github.com/aloncn/graphics-go@v0.0.1/src/runtime/mbitmap.go (about)

     1  // Copyright 2009 The Go Authors.  All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Garbage collector: type and heap bitmaps.
     6  //
     7  // Stack, data, and bss bitmaps
     8  //
     9  // Stack frames and global variables in the data and bss sections are described
    10  // by 1-bit bitmaps in which 0 means uninteresting and 1 means live pointer
    11  // to be visited during GC. The bits in each byte are consumed starting with
    12  // the low bit: 1<<0, 1<<1, and so on.
    13  //
    14  // Heap bitmap
    15  //
    16  // The allocated heap comes from a subset of the memory in the range [start, used),
    17  // where start == mheap_.arena_start and used == mheap_.arena_used.
    18  // The heap bitmap comprises 2 bits for each pointer-sized word in that range,
    19  // stored in bytes indexed backward in memory from start.
    20  // That is, the byte at address start-1 holds the 2-bit entries for the four words
    21  // start through start+3*ptrSize, the byte at start-2 holds the entries for
    22  // start+4*ptrSize through start+7*ptrSize, and so on.
    23  //
    24  // In each 2-bit entry, the lower bit holds the same information as in the 1-bit
    25  // bitmaps: 0 means uninteresting and 1 means live pointer to be visited during GC.
    26  // The meaning of the high bit depends on the position of the word being described
    27  // in its allocated object. In the first word, the high bit is the GC ``marked'' bit.
    28  // In the second word, the high bit is the GC ``checkmarked'' bit (see below).
    29  // In the third and later words, the high bit indicates that the object is still
    30  // being described. In these words, if a bit pair with a high bit 0 is encountered,
    31  // the low bit can also be assumed to be 0, and the object description is over.
    32  // This 00 is called the ``dead'' encoding: it signals that the rest of the words
    33  // in the object are uninteresting to the garbage collector.
    34  //
    35  // The 2-bit entries are split when written into the byte, so that the top half
    36  // of the byte contains 4 mark bits and the bottom half contains 4 pointer bits.
    37  // This form allows a copy from the 1-bit to the 4-bit form to keep the
    38  // pointer bits contiguous, instead of having to space them out.
    39  //
    40  // The code makes use of the fact that the zero value for a heap bitmap
    41  // has no live pointer bit set and is (depending on position), not marked,
    42  // not checkmarked, and is the dead encoding.
    43  // These properties must be preserved when modifying the encoding.
    44  //
    45  // Checkmarks
    46  //
    47  // In a concurrent garbage collector, one worries about failing to mark
    48  // a live object due to mutations without write barriers or bugs in the
    49  // collector implementation. As a sanity check, the GC has a 'checkmark'
    50  // mode that retraverses the object graph with the world stopped, to make
    51  // sure that everything that should be marked is marked.
    52  // In checkmark mode, in the heap bitmap, the high bit of the 2-bit entry
    53  // for the second word of the object holds the checkmark bit.
    54  // When not in checkmark mode, this bit is set to 1.
    55  //
    56  // The smallest possible allocation is 8 bytes. On a 32-bit machine, that
    57  // means every allocated object has two words, so there is room for the
    58  // checkmark bit. On a 64-bit machine, however, the 8-byte allocation is
    59  // just one word, so the second bit pair is not available for encoding the
    60  // checkmark. However, because non-pointer allocations are combined
    61  // into larger 16-byte (maxTinySize) allocations, a plain 8-byte allocation
    62  // must be a pointer, so the type bit in the first word is not actually needed.
    63  // It is still used in general, except in checkmark the type bit is repurposed
    64  // as the checkmark bit and then reinitialized (to 1) as the type bit when
    65  // finished.
    66  
    67  package runtime
    68  
    69  import (
    70  	"runtime/internal/atomic"
    71  	"runtime/internal/sys"
    72  	"unsafe"
    73  )
    74  
    75  const (
    76  	bitPointer = 1 << 0
    77  	bitMarked  = 1 << 4
    78  
    79  	heapBitsShift   = 1                     // shift offset between successive bitPointer or bitMarked entries
    80  	heapBitmapScale = sys.PtrSize * (8 / 2) // number of data bytes described by one heap bitmap byte
    81  
    82  	// all mark/pointer bits in a byte
    83  	bitMarkedAll  = bitMarked | bitMarked<<heapBitsShift | bitMarked<<(2*heapBitsShift) | bitMarked<<(3*heapBitsShift)
    84  	bitPointerAll = bitPointer | bitPointer<<heapBitsShift | bitPointer<<(2*heapBitsShift) | bitPointer<<(3*heapBitsShift)
    85  )
    86  
    87  // addb returns the byte pointer p+n.
    88  //go:nowritebarrier
    89  func addb(p *byte, n uintptr) *byte {
    90  	// Note: wrote out full expression instead of calling add(p, n)
    91  	// to reduce the number of temporaries generated by the
    92  	// compiler for this trivial expression during inlining.
    93  	return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) + n))
    94  }
    95  
    96  // subtractb returns the byte pointer p-n.
    97  //go:nowritebarrier
    98  func subtractb(p *byte, n uintptr) *byte {
    99  	// Note: wrote out full expression instead of calling add(p, -n)
   100  	// to reduce the number of temporaries generated by the
   101  	// compiler for this trivial expression during inlining.
   102  	return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) - n))
   103  }
   104  
   105  // add1 returns the byte pointer p+1.
   106  //go:nowritebarrier
   107  func add1(p *byte) *byte {
   108  	// Note: wrote out full expression instead of calling addb(p, 1)
   109  	// to reduce the number of temporaries generated by the
   110  	// compiler for this trivial expression during inlining.
   111  	return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) + 1))
   112  }
   113  
   114  // subtract1 returns the byte pointer p-1.
   115  //go:nowritebarrier
   116  //
   117  // nosplit because it is used during write barriers and must not be preempted.
   118  //go:nosplit
   119  func subtract1(p *byte) *byte {
   120  	// Note: wrote out full expression instead of calling subtractb(p, 1)
   121  	// to reduce the number of temporaries generated by the
   122  	// compiler for this trivial expression during inlining.
   123  	return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) - 1))
   124  }
   125  
   126  // mHeap_MapBits is called each time arena_used is extended.
   127  // It maps any additional bitmap memory needed for the new arena memory.
   128  // It must be called with the expected new value of arena_used,
   129  // *before* h.arena_used has been updated.
   130  // Waiting to update arena_used until after the memory has been mapped
   131  // avoids faults when other threads try access the bitmap immediately
   132  // after observing the change to arena_used.
   133  //
   134  //go:nowritebarrier
   135  func (h *mheap) mapBits(arena_used uintptr) {
   136  	// Caller has added extra mappings to the arena.
   137  	// Add extra mappings of bitmap words as needed.
   138  	// We allocate extra bitmap pieces in chunks of bitmapChunk.
   139  	const bitmapChunk = 8192
   140  
   141  	n := (arena_used - mheap_.arena_start) / heapBitmapScale
   142  	n = round(n, bitmapChunk)
   143  	n = round(n, sys.PhysPageSize)
   144  	if h.bitmap_mapped >= n {
   145  		return
   146  	}
   147  
   148  	sysMap(unsafe.Pointer(h.arena_start-n), n-h.bitmap_mapped, h.arena_reserved, &memstats.gc_sys)
   149  	h.bitmap_mapped = n
   150  }
   151  
   152  // heapBits provides access to the bitmap bits for a single heap word.
   153  // The methods on heapBits take value receivers so that the compiler
   154  // can more easily inline calls to those methods and registerize the
   155  // struct fields independently.
   156  type heapBits struct {
   157  	bitp  *uint8
   158  	shift uint32
   159  }
   160  
   161  // heapBitsForAddr returns the heapBits for the address addr.
   162  // The caller must have already checked that addr is in the range [mheap_.arena_start, mheap_.arena_used).
   163  //
   164  // nosplit because it is used during write barriers and must not be preempted.
   165  //go:nosplit
   166  func heapBitsForAddr(addr uintptr) heapBits {
   167  	// 2 bits per work, 4 pairs per byte, and a mask is hard coded.
   168  	off := (addr - mheap_.arena_start) / sys.PtrSize
   169  	return heapBits{(*uint8)(unsafe.Pointer(mheap_.arena_start - off/4 - 1)), uint32(off & 3)}
   170  }
   171  
   172  // heapBitsForSpan returns the heapBits for the span base address base.
   173  func heapBitsForSpan(base uintptr) (hbits heapBits) {
   174  	if base < mheap_.arena_start || base >= mheap_.arena_used {
   175  		throw("heapBitsForSpan: base out of range")
   176  	}
   177  	hbits = heapBitsForAddr(base)
   178  	if hbits.shift != 0 {
   179  		throw("heapBitsForSpan: unaligned start")
   180  	}
   181  	return hbits
   182  }
   183  
   184  // heapBitsForObject returns the base address for the heap object
   185  // containing the address p, along with the heapBits for base.
   186  // If p does not point into a heap object,
   187  // return base == 0
   188  // otherwise return the base of the object.
   189  //
   190  // refBase and refOff optionally give the base address of the object
   191  // in which the pointer p was found and the byte offset at which it
   192  // was found. These are used for error reporting.
   193  func heapBitsForObject(p, refBase, refOff uintptr) (base uintptr, hbits heapBits, s *mspan) {
   194  	arenaStart := mheap_.arena_start
   195  	if p < arenaStart || p >= mheap_.arena_used {
   196  		return
   197  	}
   198  	off := p - arenaStart
   199  	idx := off >> _PageShift
   200  	// p points into the heap, but possibly to the middle of an object.
   201  	// Consult the span table to find the block beginning.
   202  	k := p >> _PageShift
   203  	s = h_spans[idx]
   204  	if s == nil || pageID(k) < s.start || p >= s.limit || s.state != mSpanInUse {
   205  		if s == nil || s.state == _MSpanStack {
   206  			// If s is nil, the virtual address has never been part of the heap.
