github.com/aloncn/graphics-go@v0.0.1/src/runtime/cgocall.go (about)

     1  // Copyright 2009 The Go Authors.  All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Cgo call and callback support.
     6  //
     7  // To call into the C function f from Go, the cgo-generated code calls
     8  // runtime.cgocall(_cgo_Cfunc_f, frame), where _cgo_Cfunc_f is a
     9  // gcc-compiled function written by cgo.
    10  //
    11  // runtime.cgocall (below) locks g to m, calls entersyscall
    12  // so as not to block other goroutines or the garbage collector,
    13  // and then calls runtime.asmcgocall(_cgo_Cfunc_f, frame).
    14  //
    15  // runtime.asmcgocall (in asm_$GOARCH.s) switches to the m->g0 stack
    16  // (assumed to be an operating system-allocated stack, so safe to run
    17  // gcc-compiled code on) and calls _cgo_Cfunc_f(frame).
    18  //
    19  // _cgo_Cfunc_f invokes the actual C function f with arguments
    20  // taken from the frame structure, records the results in the frame,
    21  // and returns to runtime.asmcgocall.
    22  //
    23  // After it regains control, runtime.asmcgocall switches back to the
    24  // original g (m->curg)'s stack and returns to runtime.cgocall.
    25  //
    26  // After it regains control, runtime.cgocall calls exitsyscall, which blocks
    27  // until this m can run Go code without violating the $GOMAXPROCS limit,
    28  // and then unlocks g from m.
    29  //
    30  // The above description skipped over the possibility of the gcc-compiled
    31  // function f calling back into Go.  If that happens, we continue down
    32  // the rabbit hole during the execution of f.
    33  //
    34  // To make it possible for gcc-compiled C code to call a Go function p.GoF,
    35  // cgo writes a gcc-compiled function named GoF (not p.GoF, since gcc doesn't
    36  // know about packages).  The gcc-compiled C function f calls GoF.
    37  //
    38  // GoF calls crosscall2(_cgoexp_GoF, frame, framesize).  Crosscall2
    39  // (in cgo/gcc_$GOARCH.S, a gcc-compiled assembly file) is a two-argument
    40  // adapter from the gcc function call ABI to the 6c function call ABI.
    41  // It is called from gcc to call 6c functions.  In this case it calls
    42  // _cgoexp_GoF(frame, framesize), still running on m->g0's stack
    43  // and outside the $GOMAXPROCS limit.  Thus, this code cannot yet
    44  // call arbitrary Go code directly and must be careful not to allocate
    45  // memory or use up m->g0's stack.
    46  //
    47  // _cgoexp_GoF calls runtime.cgocallback(p.GoF, frame, framesize).
    48  // (The reason for having _cgoexp_GoF instead of writing a crosscall3
    49  // to make this call directly is that _cgoexp_GoF, because it is compiled
    50  // with 6c instead of gcc, can refer to dotted names like
    51  // runtime.cgocallback and p.GoF.)
    52  //
    53  // runtime.cgocallback (in asm_$GOARCH.s) switches from m->g0's
    54  // stack to the original g (m->curg)'s stack, on which it calls
    55  // runtime.cgocallbackg(p.GoF, frame, framesize).
    56  // As part of the stack switch, runtime.cgocallback saves the current
    57  // SP as m->g0->sched.sp, so that any use of m->g0's stack during the
    58  // execution of the callback will be done below the existing stack frames.
    59  // Before overwriting m->g0->sched.sp, it pushes the old value on the
    60  // m->g0 stack, so that it can be restored later.
    61  //
    62  // runtime.cgocallbackg (below) is now running on a real goroutine
    63  // stack (not an m->g0 stack).  First it calls runtime.exitsyscall, which will
    64  // block until the $GOMAXPROCS limit allows running this goroutine.
    65  // Once exitsyscall has returned, it is safe to do things like call the memory
    66  // allocator or invoke the Go callback function p.GoF.  runtime.cgocallbackg
    67  // first defers a function to unwind m->g0.sched.sp, so that if p.GoF
    68  // panics, m->g0.sched.sp will be restored to its old value: the m->g0 stack
    69  // and the m->curg stack will be unwound in lock step.
    70  // Then it calls p.GoF.  Finally it pops but does not execute the deferred
    71  // function, calls runtime.entersyscall, and returns to runtime.cgocallback.
