smaller strings (but a bit slower for larger ones)
   393  				t := r / 10
   394  				s[i] = '0' + byte(r-t<<3-t-t) // TODO(gri) replace w/ t*10 once compiler produces better code
   395  				r = t
   396  			}
   397  		}
   398  	} else {
   399  		for len(q) > 0 {
   400  			// extract least significant, base bb "digit"
   401  			q, r = q.divW(q, bb)
   402  			for j := 0; j < ndigits && i > 0; j++ {
   403  				i--
   404  				s[i] = digits[r%b]
   405  				r /= b
   406  			}
   407  		}
   408  	}
   409  
   410  	// prepend high-order zeros
   411  	for i > 0 { // while need more leading zeros
   412  		i--
   413  		s[i] = '0'
   414  	}
   415  }
   416  
   417  // Split blocks greater than leafSize Words (or set to 0 to disable recursive conversion)
   418  // Benchmark and configure leafSize using: go test -bench="Leaf"
   419  //   8 and 16 effective on 3.0 GHz Xeon "Clovertown" CPU (128 byte cache lines)
   420  //   8 and 16 effective on 2.66 GHz Core 2 Duo "Penryn" CPU
   421  var leafSize int = 8 // number of Word-size binary values treat as a monolithic block
   422  
   423  type divisor struct {
   424  	bbb     nat // divisor
   425  	nbits   int // bit length of divisor (discounting leading zeros) ~= log2(bbb)
   426  	ndigits int // digit length of divisor in terms of output base digits
   427  }
   428  
   429  var cacheBase10 struct {
   430  	sync.Mutex
   431  	table [64]divisor // cached divisors for base 10
   432  }
   433  
   434  // expWW computes x**y
   435  func (z nat) expWW(x, y Word) nat {
   436  	return z.expNN(nat(nil).setWord(x), nat(nil).setWord(y), nil)
   437  }
   438  
   439  // construct table of powers of bb*leafSize to use in subdivisions
   440  func divisors(m int, b Word, ndigits int, bb Word) []divisor {
   441  	// only compute table when recursive conversion is enabled and x is large
   442  	if leafSize == 0 || m <= leafSize {
   443  		return nil
   444  	}
   445  
   446  	// determine k where (bb**leafSize)**(2**k) >= sqrt(x)
   447  	k := 1
   448  	for words := leafSize; words < m>>1 && k < len(cacheBase10.table); words <<= 1 {
   449  		k++
   450  	}
   451  
   452  	// reuse and extend existing table of divisors or create new table as appropriate
   453  	var table []divisor // for b == 10, table overlaps with cacheBase10.table
   454  	if b == 10 {
   455  		cacheBase10.Lock()
   456  		table = cacheBase10.table[0:k] // reuse old table for this conversion
   457  	} else {
   458  		table = make([]divisor, k) // create new table for this conversion
   459  	}
   460  
   461  	// extend table
   462  	if table[k-1].ndigits == 0 {
   463  		// add new entries as needed
   464  		var larger nat
   465  		for i := 0; i < k; i++ {
   466  			if table[i].ndigits == 0 {
   467  				if i == 0 {
   468  					table[0].bbb = nat(nil).expWW(bb, Word(leafSize))
   469  					table[0].ndigits = ndigits * leafSize
   470  				} else {
   471  					table[i].bbb = nat(nil).mul(table[i-1].bbb, table[i-1].bbb)
   472  					table[i].ndigits = 2 * table[i-1].ndigits
   473  				}
   474  
   475  				// optimization: exploit aggregated extra bits in macro blocks
   476  				larger = nat(nil).set(table[i].bbb)
   477  				for mulAddVWW(larger, larger, b, 0) == 0 {
   478  					table[i].bbb = table[i].bbb.set(larger)
   479  					table[i].ndigits++
   480  				}
   481  
   482  				table[i].nbits = table[i].bbb.bitLen()
   483  			}
   484  		}
   485  	}
   486  
   487  	if b == 10 {
   488  		cacheBase10.Unlock()
   489  	}
   490  
   491  	return table
   492  }