   207  			// This pointer may be to some mmap'd region, so we allow it.
   208  			// Pointers into stacks are also ok, the runtime manages these explicitly.
   209  			return
   210  		}
   211  
   212  		// The following ensures that we are rigorous about what data
   213  		// structures hold valid pointers.
   214  		if debug.invalidptr != 0 {
   215  			// Typically this indicates an incorrect use
   216  			// of unsafe or cgo to store a bad pointer in
   217  			// the Go heap. It may also indicate a runtime
   218  			// bug.
   219  			//
   220  			// TODO(austin): We could be more aggressive
   221  			// and detect pointers to unallocated objects
   222  			// in allocated spans.
   223  			printlock()
   224  			print("runtime: pointer ", hex(p))
   225  			if s.state != mSpanInUse {
   226  				print(" to unallocated span")
   227  			} else {
   228  				print(" to unused region of span")
   229  			}
   230  			print("idx=", hex(idx), " span.start=", hex(s.start<<_PageShift), " span.limit=", hex(s.limit), " span.state=", s.state, "\n")
   231  			if refBase != 0 {
   232  				print("runtime: found in object at *(", hex(refBase), "+", hex(refOff), ")\n")
   233  				gcDumpObject("object", refBase, refOff)
   234  			}
   235  			throw("found bad pointer in Go heap (incorrect use of unsafe or cgo?)")
   236  		}
   237  		return
   238  	}
   239  	// If this span holds object of a power of 2 size, just mask off the bits to
   240  	// the interior of the object. Otherwise use the size to get the base.
   241  	if s.baseMask != 0 {
   242  		// optimize for power of 2 sized objects.
   243  		base = s.base()
   244  		base = base + (p-base)&s.baseMask
   245  		// base = p & s.baseMask is faster for small spans,
   246  		// but doesn't work for large spans.
   247  		// Overall, it's faster to use the more general computation above.
   248  	} else {
   249  		base = s.base()
   250  		if p-base >= s.elemsize {
   251  			// n := (p - base) / s.elemsize, using division by multiplication
   252  			n := uintptr(uint64(p-base) >> s.divShift * uint64(s.divMul) >> s.divShift2)
   253  			base += n * s.elemsize
   254  		}
   255  	}
   256  	// Now that we know the actual base, compute heapBits to return to caller.
   257  	hbits = heapBitsForAddr(base)
   258  	return
   259  }
   260  
   261  // prefetch the bits.
   262  func (h heapBits) prefetch() {
   263  	prefetchnta(uintptr(unsafe.Pointer((h.bitp))))
   264  }
   265  
   266  // next returns the heapBits describing the next pointer-sized word in memory.
   267  // That is, if h describes address p, h.next() describes p+ptrSize.
   268  // Note that next does not modify h. The caller must record the result.
   269  //
   270  // nosplit because it is used during write barriers and must not be preempted.
   271  //go:nosplit
   272  func (h heapBits) next() heapBits {
   273  	if h.shift < 3*heapBitsShift {
   274  		return heapBits{h.bitp, h.shift + heapBitsShift}
   275  	}
   276  	return heapBits{subtract1(h.bitp), 0}
   277  }
   278  
   279  // forward returns the heapBits describing n pointer-sized words ahead of h in memory.
   280  // That is, if h describes address p, h.forward(n) describes p+n*ptrSize.
   281  // h.forward(1) is equivalent to h.next(), just slower.
   282  // Note that forward does not modify h. The caller must record the result.
   283  // bits returns the heap bits for the current word.
   284  func (h heapBits) forward(n uintptr) heapBits {
   285  	n += uintptr(h.shift) / heapBitsShift
   286  	return heapBits{subtractb(h.bitp, n/4), uint32(n%4) * heapBitsShift}
   287  }
   288  
   289  // The caller can test isMarked and isPointer by &-ing with bitMarked and bitPointer.
   290  // The result includes in its higher bits the bits for subsequent words
   291  // described by the same bitmap byte.
   292  func (h heapBits) bits() uint32 {
   293  	return uint32(*h.bitp) >> h.shift
   294  }
   295  
   296  // isMarked reports whether the heap bits have the marked bit set.
   297  // h must describe the initial word of the object.
   298  func (h heapBits) isMarked() bool {
   299  	return *h.bitp&(bitMarked<<h.shift) != 0
   300  }
   301  
   302  // setMarked sets the marked bit in the heap bits, atomically.
   303  // h must describe the initial word of the object.
   304  func (h heapBits) setMarked() {
   305  	// Each byte of GC bitmap holds info for four words.
   306  	// Might be racing with other updates, so use atomic update always.
   307  	// We used to be clever here and use a non-atomic update in certain
   308  	// cases, but it's not worth the risk.
   309  	atomic.Or8(h.bitp, bitMarked<<h.shift)
   310  }
   311  
   312  // setMarkedNonAtomic sets the marked bit in the heap bits, non-atomically.
   313  // h must describe the initial word of the object.
   314  func (h heapBits) setMarkedNonAtomic() {
   315  	*h.bitp |= bitMarked << h.shift
   316  }
   317  
   318  // isPointer reports whether the heap bits describe a pointer word.
   319  // h must describe the initial word of the object.
   320  //
   321  // nosplit because it is used during write barriers and must not be preempted.
   322  //go:nosplit
   323  func (h heapBits) isPointer() bool {
   324  	return (*h.bitp>>h.shift)&bitPointer != 0
   325  }
   326  
   327  // hasPointers reports whether the given object has any pointers.
   328  // It must be told how large the object at h is, so that it does not read too
   329  // far into the bitmap.
   330  // h must describe the initial word of the object.
   331  func (h heapBits) hasPointers(size uintptr) bool {
   332  	if size == sys.PtrSize { // 1-word objects are always pointers
   333  		return true
   334  	}
   335  	// Otherwise, at least a 2-word object, and at least 2-word aligned,
   336  	// so h.shift is either 0 or 2, so we know we can get the bits for the
   337  	// first two words out of *h.bitp.
   338  	// If either of the first two words is a pointer, not pointer free.
   339  	b := uint32(*h.bitp >> h.shift)
   340  	if b&(bitPointer|bitPointer<<heapBitsShift) != 0 {
   341  		return true
   342  	}
   343  	if size == 2*sys.PtrSize {
   344  		return false
   345  	}
   346  	// At least a 4-word object. Check scan bit (aka marked bit) in third word.
   347  	if h.shift == 0 {
   348  		return b&(bitMarked<<(2*heapBitsShift)) != 0
   349  	}
   350  	return uint32(*subtract1(h.bitp))&bitMarked != 0
   351  }
   352  
   353  // isCheckmarked reports whether the heap bits have the checkmarked bit set.
   354  // It must be told how large the object at h is, because the encoding of the
   355  // checkmark bit varies by size.
   356  // h must describe the initial word of the object.
   357  func (h heapBits) isCheckmarked(size uintptr) bool {
   358  	if size == sys.PtrSize {
   359  		return (*h.bitp>>h.shift)&bitPointer != 0
   360  	}
   361  	// All multiword objects are 2-word aligned,
   362  	// so we know that the initial word's 2-bit pair
   363  	// and the second word's 2-bit pair are in the
   364  	// same heap bitmap byte, *h.bitp.
   365  	return (*h.bitp>>(heapBitsShift+h.shift))&bitMarked != 0
   366  }
   367  
   368  // setCheckmarked sets the checkmarked bit.
   369  // It must be told how large the object at h is, because the encoding of the
   370  // checkmark bit varies by size.
   371  // h must describe the initial word of the object.
   372  func (h heapBits) setCheckmarked(size uintptr) {
   373  	if size == sys.PtrSize {
   374  		atomic.Or8(h.bitp, bitPointer<<h.shift)
   375  		return
   376  	}
   377  	atomic.Or8(h.bitp, bitMarked<<(heapBitsShift+h.shift))
   378  }
   379  
   380  // heapBitsBulkBarrier executes writebarrierptr_nostore
   381  // for every pointer slot in the memory range [p, p+size),
   382  // using the heap bitmap to locate those pointer slots.
   383  // This executes the write barriers necessary after a memmove.
   384  // Both p and size must be pointer-aligned.
   385  // The range [p, p+size) must lie within a single allocation.
   386  //
   387  // Callers should call heapBitsBulkBarrier immediately after
   388  // calling memmove(p, src, size). This function is marked nosplit
   389  // to avoid being preempted; the GC must not stop the goroutine
   390  // between the memmove and the execution of the barriers.
   391  //
   392  // The heap bitmap is not maintained for allocations containing
   393  // no pointers at all; any caller of heapBitsBulkBarrier must first
   394  // make sure the underlying allocation contains pointers, usually
   395  // by checking typ.kind&kindNoPointers.
   396  //
   397  //go:nosplit
   398  func heapBitsBulkBarrier(p, size uintptr) {
   399  	if (p|size)&(sys.PtrSize-1) != 0 {
   400  		throw("heapBitsBulkBarrier: unaligned arguments")
   401  	}
   402  	if !writeBarrier.needed {
   403  		return
   404  	}
   405  	if !inheap(p) {
   406  		// If p is on the stack and in a higher frame than the
   407  		// caller, we either need to execute write barriers on
   408  		// it (which is what happens for normal stack writes
   409  		// through pointers to higher frames), or we need to
   410  		// force the mark termination stack scan to scan the
   411  		// frame containing p.
   412  		//
   413  		// Executing write barriers on p is complicated in the
   414  		// general case because we either need to unwind the
   415  		// stack to get the stack map, or we need the type's
   416  		// bitmap, which may be a GC program.
   417  		//
   418  		// Hence, we opt for forcing the re-scan to scan the
   419  		// frame containing p, which we can do by simply
   420  		// unwinding the stack barriers between the current SP
   421  		// and p's frame.