    72  //
    73  // After it regains control, runtime.cgocallback switches back to
    74  // m->g0's stack (the pointer is still in m->g0.sched.sp), restores the old
    75  // m->g0.sched.sp value from the stack, and returns to _cgoexp_GoF.
    76  //
    77  // _cgoexp_GoF immediately returns to crosscall2, which restores the
    78  // callee-save registers for gcc and returns to GoF, which returns to f.
    79  
    80  package runtime
    81  
    82  import (
    83  	"runtime/internal/sys"
    84  	"unsafe"
    85  )
    86  
    87  // Call from Go to C.
    88  //go:nosplit
    89  func cgocall(fn, arg unsafe.Pointer) int32 {
    90  	if !iscgo && GOOS != "solaris" && GOOS != "windows" {
    91  		throw("cgocall unavailable")
    92  	}
    93  
    94  	if fn == nil {
    95  		throw("cgocall nil")
    96  	}
    97  
    98  	if raceenabled {
    99  		racereleasemerge(unsafe.Pointer(&racecgosync))
   100  	}
   101  
   102  	/*
   103  	 * Lock g to m to ensure we stay on the same stack if we do a
   104  	 * cgo callback. Add entry to defer stack in case of panic.
   105  	 */
   106  	lockOSThread()
   107  	mp := getg().m
   108  	mp.ncgocall++
   109  	mp.ncgo++
   110  	defer endcgo(mp)
   111  
   112  	/*
   113  	 * Announce we are entering a system call
   114  	 * so that the scheduler knows to create another
   115  	 * M to run goroutines while we are in the
   116  	 * foreign code.
   117  	 *
   118  	 * The call to asmcgocall is guaranteed not to
   119  	 * split the stack and does not allocate memory,
   120  	 * so it is safe to call while "in a system call", outside
   121  	 * the $GOMAXPROCS accounting.
   122  	 */
   123  	entersyscall(0)
   124  	errno := asmcgocall(fn, arg)
   125  	exitsyscall(0)
   126  
   127  	return errno
   128  }
   129  
   130  //go:nosplit
   131  func endcgo(mp *m) {
   132  	mp.ncgo--
   133  
   134  	if raceenabled {
   135  		raceacquire(unsafe.Pointer(&racecgosync))
   136  	}
   137  
   138  	unlockOSThread() // invalidates mp
   139  }
   140  
   141  // Helper functions for cgo code.
   142  
   143  func cmalloc(n uintptr) unsafe.Pointer {
   144  	var args struct {
   145  		n   uint64
   146  		ret unsafe.Pointer
   147  	}
   148  	args.n = uint64(n)
   149  	cgocall(_cgo_malloc, unsafe.Pointer(&args))
   150  	if args.ret == nil {
   151  		throw("C malloc failed")
   152  	}
   153  	return args.ret
   154  }
   155  
   156  func cfree(p unsafe.Pointer) {
   157  	cgocall(_cgo_free, p)
   158  }
   159  
   160  // Call from C back to Go.
   161  //go:nosplit
   162  func cgocallbackg() {
   163  	gp := getg()
   164  	if gp != gp.m.curg {
   165  		println("runtime: bad g in cgocallback")
   166  		exit(2)
   167  	}
   168  
   169  	// Save current syscall parameters, so m.syscall can be
   170  	// used again if callback decide to make syscall.
   171  	syscall := gp.m.syscall
   172  
   173  	// entersyscall saves the caller's SP to allow the GC to trace the Go
   174  	// stack. However, since we're returning to an earlier stack frame and
   175  	// need to pair with the entersyscall() call made by cgocall, we must
   176  	// save syscall* and let reentersyscall restore them.
   177  	savedsp := unsafe.Pointer(gp.syscallsp)
   178  	savedpc := gp.syscallpc
   179  	exitsyscall(0) // coming out of cgo call
   180  	cgocallbackg1()
   181  	// going back to cgo call
   182  	reentersyscall(savedpc, uintptr(savedsp))
   183  
   184  	gp.m.syscall = syscall
   185  }
   186  
   187  func cgocallbackg1() {
   188  	gp := getg()
   189  	if gp.m.needextram {
   190  		gp.m.needextram = false
   191  		systemstack(newextram)
   192  	}
   193  
   194  	if gp.m.ncgo == 0 {
   195  		// The C call to Go came from a thread not currently running
   196  		// any Go. In the case of -buildmode=c-archive or c-shared,
   197  		// this call may be coming in before package initialization
   198  		// is complete. Wait until it is.
   199  		<-main_init_done
   200  	}
   201  
   202  	// Add entry to defer stack in case of panic.
   203  	restore := true
   204  	defer unwindm(&restore)
   205  
   206  	if raceenabled {
   207  		raceacquire(unsafe.Pointer(&racecgosync))
   208  	}
   209  
   210  	type args struct {
   211  		fn      *funcval
   212  		arg     unsafe.Pointer
   213  		argsize uintptr
   214  	}
   215  	var cb *args
   216  
   217  	// Location of callback arguments depends on stack frame layout
   218  	// and size of stack frame of cgocallback_gofunc.
   219  	sp := gp.m.g0.sched.sp
   220  	switch GOARCH {
   221  	default:
   222  		throw("cgocallbackg is unimplemented on arch")
   223  	case "arm":
   224  		// On arm, stack frame is two words and there's a saved LR between
   225  		// SP and the stack frame and between the stack frame and the arguments.
   226  		cb = (*args)(unsafe.Pointer(sp + 4*sys.PtrSize))
   227  	case "arm64":
   228  		// On arm64, stack frame is four words and there's a saved LR between
   229  		// SP and the stack frame and between the stack frame and the arguments.
   230  		cb = (*args)(unsafe.Pointer(sp + 5*sys.PtrSize))
   231  	case "amd64":
   232  		// On amd64, stack frame is one word, plus caller PC.
   233  		if framepointer_enabled {
   234  			// In this case, there's also saved BP.
   235  			cb = (*args)(unsafe.Pointer(sp + 3*sys.PtrSize))
   236  			break
   237  		}
   238  		cb = (*args)(unsafe.Pointer(sp + 2*sys.PtrSize))
   239  	case "386":
   240  		// On 386, stack frame is three words, plus caller PC.
   241  		cb = (*args)(unsafe.Pointer(sp + 4*sys.PtrSize))
   242  	case "ppc64", "ppc64le":
   243  		// On ppc64, the callback arguments are in the arguments area of
   244  		// cgocallback's stack frame. The stack looks like this:
   245  		// +--------------------+------------------------------+
   246  		// |                    | ...                          |
   247  		// | cgoexp_$fn         +------------------------------+
   248  		// |                    | fixed frame area             |
   249  		// +--------------------+------------------------------+
   250  		// |                    | arguments area               |
   251  		// | cgocallback        +------------------------------+ <- sp + 2*minFrameSize + 2*ptrSize
   252  		// |                    | fixed frame area             |
   253  		// +--------------------+------------------------------+ <- sp + minFrameSize + 2*ptrSize
   254  		// |                    | local variables (2 pointers) |
   255  		// | cgocallback_gofunc +------------------------------+ <- sp + minFrameSize
   256  		// |                    | fixed frame area             |
   257  		// +--------------------+------------------------------+ <- sp
   258  		cb = (*args)(unsafe.Pointer(sp + 2*sys.MinFrameSize + 2*sys.PtrSize))
   259  	}
   260  
   261  	// Invoke callback.
   262  	// NOTE(rsc): passing nil for argtype means that the copying of the
   263  	// results back into cb.arg happens without any corresponding write barriers.
   264  	// For cgo, cb.arg points into a C stack frame and therefore doesn't
   265  	// hold any pointers that the GC can find anyway - the write barrier
   266  	// would be a no-op.
   267  	reflectcall(nil, unsafe.Pointer(cb.fn), unsafe.Pointer(cb.arg), uint32(cb.argsize), 0)
   268  
   269  	if raceenabled {
   270  		racereleasemerge(unsafe.Pointer(&racecgosync))
   271  	}
   272  	if msanenabled {
   273  		// Tell msan that we wrote to the entire argument block.
   274  		// This tells msan that we set the results.
   275  		// Since we have already called the function it doesn't
   276  		// matter that we are writing to the non-result parameters.
   277  		msanwrite(cb.arg, cb.argsize)
   278  	}
   279  
   280  	// Do not unwind m->g0->sched.sp.