   422  		gp := getg().m.curg
   423  		if gp != nil && gp.stack.lo <= p && p < gp.stack.hi {
   424  			// Run on the system stack to give it more
   425  			// stack space.
   426  			systemstack(func() {
   427  				gcUnwindBarriers(gp, p)
   428  			})
   429  		}
   430  		return
   431  	}
   432  
   433  	h := heapBitsForAddr(p)
   434  	for i := uintptr(0); i < size; i += sys.PtrSize {
   435  		if h.isPointer() {
   436  			x := (*uintptr)(unsafe.Pointer(p + i))
   437  			writebarrierptr_nostore(x, *x)
   438  		}
   439  		h = h.next()
   440  	}
   441  }
   442  
   443  // typeBitsBulkBarrier executes writebarrierptr_nostore
   444  // for every pointer slot in the memory range [p, p+size),
   445  // using the type bitmap to locate those pointer slots.
   446  // The type typ must correspond exactly to [p, p+size).
   447  // This executes the write barriers necessary after a copy.
   448  // Both p and size must be pointer-aligned.
   449  // The type typ must have a plain bitmap, not a GC program.
   450  // The only use of this function is in channel sends, and the
   451  // 64 kB channel element limit takes care of this for us.
   452  //
   453  // Must not be preempted because it typically runs right after memmove,
   454  // and the GC must not complete between those two.
   455  //
   456  //go:nosplit
   457  func typeBitsBulkBarrier(typ *_type, p, size uintptr) {
   458  	if typ == nil {
   459  		throw("runtime: typeBitsBulkBarrier without type")
   460  	}
   461  	if typ.size != size {
   462  		println("runtime: typeBitsBulkBarrier with type ", *typ._string, " of size ", typ.size, " but memory size", size)
   463  		throw("runtime: invalid typeBitsBulkBarrier")
   464  	}
   465  	if typ.kind&kindGCProg != 0 {
   466  		println("runtime: typeBitsBulkBarrier with type ", *typ._string, " with GC prog")
   467  		throw("runtime: invalid typeBitsBulkBarrier")
   468  	}
   469  	if !writeBarrier.needed {
   470  		return
   471  	}
   472  	ptrmask := typ.gcdata
   473  	var bits uint32
   474  	for i := uintptr(0); i < typ.ptrdata; i += sys.PtrSize {
   475  		if i&(sys.PtrSize*8-1) == 0 {
   476  			bits = uint32(*ptrmask)
   477  			ptrmask = addb(ptrmask, 1)
   478  		} else {
   479  			bits = bits >> 1
   480  		}
   481  		if bits&1 != 0 {
   482  			x := (*uintptr)(unsafe.Pointer(p + i))
   483  			writebarrierptr_nostore(x, *x)
   484  		}
   485  	}
   486  }
   487  
   488  // The methods operating on spans all require that h has been returned
   489  // by heapBitsForSpan and that size, n, total are the span layout description
   490  // returned by the mspan's layout method.
   491  // If total > size*n, it means that there is extra leftover memory in the span,
   492  // usually due to rounding.
   493  //
   494  // TODO(rsc): Perhaps introduce a different heapBitsSpan type.
   495  
   496  // initSpan initializes the heap bitmap for a span.
   497  func (h heapBits) initSpan(size, n, total uintptr) {
   498  	if total%heapBitmapScale != 0 {
   499  		throw("initSpan: unaligned length")
   500  	}
   501  	nbyte := total / heapBitmapScale
   502  	if sys.PtrSize == 8 && size == sys.PtrSize {
   503  		end := h.bitp
   504  		bitp := subtractb(end, nbyte-1)
   505  		for {
   506  			*bitp = bitPointerAll
   507  			if bitp == end {
   508  				break
   509  			}
   510  			bitp = add1(bitp)
   511  		}
   512  		return
   513  	}
   514  	memclr(unsafe.Pointer(subtractb(h.bitp, nbyte-1)), nbyte)
   515  }
   516  
   517  // initCheckmarkSpan initializes a span for being checkmarked.
   518  // It clears the checkmark bits, which are set to 1 in normal operation.
   519  func (h heapBits) initCheckmarkSpan(size, n, total uintptr) {
   520  	// The ptrSize == 8 is a compile-time constant false on 32-bit and eliminates this code entirely.
   521  	if sys.PtrSize == 8 && size == sys.PtrSize {
   522  		// Checkmark bit is type bit, bottom bit of every 2-bit entry.
   523  		// Only possible on 64-bit system, since minimum size is 8.
   524  		// Must clear type bit (checkmark bit) of every word.
   525  		// The type bit is the lower of every two-bit pair.
   526  		bitp := h.bitp
   527  		for i := uintptr(0); i < n; i += 4 {
   528  			*bitp &^= bitPointerAll
   529  			bitp = subtract1(bitp)
   530  		}
   531  		return
   532  	}
   533  	for i := uintptr(0); i < n; i++ {
   534  		*h.bitp &^= bitMarked << (heapBitsShift + h.shift)
   535  		h = h.forward(size / sys.PtrSize)
   536  	}
   537  }
   538  
   539  // clearCheckmarkSpan undoes all the checkmarking in a span.
   540  // The actual checkmark bits are ignored, so the only work to do
   541  // is to fix the pointer bits. (Pointer bits are ignored by scanobject
   542  // but consulted by typedmemmove.)
   543  func (h heapBits) clearCheckmarkSpan(size, n, total uintptr) {
   544  	// The ptrSize == 8 is a compile-time constant false on 32-bit and eliminates this code entirely.
   545  	if sys.PtrSize == 8 && size == sys.PtrSize {
   546  		// Checkmark bit is type bit, bottom bit of every 2-bit entry.
   547  		// Only possible on 64-bit system, since minimum size is 8.
   548  		// Must clear type bit (checkmark bit) of every word.
   549  		// The type bit is the lower of every two-bit pair.
   550  		bitp := h.bitp
   551  		for i := uintptr(0); i < n; i += 4 {
   552  			*bitp |= bitPointerAll
   553  			bitp = subtract1(bitp)
   554  		}
   555  	}
   556  }
   557  
   558  // heapBitsSweepSpan coordinates the sweeping of a span by reading
   559  // and updating the corresponding heap bitmap entries.
   560  // For each free object in the span, heapBitsSweepSpan sets the type
   561  // bits for the first two words (or one for single-word objects) to typeDead
   562  // and then calls f(p), where p is the object's base address.
   563  // f is expected to add the object to a free list.
   564  // For non-free objects, heapBitsSweepSpan turns off the marked bit.
   565  func heapBitsSweepSpan(base, size, n uintptr, f func(uintptr)) {
   566  	h := heapBitsForSpan(base)
   567  	switch {
   568  	default:
   569  		throw("heapBitsSweepSpan")
   570  	case sys.PtrSize == 8 && size == sys.PtrSize:
   571  		// Consider mark bits in all four 2-bit entries of each bitmap byte.
   572  		bitp := h.bitp
   573  		for i := uintptr(0); i < n; i += 4 {
   574  			x := uint32(*bitp)
   575  			// Note that unlike the other size cases, we leave the pointer bits set here.
   576  			// These are initialized during initSpan when the span is created and left
   577  			// in place the whole time the span is used for pointer-sized objects.
   578  			// That lets heapBitsSetType avoid an atomic update to set the pointer bit
   579  			// during allocation.
   580  			if x&bitMarked != 0 {
   581  				x &^= bitMarked
   582  			} else {
   583  				f(base + i*sys.PtrSize)
   584  			}
   585  			if x&(bitMarked<<heapBitsShift) != 0 {
   586  				x &^= bitMarked << heapBitsShift
   587  			} else {
   588  				f(base + (i+1)*sys.PtrSize)
   589  			}
   590  			if x&(bitMarked<<(2*heapBitsShift)) != 0 {
   591  				x &^= bitMarked << (2 * heapBitsShift)
   592  			} else {
   593  				f(base + (i+2)*sys.PtrSize)
   594  			}
   595  			if x&(bitMarked<<(3*heapBitsShift)) != 0 {
   596  				x &^= bitMarked << (3 * heapBitsShift)
   597  			} else {
   598  				f(base + (i+3)*sys.PtrSize)
   599  			}
   600  			*bitp = uint8(x)
   601  			bitp = subtract1(bitp)
   602  		}
   603  
   604  	case size%(4*sys.PtrSize) == 0:
   605  		// Mark bit is in first word of each object.
   606  		// Each object starts at bit 0 of a heap bitmap byte.
   607  		bitp := h.bitp
   608  		step := size / heapBitmapScale
   609  		for i := uintptr(0); i < n; i++ {
   610  			x := uint32(*bitp)
   611  			if x&bitMarked != 0 {
   612  				x &^= bitMarked
   613  			} else {
   614  				x = 0
   615  				f(base + i*size)
   616  			}
   617  			*bitp = uint8(x)
   618  			bitp = subtractb(bitp, step)
   619  		}
   620  
   621  	case size%(4*sys.PtrSize) == 2*sys.PtrSize:
   622  		// Mark bit is in first word of each object,
   623  		// but every other object starts halfway through a heap bitmap byte.
   624  		// Unroll loop 2x to handle alternating shift count and step size.