   281  	// Our caller, cgocallback, will do that.
   282  	restore = false
   283  }
   284  
   285  func unwindm(restore *bool) {
   286  	if !*restore {
   287  		return
   288  	}
   289  	// Restore sp saved by cgocallback during
   290  	// unwind of g's stack (see comment at top of file).
   291  	mp := acquirem()
   292  	sched := &mp.g0.sched
   293  	switch GOARCH {
   294  	default:
   295  		throw("unwindm not implemented")
   296  	case "386", "amd64", "arm", "ppc64", "ppc64le":
   297  		sched.sp = *(*uintptr)(unsafe.Pointer(sched.sp + sys.MinFrameSize))
   298  	case "arm64":
   299  		sched.sp = *(*uintptr)(unsafe.Pointer(sched.sp + 16))
   300  	}
   301  	releasem(mp)
   302  }
   303  
   304  // called from assembly
   305  func badcgocallback() {
   306  	throw("misaligned stack in cgocallback")
   307  }
   308  
   309  // called from (incomplete) assembly
   310  func cgounimpl() {
   311  	throw("cgo not implemented")
   312  }
   313  
   314  var racecgosync uint64 // represents possible synchronization in C code
   315  
   316  // Pointer checking for cgo code.
   317  
   318  // We want to detect all cases where a program that does not use
   319  // unsafe makes a cgo call passing a Go pointer to memory that
   320  // contains a Go pointer.  Here a Go pointer is defined as a pointer
   321  // to memory allocated by the Go runtime.  Programs that use unsafe
   322  // can evade this restriction easily, so we don't try to catch them.
   323  // The cgo program will rewrite all possibly bad pointer arguments to
   324  // call cgoCheckPointer, where we can catch cases of a Go pointer
   325  // pointing to a Go pointer.
   326  
   327  // Complicating matters, taking the address of a slice or array
   328  // element permits the C program to access all elements of the slice
   329  // or array.  In that case we will see a pointer to a single element,
   330  // but we need to check the entire data structure.
   331  
   332  // The cgoCheckPointer call takes additional arguments indicating that
   333  // it was called on an address expression.  An additional argument of
   334  // true means that it only needs to check a single element.  An
   335  // additional argument of a slice or array means that it needs to
   336  // check the entire slice/array, but nothing else.  Otherwise, the
   337  // pointer could be anything, and we check the entire heap object,
   338  // which is conservative but safe.
   339  
   340  // When and if we implement a moving garbage collector,
   341  // cgoCheckPointer will pin the pointer for the duration of the cgo
   342  // call.  (This is necessary but not sufficient; the cgo program will
   343  // also have to change to pin Go pointers that can not point to Go
   344  // pointers.)
   345  
   346  // cgoCheckPointer checks if the argument contains a Go pointer that
   347  // points to a Go pointer, and panics if it does.  It returns the pointer.
   348  func cgoCheckPointer(ptr interface{}, args ...interface{}) interface{} {
   349  	if debug.cgocheck == 0 {
   350  		return ptr
   351  	}
   352  
   353  	ep := (*eface)(unsafe.Pointer(&ptr))
   354  	t := ep._type
   355  
   356  	top := true
   357  	if len(args) > 0 && (t.kind&kindMask == kindPtr || t.kind&kindMask == kindUnsafePointer) {
   358  		p := ep.data
   359  		if t.kind&kindDirectIface == 0 {
   360  			p = *(*unsafe.Pointer)(p)
   361  		}
   362  		if !cgoIsGoPointer(p) {
   363  			return ptr
   364  		}
   365  		aep := (*eface)(unsafe.Pointer(&args[0]))
   366  		switch aep._type.kind & kindMask {
   367  		case kindBool:
   368  			if t.kind&kindMask == kindUnsafePointer {
   369  				// We don't know the type of the element.
   370  				break
   371  			}
   372  			pt := (*ptrtype)(unsafe.Pointer(t))
   373  			cgoCheckArg(pt.elem, p, true, false, cgoCheckPointerFail)
   374  			return ptr
   375  		case kindSlice:
   376  			// Check the slice rather than the pointer.
   377  			ep = aep
   378  			t = ep._type
   379  		case kindArray:
   380  			// Check the array rather than the pointer.
   381  			// Pass top as false since we have a pointer
   382  			// to the array.
   383  			ep = aep
   384  			t = ep._type
   385  			top = false
   386  		default:
   387  			throw("can't happen")
   388  		}
   389  	}
   390  
   391  	cgoCheckArg(t, ep.data, t.kind&kindDirectIface == 0, top, cgoCheckPointerFail)
   392  	return ptr
   393  }
   394  
   395  const cgoCheckPointerFail = "cgo argument has Go pointer to Go pointer"
   396  const cgoResultFail = "cgo result has Go pointer"
   397  
   398  // cgoCheckArg is the real work of cgoCheckPointer.  The argument p
   399  // is either a pointer to the value (of type t), or the value itself,
   400  // depending on indir.  The top parameter is whether we are at the top
   401  // level, where Go pointers are allowed.
   402  func cgoCheckArg(t *_type, p unsafe.Pointer, indir, top bool, msg string) {
   403  	if t.kind&kindNoPointers != 0 {
   404  		// If the type has no pointers there is nothing to do.
   405  		return
   406  	}
   407  
   408  	switch t.kind & kindMask {
   409  	default:
   410  		throw("can't happen")
   411  	case kindArray:
   412  		at := (*arraytype)(unsafe.Pointer(t))
   413  		if !indir {
   414  			if at.len != 1 {
   415  				throw("can't happen")
   416  			}
   417  			cgoCheckArg(at.elem, p, at.elem.kind&kindDirectIface == 0, top, msg)
   418  			return
   419  		}
   420  		for i := uintptr(0); i < at.len; i++ {
   421  			cgoCheckArg(at.elem, p, true, top, msg)
   422  			p = add(p, at.elem.size)
   423  		}
   424  	case kindChan, kindMap:
   425  		// These types contain internal pointers that will
   426  		// always be allocated in the Go heap.  It's never OK
   427  		// to pass them to C.
   428  		panic(errorString(msg))
   429  	case kindFunc:
   430  		if indir {
   431  			p = *(*unsafe.Pointer)(p)
   432  		}
   433  		if !cgoIsGoPointer(p) {
   434  			return
   435  		}
   436  		panic(errorString(msg))
   437  	case kindInterface:
   438  		it := *(**_type)(p)
   439  		if it == nil {
   440  			return
   441  		}
   442  		// A type known at compile time is OK since it's
   443  		// constant.  A type not known at compile time will be
   444  		// in the heap and will not be OK.
   445  		if inheap(uintptr(unsafe.Pointer(it))) {
   446  			panic(errorString(msg))
   447  		}
   448  		p = *(*unsafe.Pointer)(add(p, sys.PtrSize))
   449  		if !cgoIsGoPointer(p) {
   450  			return
   451  		}
   452  		if !top {
   453  			panic(errorString(msg))
   454  		}
   455  		cgoCheckArg(it, p, it.kind&kindDirectIface == 0, false, msg)
   456  	case kindSlice:
   457  		st := (*slicetype)(unsafe.Pointer(t))
   458  		s := (*slice)(p)
   459  		p = s.array
   460  		if !cgoIsGoPointer(p) {
   461  			return
   462  		}
   463  		if !top {
   464  			panic(errorString(msg))
   465  		}
   466  		if st.elem.kind&kindNoPointers != 0 {
   467  			return
   468  		}
   469  		for i := 0; i < s.cap; i++ {
   470  			cgoCheckArg(st.elem, p, true, false, msg)
   471  			p = add(p, st.elem.size)
   472  		}
   473  	case kindString:
   474  		ss := (*stringStruct)(p)
   475  		if !cgoIsGoPointer(ss.str) {
   476  			return
   477  		}
   478  		if !top {
   479  			panic(errorString(msg))
   480  		}
   481  	case kindStruct:
   482  		st := (*structtype)(unsafe.Pointer(t))
   483  		if !indir {
   484  			if len(st.fields) != 1 {
   485  				throw("can't happen")
   486  			}
   487  			cgoCheckArg(st.fields[0].typ, p, st.fields[0].typ.kind&kindDirectIface == 0, top, msg)
   488  			return
   489  		}
   490  		for _, f := range st.fields {
   491  			cgoCheckArg(f.typ, add(p, f.offset), true, top, msg)
   492  		}
   493  	case kindPtr, kindUnsafePointer:
   494  		if indir {
   495  			p = *(*unsafe.Pointer)(p)
   496  		}
   497  
   498  		if !cgoIsGoPointer(p) {
   499  			return
   500  		}
   501  		if !top {
   502  			panic(errorString(msg))
   503  		}
   504  
   505  		cgoCheckUnknownPointer(p, msg)
   506  	}
   507  }
   508  
   509  // cgoCheckUnknownPointer is called for an arbitrary pointer into Go
   510  // memory.  It checks whether that Go memory contains any other
   511  // pointer into Go memory.  If it does, we panic.