   625  		bitp := h.bitp
   626  		step := size / heapBitmapScale
   627  		var i uintptr
   628  		for i = uintptr(0); i < n; i += 2 {
   629  			x := uint32(*bitp)
   630  			if x&bitMarked != 0 {
   631  				x &^= bitMarked
   632  			} else {
   633  				x &^= bitMarked | bitPointer | (bitMarked|bitPointer)<<heapBitsShift
   634  				f(base + i*size)
   635  				if size > 2*sys.PtrSize {
   636  					x = 0
   637  				}
   638  			}
   639  			*bitp = uint8(x)
   640  			if i+1 >= n {
   641  				break
   642  			}
   643  			bitp = subtractb(bitp, step)
   644  			x = uint32(*bitp)
   645  			if x&(bitMarked<<(2*heapBitsShift)) != 0 {
   646  				x &^= bitMarked << (2 * heapBitsShift)
   647  			} else {
   648  				x &^= (bitMarked|bitPointer)<<(2*heapBitsShift) | (bitMarked|bitPointer)<<(3*heapBitsShift)
   649  				f(base + (i+1)*size)
   650  				if size > 2*sys.PtrSize {
   651  					*subtract1(bitp) = 0
   652  				}
   653  			}
   654  			*bitp = uint8(x)
   655  			bitp = subtractb(bitp, step+1)
   656  		}
   657  	}
   658  }
   659  
   660  // heapBitsSetType records that the new allocation [x, x+size)
   661  // holds in [x, x+dataSize) one or more values of type typ.
   662  // (The number of values is given by dataSize / typ.size.)
   663  // If dataSize < size, the fragment [x+dataSize, x+size) is
   664  // recorded as non-pointer data.
   665  // It is known that the type has pointers somewhere;
   666  // malloc does not call heapBitsSetType when there are no pointers,
   667  // because all free objects are marked as noscan during
   668  // heapBitsSweepSpan.
   669  // There can only be one allocation from a given span active at a time,
   670  // so this code is not racing with other instances of itself,
   671  // and we don't allocate from a span until it has been swept,
   672  // so this code is not racing with heapBitsSweepSpan.
   673  // It is, however, racing with the concurrent GC mark phase,
   674  // which can be setting the mark bit in the leading 2-bit entry
   675  // of an allocated block. The block we are modifying is not quite
   676  // allocated yet, so the GC marker is not racing with updates to x's bits,
   677  // but if the start or end of x shares a bitmap byte with an adjacent
   678  // object, the GC marker is racing with updates to those object's mark bits.
   679  func heapBitsSetType(x, size, dataSize uintptr, typ *_type) {
   680  	const doubleCheck = false // slow but helpful; enable to test modifications to this code
   681  
   682  	// dataSize is always size rounded up to the next malloc size class,
   683  	// except in the case of allocating a defer block, in which case
   684  	// size is sizeof(_defer{}) (at least 6 words) and dataSize may be
   685  	// arbitrarily larger.
   686  	//
   687  	// The checks for size == ptrSize and size == 2*ptrSize can therefore
   688  	// assume that dataSize == size without checking it explicitly.
   689  
   690  	if sys.PtrSize == 8 && size == sys.PtrSize {
   691  		// It's one word and it has pointers, it must be a pointer.
   692  		// In general we'd need an atomic update here if the
   693  		// concurrent GC were marking objects in this span,
   694  		// because each bitmap byte describes 3 other objects
   695  		// in addition to the one being allocated.
   696  		// However, since all allocated one-word objects are pointers
   697  		// (non-pointers are aggregated into tinySize allocations),
   698  		// initSpan sets the pointer bits for us. Nothing to do here.
   699  		if doubleCheck {
   700  			h := heapBitsForAddr(x)
   701  			if !h.isPointer() {
   702  				throw("heapBitsSetType: pointer bit missing")
   703  			}
   704  		}
   705  		return
   706  	}
   707  
   708  	h := heapBitsForAddr(x)
   709  	ptrmask := typ.gcdata // start of 1-bit pointer mask (or GC program, handled below)
   710  
   711  	// Heap bitmap bits for 2-word object are only 4 bits,
   712  	// so also shared with objects next to it; use atomic updates.
   713  	// This is called out as a special case primarily for 32-bit systems,
   714  	// so that on 32-bit systems the code below can assume all objects
   715  	// are 4-word aligned (because they're all 16-byte aligned).
   716  	if size == 2*sys.PtrSize {
   717  		if typ.size == sys.PtrSize {
   718  			// We're allocating a block big enough to hold two pointers.
   719  			// On 64-bit, that means the actual object must be two pointers,
   720  			// or else we'd have used the one-pointer-sized block.
   721  			// On 32-bit, however, this is the 8-byte block, the smallest one.
   722  			// So it could be that we're allocating one pointer and this was
   723  			// just the smallest block available. Distinguish by checking dataSize.
   724  			// (In general the number of instances of typ being allocated is
   725  			// dataSize/typ.size.)
   726  			if sys.PtrSize == 4 && dataSize == sys.PtrSize {
   727  				// 1 pointer.
   728  				if gcphase == _GCoff {
   729  					*h.bitp |= bitPointer << h.shift
   730  				} else {
   731  					atomic.Or8(h.bitp, bitPointer<<h.shift)
   732  				}
   733  			} else {
   734  				// 2-element slice of pointer.
   735  				if gcphase == _GCoff {
   736  					*h.bitp |= (bitPointer | bitPointer<<heapBitsShift) << h.shift
   737  				} else {
   738  					atomic.Or8(h.bitp, (bitPointer|bitPointer<<heapBitsShift)<<h.shift)
   739  				}
   740  			}
   741  			return
   742  		}
   743  		// Otherwise typ.size must be 2*ptrSize, and typ.kind&kindGCProg == 0.
   744  		if doubleCheck {
   745  			if typ.size != 2*sys.PtrSize || typ.kind&kindGCProg != 0 {
   746  				print("runtime: heapBitsSetType size=", size, " but typ.size=", typ.size, " gcprog=", typ.kind&kindGCProg != 0, "\n")
   747  				throw("heapBitsSetType")
   748  			}
   749  		}
   750  		b := uint32(*ptrmask)
   751  		hb := b & 3
   752  		if gcphase == _GCoff {
   753  			*h.bitp |= uint8(hb << h.shift)
   754  		} else {
   755  			atomic.Or8(h.bitp, uint8(hb<<h.shift))
   756  		}
   757  		return
   758  	}
   759  
   760  	// Copy from 1-bit ptrmask into 2-bit bitmap.
   761  	// The basic approach is to use a single uintptr as a bit buffer,
   762  	// alternating between reloading the buffer and writing bitmap bytes.
   763  	// In general, one load can supply two bitmap byte writes.
   764  	// This is a lot of lines of code, but it compiles into relatively few
   765  	// machine instructions.
   766  
   767  	var (
   768  		// Ptrmask input.
   769  		p     *byte   // last ptrmask byte read
   770  		b     uintptr // ptrmask bits already loaded
   771  		nb    uintptr // number of bits in b at next read
   772  		endp  *byte   // final ptrmask byte to read (then repeat)
   773  		endnb uintptr // number of valid bits in *endp
   774  		pbits uintptr // alternate source of bits
   775  
   776  		// Heap bitmap output.
   777  		w     uintptr // words processed
   778  		nw    uintptr // number of words to process
   779  		hbitp *byte   // next heap bitmap byte to write
   780  		hb    uintptr // bits being prepared for *hbitp
   781  	)
   782  
   783  	hbitp = h.bitp
   784  
   785  	// Handle GC program. Delayed until this part of the code
   786  	// so that we can use the same double-checking mechanism
   787  	// as the 1-bit case. Nothing above could have encountered
   788  	// GC programs: the cases were all too small.
   789  	if typ.kind&kindGCProg != 0 {
   790  		heapBitsSetTypeGCProg(h, typ.ptrdata, typ.size, dataSize, size, addb(typ.gcdata, 4))
   791  		if doubleCheck {
   792  			// Double-check the heap bits written by GC program
   793  			// by running the GC program to create a 1-bit pointer mask
   794  			// and then jumping to the double-check code below.
   795  			// This doesn't catch bugs shared between the 1-bit and 4-bit
   796  			// GC program execution, but it does catch mistakes specific
   797  			// to just one of those and bugs in heapBitsSetTypeGCProg's
   798  			// implementation of arrays.
   799  			lock(&debugPtrmask.lock)
   800  			if debugPtrmask.data == nil {
   801  				debugPtrmask.data = (*byte)(persistentalloc(1<<20, 1, &memstats.other_sys))
   802  			}
   803  			ptrmask = debugPtrmask.data
   804  			runGCProg(addb(typ.gcdata, 4), nil, ptrmask, 1)
   805  			goto Phase4
   806  		}
   807  		return
   808  	}
   809  
   810  	// Note about sizes:
   811  	//
   812  	// typ.size is the number of words in the object,
   813  	// and typ.ptrdata is the number of words in the prefix
   814  	// of the object that contains pointers. That is, the final
   815  	// typ.size - typ.ptrdata words contain no pointers.
   816  	// This allows optimization of a common pattern where
   817  	// an object has a small header followed by a large scalar
   818  	// buffer. If we know the pointers are over, we don't have
   819  	// to scan the buffer's heap bitmap at all.
   820  	// The 1-bit ptrmasks are sized to contain only bits for
   821  	// the typ.ptrdata prefix, zero padded out to a full byte
   822  	// of bitmap. This code sets nw (below) so that heap bitmap
   823  	// bits are only written for the typ.ptrdata prefix; if there is
   824  	// more room in the allocated object, the next heap bitmap
   825  	// entry is a 00, indicating that there are no more pointers
   826  	// to scan. So only the ptrmask for the ptrdata bytes is needed.
   827  	//
   828  	// Replicated copies are not as nice: if there is an array of
   829  	// objects with scalar tails, all but the last tail does have to
   830  	// be initialized, because there is no way to say "skip forward".
   831  	// However, because of the possibility of a repeated type with
   832  	// size not a multiple of 4 pointers (one heap bitmap byte),
   833  	// the code already must handle the last ptrmask byte specially
   834  	// by treating it as containing only the bits for endnb pointers,
   835  	// where endnb <= 4. We represent large scalar tails that must
   836  	// be expanded in the replication by setting endnb larger than 4.
   837  	// This will have the effect of reading many bits out of b,
   838  	// but once the real bits are shifted out, b will supply as many
   839  	// zero bits as we try to read, which is exactly what we need.
   840  
   841  	p = ptrmask
   842  	if typ.size < dataSize {
   843  		// Filling in bits for an array of typ.
   844  		// Set up for repetition of ptrmask during main loop.
   845  		// Note that ptrmask describes only a prefix of
   846  		const maxBits = sys.PtrSize*8 - 7
   847  		if typ.ptrdata/sys.PtrSize <= maxBits {
   848  			// Entire ptrmask fits in uintptr with room for a byte fragment.
   849  			// Load into pbits and never read from ptrmask again.
   850  			// This is especially important when the ptrmask has
   851  			// fewer than 8 bits in it; otherwise the reload in the middle
   852  			// of the Phase 2 loop would itself need to loop to gather
   853  			// at least 8 bits.
   854  
   855  			// Accumulate ptrmask into b.
   856  			// ptrmask is sized to describe only typ.ptrdata, but we record
   857  			// it as describing typ.size bytes, since all the high bits are zero.
   858  			nb = typ.ptrdata / sys.PtrSize
   859  			for i := uintptr(0); i < nb; i += 8 {
   860  				b |= uintptr(*p) << i
   861  				p = add1(p)
   862  			}
   863  			nb = typ.size / sys.PtrSize
   864  
   865  			// Replicate ptrmask to fill entire pbits uintptr.
   866  			// Doubling and truncating is fewer steps than
   867  			// iterating by nb each time. (nb could be 1.)
   868  			// Since we loaded typ.ptrdata/ptrSize bits
   869  			// but are pretending to have typ.size/ptrSize,
   870  			// there might be no replication necessary/possible.
   871  			pbits = b
   872  			endnb = nb
   873  			if nb+nb <= maxBits {
   874  				for endnb <= sys.PtrSize*8 {
   875  					pbits |= pbits << endnb
   876  					endnb += endnb
   877  				}
   878  				// Truncate to a multiple of original ptrmask.
   879  				endnb = maxBits / nb * nb
   880  				pbits &= 1<<endnb - 1
   881  				b = pbits
   882  				nb = endnb
   883  			}
   884  
   885  			// Clear p and endp as sentinel for using pbits.
   886  			// Checked during Phase 2 loop.
   887  			p = nil
   888  			endp = nil
   889  		} else {
   890  			// Ptrmask is larger. Read it multiple times.
   891  			n := (typ.ptrdata/sys.PtrSize+7)/8 - 1
   892  			endp = addb(ptrmask, n)
   893  			endnb = typ.size/sys.PtrSize - n*8
   894  		}
   895  	}
   896  	if p != nil {
   897  		b = uintptr(*p)
   898  		p = add1(p)
   899  		nb = 8
   900  	}
   901  
   902  	if typ.size == dataSize {
   903  		// Single entry: can stop once we reach the non-pointer data.
   904  		nw = typ.ptrdata / sys.PtrSize
   905  	} else {
   906  		// Repeated instances of typ in an array.
   907  		// Have to process first N-1 entries in full, but can stop
   908  		// once we reach the non-pointer data in the final entry.
   909  		nw = ((dataSize/typ.size-1)*typ.size + typ.ptrdata) / sys.PtrSize
   910  	}
   911  	if nw == 0 {
   912  		// No pointers! Caller was supposed to check.
   913  		println("runtime: invalid type ", *typ._string)
   914  		throw("heapBitsSetType: called with non-pointer type")
   915  		return
   916  	}
   917  	if nw < 2 {
   918  		// Must write at least 2 words, because the "no scan"
   919  		// encoding doesn't take effect until the third word.
   920  		nw = 2
   921  	}
   922  
   923  	// Phase 1: Special case for leading byte (shift==0) or half-byte (shift==4).
   924  	// The leading byte is special because it contains the bits for words 0 and 1,
   925  	// which do not have the marked bits set.
   926  	// The leading half-byte is special because it's a half a byte and must be
   927  	// manipulated atomically.
   928  	switch {
   929  	default:
   930  		throw("heapBitsSetType: unexpected shift")
   931  
   932  	case h.shift == 0:
   933  		// Ptrmask and heap bitmap are aligned.
   934  		// Handle first byte of bitmap specially.
   935  		// The first byte we write out contains the first two words of the object.
   936  		// In those words, the mark bits are mark and checkmark, respectively,
   937  		// and must not be set. In all following words, we want to set the mark bit
   938  		// as a signal that the object continues to the next 2-bit entry in the bitmap.
   939  		hb = b & bitPointerAll
   940  		hb |= bitMarked<<(2*heapBitsShift) | bitMarked<<(3*heapBitsShift)
   941  		if w += 4; w >= nw {
   942  			goto Phase3
   943  		}
   944  		*hbitp = uint8(hb)
   945  		hbitp = subtract1(hbitp)
   946  		b >>= 4
   947  		nb -= 4
   948  
   949  	case sys.PtrSize == 8 && h.shift == 2:
   950  		// Ptrmask and heap bitmap are misaligned.
   951  		// The bits for the first two words are in a byte shared with another object
   952  		// and must be updated atomically.
   953  		// NOTE(rsc): The atomic here may not be necessary.
   954  		// We took care of 1-word and 2-word objects above,
   955  		// so this is at least a 6-word object, so our start bits
   956  		// are shared only with the type bits of another object,
   957  		// not with its mark bit. Since there is only one allocation
   958  		// from a given span at a time, we should be able to set
   959  		// these bits non-atomically. Not worth the risk right now.
   960  		hb = (b & 3) << (2 * heapBitsShift)
   961  		b >>= 2
   962  		nb -= 2
   963  		// Note: no bitMarker in hb because the first two words don't get markers from us.
   964  		if gcphase == _GCoff {
   965  			*hbitp |= uint8(hb)
   966  		} else {
   967  			atomic.Or8(hbitp, uint8(hb))
   968  		}
   969  		hbitp = subtract1(hbitp)
   970  		if w += 2; w >= nw {
   971  			// We know that there is more data, because we handled 2-word objects above.
   972  			// This must be at least a 6-word object. If we're out of pointer words,
   973  			// mark no scan in next bitmap byte and finish.
   974  			hb = 0
   975  			w += 4
   976  			goto Phase3
   977  		}
   978  	}
   979  
   980  	// Phase 2: Full bytes in bitmap, up to but not including write to last byte (full or partial) in bitmap.
   981  	// The loop computes the bits for that last write but does not execute the write;
   982  	// it leaves the bits in hb for processing by phase 3.
   983  	// To avoid repeated adjustment of nb, we subtract out the 4 bits we're going to
   984  	// use in the first half of the loop right now, and then we only adjust nb explicitly
   985  	// if the 8 bits used by each iteration isn't balanced by 8 bits loaded mid-loop.
   986  	nb -= 4
   987  	for {
   988  		// Emit bitmap byte.
   989  		// b has at least nb+4 bits, with one exception:
   990  		// if w+4 >= nw, then b has only nw-w bits,
   991  		// but we'll stop at the break and then truncate
   992  		// appropriately in Phase 3.
   993  		hb = b & bitPointerAll
   994  		hb |= bitMarkedAll
   995  		if w += 4; w >= nw {
   996  			break
   997  		}
   998  		*hbitp = uint8(hb)
   999  		hbitp = subtract1(hbitp)
  1000  		b >>= 4
  1001  
  1002  		// Load more bits. b has nb right now.
  1003  		if p != endp {
  1004  			// Fast path: keep reading from ptrmask.
  1005  			// nb unmodified: we just loaded 8 bits,
  1006  			// and the next iteration will consume 8 bits,
  1007  			// leaving us with the same nb the next time we're here.
  1008  			if nb < 8 {
  1009  				b |= uintptr(*p) << nb
  1010  				p = add1(p)
  1011  			} else {
  1012  				// Reduce the number of bits in b.
  1013  				// This is important if we skipped
  1014  				// over a scalar tail, since nb could
  1015  				// be larger than the bit width of b.
  1016  				nb -= 8
  1017  			}
  1018  		} else if p == nil {
  1019  			// Almost as fast path: track bit count and refill from pbits.
  1020  			// For short repetitions.
  1021  			if nb < 8 {
  1022  				b |= pbits << nb
  1023  				nb += endnb
  1024  			}
  1025  			nb -= 8 // for next iteration
  1026  		} else {
  1027  			// Slow path: reached end of ptrmask.
  1028  			// Process final partial byte and rewind to start.
  1029  			b |= uintptr(*p) << nb
  1030  			nb += endnb
  1031  			if nb < 8 {
  1032  				b |= uintptr(*ptrmask) << nb
  1033  				p = add1(ptrmask)
  1034  			} else {
  1035  				nb -= 8
  1036  				p = ptrmask
  1037  			}
  1038  		}
  1039  
  1040  		// Emit bitmap byte.
  1041  		hb = b & bitPointerAll
  1042  		hb |= bitMarkedAll
  1043  		if w += 4; w >= nw {
  1044  			break
  1045  		}
  1046  		*hbitp = uint8(hb)
  1047  		hbitp = subtract1(hbitp)
  1048  		b >>= 4
  1049  	}
  1050  
  1051  Phase3:
  1052  	// Phase 3: Write last byte or partial byte and zero the rest of the bitmap entries.
  1053  	if w > nw {
  1054  		// Counting the 4 entries in hb not yet written to memory,
  1055  		// there are more entries than possible pointer slots.
  1056  		// Discard the excess entries (can't be more than 3).
  1057  		mask := uintptr(1)<<(4-(w-nw)) - 1
  1058  		hb &= mask | mask<<4 // apply mask to both pointer bits and mark bits
  1059  	}
  1060  
  1061  	// Change nw from counting possibly-pointer words to total words in allocation.
  1062  	nw = size / sys.PtrSize
  1063  
  1064  	// Write whole bitmap bytes.
  1065  	// The first is hb, the rest are zero.