   512  // The return values are unused but useful to see in panic tracebacks.
   513  func cgoCheckUnknownPointer(p unsafe.Pointer, msg string) (base, i uintptr) {
   514  	if cgoInRange(p, mheap_.arena_start, mheap_.arena_used) {
   515  		if !inheap(uintptr(p)) {
   516  			// On 32-bit systems it is possible for C's allocated memory
   517  			// to have addresses between arena_start and arena_used.
   518  			// Either this pointer is a stack or an unused span or it's
   519  			// a C allocation. Escape analysis should prevent the first,
   520  			// garbage collection should prevent the second,
   521  			// and the third is completely OK.
   522  			return
   523  		}
   524  
   525  		b, hbits, span := heapBitsForObject(uintptr(p), 0, 0)
   526  		base = b
   527  		if base == 0 {
   528  			return
   529  		}
   530  		n := span.elemsize
   531  		for i = uintptr(0); i < n; i += sys.PtrSize {
   532  			bits := hbits.bits()
   533  			if i >= 2*sys.PtrSize && bits&bitMarked == 0 {
   534  				// No more possible pointers.
   535  				break
   536  			}
   537  			if bits&bitPointer != 0 {
   538  				if cgoIsGoPointer(*(*unsafe.Pointer)(unsafe.Pointer(base + i))) {
   539  					panic(errorString(msg))
   540  				}
   541  			}
   542  			hbits = hbits.next()
   543  		}
   544  
   545  		return
   546  	}
   547  
   548  	for datap := &firstmoduledata; datap != nil; datap = datap.next {
   549  		if cgoInRange(p, datap.data, datap.edata) || cgoInRange(p, datap.bss, datap.ebss) {
   550  			// We have no way to know the size of the object.
   551  			// We have to assume that it might contain a pointer.
   552  			panic(errorString(msg))
   553  		}
   554  		// In the text or noptr sections, we know that the
   555  		// pointer does not point to a Go pointer.
   556  	}
   557  
   558  	return
   559  }
   560  
   561  // cgoIsGoPointer returns whether the pointer is a Go pointer--a
   562  // pointer to Go memory.  We only care about Go memory that might
   563  // contain pointers.
   564  //go:nosplit
   565  //go:nowritebarrierrec
   566  func cgoIsGoPointer(p unsafe.Pointer) bool {
   567  	if p == nil {
   568  		return false
   569  	}
   570  
   571  	if cgoInRange(p, mheap_.arena_start, mheap_.arena_used) {
   572  		return true
   573  	}
   574  
   575  	for datap := &firstmoduledata; datap != nil; datap = datap.next {
   576  		if cgoInRange(p, datap.data, datap.edata) || cgoInRange(p, datap.bss, datap.ebss) {
   577  			return true
   578  		}
   579  	}
   580  
   581  	return false
   582  }
   583  
   584  // cgoInRange returns whether p is between start and end.
   585  //go:nosplit
   586  //go:nowritebarrierrec
   587  func cgoInRange(p unsafe.Pointer, start, end uintptr) bool {
   588  	return start <= uintptr(p) && uintptr(p) < end
   589  }
   590  
   591  // cgoCheckResult is called to check the result parameter of an
   592  // exported Go function.  It panics if the result is or contains a Go
   593  // pointer.
   594  func cgoCheckResult(val interface{}) {
   595  	if debug.cgocheck == 0 {
   596  		return
   597  	}
   598  
   599  	ep := (*eface)(unsafe.Pointer(&val))
   600  	t := ep._type
   601  	cgoCheckArg(t, ep.data, t.kind&kindDirectIface == 0, false, cgoResultFail)
   602  }