  1066  	if w <= nw {
  1067  		*hbitp = uint8(hb)
  1068  		hbitp = subtract1(hbitp)
  1069  		hb = 0 // for possible final half-byte below
  1070  		for w += 4; w <= nw; w += 4 {
  1071  			*hbitp = 0
  1072  			hbitp = subtract1(hbitp)
  1073  		}
  1074  	}
  1075  
  1076  	// Write final partial bitmap byte if any.
  1077  	// We know w > nw, or else we'd still be in the loop above.
  1078  	// It can be bigger only due to the 4 entries in hb that it counts.
  1079  	// If w == nw+4 then there's nothing left to do: we wrote all nw entries
  1080  	// and can discard the 4 sitting in hb.
  1081  	// But if w == nw+2, we need to write first two in hb.
  1082  	// The byte is shared with the next object so we may need an atomic.
  1083  	if w == nw+2 {
  1084  		if gcphase == _GCoff {
  1085  			*hbitp = *hbitp&^(bitPointer|bitMarked|(bitPointer|bitMarked)<<heapBitsShift) | uint8(hb)
  1086  		} else {
  1087  			atomic.And8(hbitp, ^uint8(bitPointer|bitMarked|(bitPointer|bitMarked)<<heapBitsShift))
  1088  			atomic.Or8(hbitp, uint8(hb))
  1089  		}
  1090  	}
  1091  
  1092  Phase4:
  1093  	// Phase 4: all done, but perhaps double check.
  1094  	if doubleCheck {
  1095  		end := heapBitsForAddr(x + size)
  1096  		if typ.kind&kindGCProg == 0 && (hbitp != end.bitp || (w == nw+2) != (end.shift == 2)) {
  1097  			println("ended at wrong bitmap byte for", *typ._string, "x", dataSize/typ.size)
  1098  			print("typ.size=", typ.size, " typ.ptrdata=", typ.ptrdata, " dataSize=", dataSize, " size=", size, "\n")
  1099  			print("w=", w, " nw=", nw, " b=", hex(b), " nb=", nb, " hb=", hex(hb), "\n")
  1100  			h0 := heapBitsForAddr(x)
  1101  			print("initial bits h0.bitp=", h0.bitp, " h0.shift=", h0.shift, "\n")
  1102  			print("ended at hbitp=", hbitp, " but next starts at bitp=", end.bitp, " shift=", end.shift, "\n")
  1103  			throw("bad heapBitsSetType")
  1104  		}
  1105  
  1106  		// Double-check that bits to be written were written correctly.
  1107  		// Does not check that other bits were not written, unfortunately.
  1108  		h := heapBitsForAddr(x)
  1109  		nptr := typ.ptrdata / sys.PtrSize
  1110  		ndata := typ.size / sys.PtrSize
  1111  		count := dataSize / typ.size
  1112  		totalptr := ((count-1)*typ.size + typ.ptrdata) / sys.PtrSize
  1113  		for i := uintptr(0); i < size/sys.PtrSize; i++ {
  1114  			j := i % ndata
  1115  			var have, want uint8
  1116  			have = (*h.bitp >> h.shift) & (bitPointer | bitMarked)
  1117  			if i >= totalptr {
  1118  				want = 0 // deadmarker
  1119  				if typ.kind&kindGCProg != 0 && i < (totalptr+3)/4*4 {
  1120  					want = bitMarked
  1121  				}
  1122  			} else {
  1123  				if j < nptr && (*addb(ptrmask, j/8)>>(j%8))&1 != 0 {
  1124  					want |= bitPointer
  1125  				}
  1126  				if i >= 2 {
  1127  					want |= bitMarked
  1128  				} else {
  1129  					have &^= bitMarked
  1130  				}
  1131  			}
  1132  			if have != want {
  1133  				println("mismatch writing bits for", *typ._string, "x", dataSize/typ.size)
  1134  				print("typ.size=", typ.size, " typ.ptrdata=", typ.ptrdata, " dataSize=", dataSize, " size=", size, "\n")
  1135  				print("kindGCProg=", typ.kind&kindGCProg != 0, "\n")
  1136  				print("w=", w, " nw=", nw, " b=", hex(b), " nb=", nb, " hb=", hex(hb), "\n")
  1137  				h0 := heapBitsForAddr(x)
  1138  				print("initial bits h0.bitp=", h0.bitp, " h0.shift=", h0.shift, "\n")
  1139  				print("current bits h.bitp=", h.bitp, " h.shift=", h.shift, " *h.bitp=", hex(*h.bitp), "\n")
  1140  				print("ptrmask=", ptrmask, " p=", p, " endp=", endp, " endnb=", endnb, " pbits=", hex(pbits), " b=", hex(b), " nb=", nb, "\n")
  1141  				println("at word", i, "offset", i*sys.PtrSize, "have", have, "want", want)
  1142  				if typ.kind&kindGCProg != 0 {
  1143  					println("GC program:")
  1144  					dumpGCProg(addb(typ.gcdata, 4))
  1145  				}
  1146  				throw("bad heapBitsSetType")
  1147  			}
  1148  			h = h.next()
  1149  		}
  1150  		if ptrmask == debugPtrmask.data {
  1151  			unlock(&debugPtrmask.lock)
  1152  		}
  1153  	}
  1154  }
  1155  
  1156  var debugPtrmask struct {
  1157  	lock mutex
  1158  	data *byte
  1159  }
  1160  
  1161  // heapBitsSetTypeGCProg implements heapBitsSetType using a GC program.
  1162  // progSize is the size of the memory described by the program.
  1163  // elemSize is the size of the element that the GC program describes (a prefix of).
  1164  // dataSize is the total size of the intended data, a multiple of elemSize.
  1165  // allocSize is the total size of the allocated memory.
  1166  //
  1167  // GC programs are only used for large allocations.
  1168  // heapBitsSetType requires that allocSize is a multiple of 4 words,
  1169  // so that the relevant bitmap bytes are not shared with surrounding
  1170  // objects and need not be accessed with atomic instructions.
  1171  func heapBitsSetTypeGCProg(h heapBits, progSize, elemSize, dataSize, allocSize uintptr, prog *byte) {
  1172  	if sys.PtrSize == 8 && allocSize%(4*sys.PtrSize) != 0 {
  1173  		// Alignment will be wrong.
  1174  		throw("heapBitsSetTypeGCProg: small allocation")
  1175  	}
  1176  	var totalBits uintptr
  1177  	if elemSize == dataSize {
  1178  		totalBits = runGCProg(prog, nil, h.bitp, 2)
  1179  		if totalBits*sys.PtrSize != progSize {
  1180  			println("runtime: heapBitsSetTypeGCProg: total bits", totalBits, "but progSize", progSize)
  1181  			throw("heapBitsSetTypeGCProg: unexpected bit count")
  1182  		}
  1183  	} else {
  1184  		count := dataSize / elemSize
  1185  
  1186  		// Piece together program trailer to run after prog that does:
  1187  		//	literal(0)
  1188  		//	repeat(1, elemSize-progSize-1) // zeros to fill element size
  1189  		//	repeat(elemSize, count-1) // repeat that element for count
  1190  		// This zero-pads the data remaining in the first element and then
  1191  		// repeats that first element to fill the array.
  1192  		var trailer [40]byte // 3 varints (max 10 each) + some bytes
  1193  		i := 0
  1194  		if n := elemSize/sys.PtrSize - progSize/sys.PtrSize; n > 0 {
  1195  			// literal(0)
  1196  			trailer[i] = 0x01
  1197  			i++
  1198  			trailer[i] = 0
  1199  			i++
  1200  			if n > 1 {
  1201  				// repeat(1, n-1)
  1202  				trailer[i] = 0x81
  1203  				i++
  1204  				n--
  1205  				for ; n >= 0x80; n >>= 7 {
  1206  					trailer[i] = byte(n | 0x80)
  1207  					i++
  1208  				}
  1209  				trailer[i] = byte(n)
  1210  				i++
  1211  			}
  1212  		}
  1213  		// repeat(elemSize/ptrSize, count-1)
  1214  		trailer[i] = 0x80
  1215  		i++
  1216  		n := elemSize / sys.PtrSize
  1217  		for ; n >= 0x80; n >>= 7 {
  1218  			trailer[i] = byte(n | 0x80)
  1219  			i++
  1220  		}
  1221  		trailer[i] = byte(n)
  1222  		i++
  1223  		n = count - 1
  1224  		for ; n >= 0x80; n >>= 7 {
  1225  			trailer[i] = byte(n | 0x80)
  1226  			i++
  1227  		}
  1228  		trailer[i] = byte(n)
  1229  		i++
  1230  		trailer[i] = 0
  1231  		i++
  1232  
  1233  		runGCProg(prog, &trailer[0], h.bitp, 2)
  1234  
  1235  		// Even though we filled in the full array just now,
  1236  		// record that we only filled in up to the ptrdata of the
  1237  		// last element. This will cause the code below to
  1238  		// memclr the dead section of the final array element,
  1239  		// so that scanobject can stop early in the final element.
  1240  		totalBits = (elemSize*(count-1) + progSize) / sys.PtrSize
  1241  	}
  1242  	endProg := unsafe.Pointer(subtractb(h.bitp, (totalBits+3)/4))
  1243  	endAlloc := unsafe.Pointer(subtractb(h.bitp, allocSize/heapBitmapScale))
  1244  	memclr(add(endAlloc, 1), uintptr(endProg)-uintptr(endAlloc))
  1245  }
  1246  
  1247  // progToPointerMask returns the 1-bit pointer mask output by the GC program prog.
  1248  // size the size of the region described by prog, in bytes.
  1249  // The resulting bitvector will have no more than size/ptrSize bits.
  1250  func progToPointerMask(prog *byte, size uintptr) bitvector {
  1251  	n := (size/sys.PtrSize + 7) / 8
  1252  	x := (*[1 << 30]byte)(persistentalloc(n+1, 1, &memstats.buckhash_sys))[:n+1]
  1253  	x[len(x)-1] = 0xa1 // overflow check sentinel
  1254  	n = runGCProg(prog, nil, &x[0], 1)
  1255  	if x[len(x)-1] != 0xa1 {
  1256  		throw("progToPointerMask: overflow")
  1257  	}
  1258  	return bitvector{int32(n), &x[0]}
  1259  }
  1260  
  1261  // Packed GC pointer bitmaps, aka GC programs.
  1262  //
  1263  // For large types containing arrays, the type information has a
  1264  // natural repetition that can be encoded to save space in the
  1265  // binary and in the memory representation of the type information.
  1266  //
  1267  // The encoding is a simple Lempel-Ziv style bytecode machine
  1268  // with the following instructions:
  1269  //
  1270  //	00000000: stop
  1271  //	0nnnnnnn: emit n bits copied from the next (n+7)/8 bytes
  1272  //	10000000 n c: repeat the previous n bits c times; n, c are varints
  1273  //	1nnnnnnn c: repeat the previous n bits c times; c is a varint
  1274  
  1275  // runGCProg executes the GC program prog, and then trailer if non-nil,
  1276  // writing to dst with entries of the given size.
  1277  // If size == 1, dst is a 1-bit pointer mask laid out moving forward from dst.
  1278  // If size == 2, dst is the 2-bit heap bitmap, and writes move backward
  1279  // starting at dst (because the heap bitmap does). In this case, the caller guarantees
  1280  // that only whole bytes in dst need to be written.
  1281  //
  1282  // runGCProg returns the number of 1- or 2-bit entries written to memory.
  1283  func runGCProg(prog, trailer, dst *byte, size int) uintptr {
  1284  	dstStart := dst
  1285  
  1286  	// Bits waiting to be written to memory.
  1287  	var bits uintptr
  1288  	var nbits uintptr
  1289  
  1290  	p := prog
  1291  Run:
  1292  	for {
  1293  		// Flush accumulated full bytes.
  1294  		// The rest of the loop assumes that nbits <= 7.
  1295  		for ; nbits >= 8; nbits -= 8 {
  1296  			if size == 1 {
  1297  				*dst = uint8(bits)
  1298  				dst = add1(dst)
  1299  				bits >>= 8
  1300  			} else {
  1301  				v := bits&bitPointerAll | bitMarkedAll
  1302  				*dst = uint8(v)
  1303  				dst = subtract1(dst)
  1304  				bits >>= 4
  1305  				v = bits&bitPointerAll | bitMarkedAll
  1306  				*dst = uint8(v)
  1307  				dst = subtract1(dst)
  1308  				bits >>= 4
  1309  			}
  1310  		}
  1311  
  1312  		// Process one instruction.
  1313  		inst := uintptr(*p)
  1314  		p = add1(p)
  1315  		n := inst & 0x7F
  1316  		if inst&0x80 == 0 {
  1317  			// Literal bits; n == 0 means end of program.
  1318  			if n == 0 {
  1319  				// Program is over; continue in trailer if present.
  1320  				if trailer != nil {
  1321  					//println("trailer")
  1322  					p = trailer
  1323  					trailer = nil
  1324  					continue
  1325  				}
  1326  				//println("done")
  1327  				break Run
  1328  			}
  1329  			//println("lit", n, dst)
  1330  			nbyte := n / 8
  1331  			for i := uintptr(0); i < nbyte; i++ {
  1332  				bits |= uintptr(*p) << nbits
  1333  				p = add1(p)
  1334  				if size == 1 {
  1335  					*dst = uint8(bits)
  1336  					dst = add1(dst)
  1337  					bits >>= 8
  1338  				} else {
  1339  					v := bits&0xf | bitMarkedAll
  1340  					*dst = uint8(v)
  1341  					dst = subtract1(dst)
  1342  					bits >>= 4
  1343  					v = bits&0xf | bitMarkedAll
  1344  					*dst = uint8(v)
  1345  					dst = subtract1(dst)
  1346  					bits >>= 4
  1347  				}
  1348  			}
  1349  			if n %= 8; n > 0 {
  1350  				bits |= uintptr(*p) << nbits
  1351  				p = add1(p)
  1352  				nbits += n
  1353  			}
  1354  			continue Run
  1355  		}
  1356  
  1357  		// Repeat. If n == 0, it is encoded in a varint in the next bytes.
  1358  		if n == 0 {
  1359  			for off := uint(0); ; off += 7 {
  1360  				x := uintptr(*p)
  1361  				p = add1(p)
  1362  				n |= (x & 0x7F) << off
  1363  				if x&0x80 == 0 {
  1364  					break
  1365  				}
  1366  			}
  1367  		}
  1368  
  1369  		// Count is encoded in a varint in the next bytes.
  1370  		c := uintptr(0)
  1371  		for off := uint(0); ; off += 7 {
  1372  			x := uintptr(*p)
  1373  			p = add1(p)
  1374  			c |= (x & 0x7F) << off
  1375  			if x&0x80 == 0 {
  1376  				break
  1377  			}
  1378  		}
  1379  		c *= n // now total number of bits to copy
  1380  
  1381  		// If the number of bits being repeated is small, load them
  1382  		// into a register and use that register for the entire loop
  1383  		// instead of repeatedly reading from memory.
  1384  		// Handling fewer than 8 bits here makes the general loop simpler.
  1385  		// The cutoff is ptrSize*8 - 7 to guarantee that when we add
  1386  		// the pattern to a bit buffer holding at most 7 bits (a partial byte)
  1387  		// it will not overflow.
  1388  		src := dst
  1389  		const maxBits = sys.PtrSize*8 - 7
  1390  		if n <= maxBits {
  1391  			// Start with bits in output buffer.
  1392  			pattern := bits
  1393  			npattern := nbits
  1394  
  1395  			// If we need more bits, fetch them from memory.
  1396  			if size == 1 {
  1397  				src = subtract1(src)
  1398  				for npattern < n {
  1399  					pattern <<= 8
  1400  					pattern |= uintptr(*src)
  1401  					src = subtract1(src)
  1402  					npattern += 8
  1403  				}
  1404  			} else {
  1405  				src = add1(src)
  1406  				for npattern < n {
  1407  					pattern <<= 4
  1408  					pattern |= uintptr(*src) & 0xf
  1409  					src = add1(src)
  1410  					npattern += 4
  1411  				}
  1412  			}
  1413  
  1414  			// We started with the whole bit output buffer,
  1415  			// and then we loaded bits from whole bytes.
  1416  			// Either way, we might now have too many instead of too few.
  1417  			// Discard the extra.
  1418  			if npattern > n {
  1419  				pattern >>= npattern - n
  1420  				npattern = n
  1421  			}
  1422  
  1423  			// Replicate pattern to at most maxBits.
  1424  			if npattern == 1 {
  1425  				// One bit being repeated.
  1426  				// If the bit is 1, make the pattern all 1s.
  1427  				// If the bit is 0, the pattern is already all 0s,
  1428  				// but we can claim that the number of bits
  1429  				// in the word is equal to the number we need (c),
  1430  				// because right shift of bits will zero fill.
  1431  				if pattern == 1 {
  1432  					pattern = 1<<maxBits - 1
  1433  					npattern = maxBits
  1434  				} else {
  1435  					npattern = c
  1436  				}
  1437  			} else {
  1438  				b := pattern
  1439  				nb := npattern
  1440  				if nb+nb <= maxBits {
  1441  					// Double pattern until the whole uintptr is filled.
  1442  					for nb <= sys.PtrSize*8 {
  1443  						b |= b << nb
  1444  						nb += nb
  1445  					}
  1446  					// Trim away incomplete copy of original pattern in high bits.
  1447  					// TODO(rsc): Replace with table lookup or loop on systems without divide?
  1448  					nb = maxBits / npattern * npattern
  1449  					b &= 1<<nb - 1
  1450  					pattern = b
  1451  					npattern = nb
  1452  				}
  1453  			}
  1454  
  1455  			// Add pattern to bit buffer and flush bit buffer, c/npattern times.
  1456  			// Since pattern contains >8 bits, there will be full bytes to flush
  1457  			// on each iteration.
  1458  			for ; c >= npattern; c -= npattern {
  1459  				bits |= pattern << nbits
  1460  				nbits += npattern
  1461  				if size == 1 {
  1462  					for nbits >= 8 {
  1463  						*dst = uint8(bits)
  1464  						dst = add1(dst)
  1465  						bits >>= 8
  1466  						nbits -= 8
  1467  					}
  1468  				} else {
  1469  					for nbits >= 4 {
  1470  						*dst = uint8(bits&0xf | bitMarkedAll)
  1471  						dst = subtract1(dst)
  1472  						bits >>= 4
  1473  						nbits -= 4
  1474  					}
  1475  				}
  1476  			}
  1477  
  1478  			// Add final fragment to bit buffer.
  1479  			if c > 0 {
  1480  				pattern &= 1<<c - 1
  1481  				bits |= pattern << nbits
  1482  				nbits += c
  1483  			}
  1484  			continue Run
  1485  		}
  1486  
  1487  		// Repeat; n too large to fit in a register.
  1488  		// Since nbits <= 7, we know the first few bytes of repeated data
  1489  		// are already written to memory.
  1490  		off := n - nbits // n > nbits because n > maxBits and nbits <= 7
  1491  		if size == 1 {
  1492  			// Leading src fragment.
  1493  			src = subtractb(src, (off+7)/8)
  1494  			if frag := off & 7; frag != 0 {
  1495  				bits |= uintptr(*src) >> (8 - frag) << nbits
  1496  				src = add1(src)
  1497  				nbits += frag
  1498  				c -= frag
  1499  			}
  1500  			// Main loop: load one byte, write another.
  1501  			// The bits are rotating through the bit buffer.
  1502  			for i := c / 8; i > 0; i-- {
  1503  				bits |= uintptr(*src) << nbits
  1504  				src = add1(src)
  1505  				*dst = uint8(bits)
  1506  				dst = add1(dst)
  1507  				bits >>= 8
  1508  			}
  1509  			// Final src fragment.
  1510  			if c %= 8; c > 0 {
  1511  				bits |= (uintptr(*src) & (1<<c - 1)) << nbits
  1512  				nbits += c
  1513  			}
  1514  		} else {
  1515  			// Leading src fragment.
  1516  			src = addb(src, (off+3)/4)
  1517  			if frag := off & 3; frag != 0 {
  1518  				bits |= (uintptr(*src) & 0xf) >> (4 - frag) << nbits
  1519  				src = subtract1(src)
  1520  				nbits += frag
  1521  				c -= frag
  1522  			}
  1523  			// Main loop: load one byte, write another.
  1524  			// The bits are rotating through the bit buffer.
  1525  			for i := c / 4; i > 0; i-- {
  1526  				bits |= (uintptr(*src) & 0xf) << nbits
  1527  				src = subtract1(src)
  1528  				*dst = uint8(bits&0xf | bitMarkedAll)
  1529  				dst = subtract1(dst)
  1530  				bits >>= 4
  1531  			}
  1532  			// Final src fragment.
  1533  			if c %= 4; c > 0 {
  1534  				bits |= (uintptr(*src) & (1<<c - 1)) << nbits
  1535  				nbits += c
  1536  			}
  1537  		}
  1538  	}
  1539  
  1540  	// Write any final bits out, using full-byte writes, even for the final byte.
  1541  	var totalBits uintptr
  1542  	if size == 1 {
  1543  		totalBits = (uintptr(unsafe.Pointer(dst))-uintptr(unsafe.Pointer(dstStart)))*8 + nbits
  1544  		nbits += -nbits & 7
  1545  		for ; nbits > 0; nbits -= 8 {
  1546  			*dst = uint8(bits)
  1547  			dst = add1(dst)
  1548  			bits >>= 8
  1549  		}
  1550  	} else {
  1551  		totalBits = (uintptr(unsafe.Pointer(dstStart))-uintptr(unsafe.Pointer(dst)))*4 + nbits
  1552  		nbits += -nbits & 3
  1553  		for ; nbits > 0; nbits -= 4 {
  1554  			v := bits&0xf | bitMarkedAll
  1555  			*dst = uint8(v)
  1556  			dst = subtract1(dst)
  1557  			bits >>= 4
  1558  		}
  1559  		// Clear the mark bits in the first two entries.
  1560  		// They are the actual mark and checkmark bits,
  1561  		// not non-dead markers. It simplified the code
  1562  		// above to set the marker in every bit written and
  1563  		// then clear these two as a special case at the end.
  1564  		*dstStart &^= bitMarked | bitMarked<<heapBitsShift
  1565  	}
  1566  	return totalBits
  1567  }
  1568  
  1569  func dumpGCProg(p *byte) {
  1570  	nptr := 0
  1571  	for {
  1572  		x := *p
  1573  		p = add1(p)
  1574  		if x == 0 {
  1575  			print("\t", nptr, " end\n")
  1576  			break
  1577  		}
  1578  		if x&0x80 == 0 {
  1579  			print("\t", nptr, " lit ", x, ":")
  1580  			n := int(x+7) / 8
  1581  			for i := 0; i < n; i++ {
  1582  				print(" ", hex(*p))
  1583  				p = add1(p)
  1584  			}
  1585  			print("\n")
  1586  			nptr += int(x)
  1587  		} else {
  1588  			nbit := int(x &^ 0x80)
  1589  			if nbit == 0 {
  1590  				for nb := uint(0); ; nb += 7 {
  1591  					x := *p
  1592  					p = add1(p)
  1593  					nbit |= int(x&0x7f) << nb
  1594  					if x&0x80 == 0 {
  1595  						break
  1596  					}
  1597  				}
  1598  			}
  1599  			count := 0
  1600  			for nb := uint(0); ; nb += 7 {
  1601  				x := *p
  1602  				p = add1(p)
  1603  				count |= int(x&0x7f) << nb
  1604  				if x&0x80 == 0 {
  1605  					break
  1606  				}
  1607  			}
  1608  			print("\t", nptr, " repeat ", nbit, " × ", count, "\n")
  1609  			nptr += nbit * count
  1610  		}
  1611  	}
  1612  }
  1613  
  1614  // Testing.
  1615  
  1616  func getgcmaskcb(frame *stkframe, ctxt unsafe.Pointer) bool {
  1617  	target := (*stkframe)(ctxt)
  1618  	if frame.sp <= target.sp && target.sp < frame.varp {
  1619  		*target = *frame
  1620  		return false
  1621  	}
  1622  	return true
  1623  }
  1624  
  1625  // gcbits returns the GC type info for x, for testing.
  1626  // The result is the bitmap entries (0 or 1), one entry per byte.
  1627  //go:linkname reflect_gcbits reflect.gcbits
  1628  func reflect_gcbits(x interface{}) []byte {
  1629  	ret := getgcmask(x)
  1630  	typ := (*ptrtype)(unsafe.Pointer(efaceOf(&x)._type)).elem
  1631  	nptr := typ.ptrdata / sys.PtrSize
  1632  	for uintptr(len(ret)) > nptr && ret[len(ret)-1] == 0 {
  1633  		ret = ret[:len(ret)-1]
  1634  	}
  1635  	return ret
  1636  }
  1637  
  1638  // Returns GC type info for object p for testing.
  1639  func getgcmask(ep interface{}) (mask []byte) {
  1640  	e := *efaceOf(&ep)
  1641  	p := e.data
  1642  	t := e._type
  1643  	// data or bss
  1644  	for datap := &firstmoduledata; datap != nil; datap = datap.next {
  1645  		// data
  1646  		if datap.data <= uintptr(p) && uintptr(p) < datap.edata {
  1647  			bitmap := datap.gcdatamask.bytedata
  1648  			n := (*ptrtype)(unsafe.Pointer(t)).elem.size
  1649  			mask = make([]byte, n/sys.PtrSize)
  1650  			for i := uintptr(0); i < n; i += sys.PtrSize {
  1651  				off := (uintptr(p) + i - datap.data) / sys.PtrSize
  1652  				mask[i/sys.PtrSize] = (*addb(bitmap, off/8) >> (off % 8)) & 1
  1653  			}
  1654  			return
  1655  		}
  1656  
  1657  		// bss
  1658  		if datap.bss <= uintptr(p) && uintptr(p) < datap.ebss {
  1659  			bitmap := datap.gcbssmask.bytedata
  1660  			n := (*ptrtype)(unsafe.Pointer(t)).elem.size
  1661  			mask = make([]byte, n/sys.PtrSize)
  1662  			for i := uintptr(0); i < n; i += sys.PtrSize {
  1663  				off := (uintptr(p) + i - datap.bss) / sys.PtrSize
  1664  				mask[i/sys.PtrSize] = (*addb(bitmap, off/8) >> (off % 8)) & 1
  1665  			}
  1666  			return
  1667  		}
  1668  	}
  1669  
  1670  	// heap
  1671  	var n uintptr
  1672  	var base uintptr
  1673  	if mlookup(uintptr(p), &base, &n, nil) != 0 {
  1674  		mask = make([]byte, n/sys.PtrSize)
  1675  		for i := uintptr(0); i < n; i += sys.PtrSize {
  1676  			hbits := heapBitsForAddr(base + i)
  1677  			if hbits.isPointer() {
  1678  				mask[i/sys.PtrSize] = 1
  1679  			}
  1680  			if i >= 2*sys.PtrSize && !hbits.isMarked() {
  1681  				mask = mask[:i/sys.PtrSize]
  1682  				break
  1683  			}
  1684  		}
  1685  		return
  1686  	}
  1687  
  1688  	// stack
  1689  	if _g_ := getg(); _g_.m.curg.stack.lo <= uintptr(p) && uintptr(p) < _g_.m.curg.stack.hi {
  1690  		var frame stkframe
  1691  		frame.sp = uintptr(p)
  1692  		_g_ := getg()
  1693  		gentraceback(_g_.m.curg.sched.pc, _g_.m.curg.sched.sp, 0, _g_.m.curg, 0, nil, 1000, getgcmaskcb, noescape(unsafe.Pointer(&frame)), 0)
  1694  		if frame.fn != nil {
  1695  			f := frame.fn
  1696  			targetpc := frame.continpc
  1697  			if targetpc == 0 {
  1698  				return
  1699  			}
  1700  			if targetpc != f.entry {
  1701  				targetpc--
  1702  			}
  1703  			pcdata := pcdatavalue(f, _PCDATA_StackMapIndex, targetpc, nil)
  1704  			if pcdata == -1 {
  1705  				return
  1706  			}
  1707  			stkmap := (*stackmap)(funcdata(f, _FUNCDATA_LocalsPointerMaps))
  1708  			if stkmap == nil || stkmap.n <= 0 {
  1709  				return
  1710  			}
  1711  			bv := stackmapdata(stkmap, pcdata)
  1712  			size := uintptr(bv.n) * sys.PtrSize
  1713  			n := (*ptrtype)(unsafe.Pointer(t)).elem.size
  1714  			mask = make([]byte, n/sys.PtrSize)
  1715  			for i := uintptr(0); i < n; i += sys.PtrSize {
  1716  				bitmap := bv.bytedata
  1717  				off := (uintptr(p) + i - frame.varp + size) / sys.PtrSize
  1718  				mask[i/sys.PtrSize] = (*addb(bitmap, off/8) >> (off % 8)) & 1
  1719  			}
  1720  		}
  1721  		return
  1722  	}
  1723  
  1724  	// otherwise, not something the GC knows about.
  1725  	// possibly read-only data, like malloc(0).
  1726  	// must not have pointers
  1727  	return
  1728  }