github.com/aloncn/graphics-go@v0.0.1/src/runtime/msize.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Malloc small size classes.
     6  //
     7  // See malloc.go for overview.
     8  //
     9  // The size classes are chosen so that rounding an allocation
    10  // request up to the next size class wastes at most 12.5% (1.125x).
    11  //
    12  // Each size class has its own page count that gets allocated
    13  // and chopped up when new objects of the size class are needed.
    14  // That page count is chosen so that chopping up the run of
    15  // pages into objects of the given size wastes at most 12.5% (1.125x)
    16  // of the memory.  It is not necessary that the cutoff here be
    17  // the same as above.
    18  //
    19  // The two sources of waste multiply, so the worst possible case
    20  // for the above constraints would be that allocations of some
    21  // size might have a 26.6% (1.266x) overhead.
    22  // In practice, only one of the wastes comes into play for a
    23  // given size (sizes < 512 waste mainly on the round-up,
    24  // sizes > 512 waste mainly on the page chopping).
    25  //
    26  // TODO(rsc): Compute max waste for any given size.
    27  
    28  package runtime
    29  
    30  // Size classes.  Computed and initialized by InitSizes.
    31  //
    32  // SizeToClass(0 <= n <= MaxSmallSize) returns the size class,
    33  //	1 <= sizeclass < NumSizeClasses, for n.
    34  //	Size class 0 is reserved to mean "not small".
    35  //
    36  // class_to_size[i] = largest size in class i
    37  // class_to_allocnpages[i] = number of pages to allocate when
    38  //	making new objects in class i
    39  
    40  // The SizeToClass lookup is implemented using two arrays,
    41  // one mapping sizes <= 1024 to their class and one mapping
    42  // sizes >= 1024 and <= MaxSmallSize to their class.
    43  // All objects are 8-aligned, so the first array is indexed by
    44  // the size divided by 8 (rounded up).  Objects >= 1024 bytes
    45  // are 128-aligned, so the second array is indexed by the
    46  // size divided by 128 (rounded up).  The arrays are filled in
    47  // by InitSizes.
    48  
    49  var class_to_size [_NumSizeClasses]int32
    50  var class_to_allocnpages [_NumSizeClasses]int32
    51  var class_to_divmagic [_NumSizeClasses]divMagic
    52  
    53  var size_to_class8 [1024/8 + 1]int8
    54  var size_to_class128 [(_MaxSmallSize-1024)/128 + 1]int8
    55  
    56  func sizeToClass(size int32) int32 {
    57  	if size > _MaxSmallSize {
    58  		throw("SizeToClass - invalid size")
    59  	}
    60  	if size > 1024-8 {
    61  		return int32(size_to_class128[(size-1024+127)>>7])
    62  	}
    63  	return int32(size_to_class8[(size+7)>>3])
    64  }
    65  
    66  func initSizes() {
    67  	// Initialize the runtime·class_to_size table (and choose class sizes in the process).
    68  	class_to_size[0] = 0
    69  	sizeclass := 1 // 0 means no class
    70  	align := 8
    71  	for size := align; size <= _MaxSmallSize; size += align {
    72  		if size&(size-1) == 0 { // bump alignment once in a while
    73  			if size >= 2048 {
    74  				align = 256
    75  			} else if size >= 128 {
    76  				align = size / 8
    77  			} else if size >= 16 {
    78  				align = 16 // required for x86 SSE instructions, if we want to use them
    79  			}
    80  		}
    81  		if align&(align-1) != 0 {
    82  			throw("InitSizes - bug")
    83  		}
    84  
    85  		// Make the allocnpages big enough that
    86  		// the leftover is less than 1/8 of the total,
    87  		// so wasted space is at most 12.5%.
    88  		allocsize := _PageSize
    89  		for allocsize%size > allocsize/8 {
    90  			allocsize += _PageSize
    91  		}
    92  		npages := allocsize >> _PageShift
    93  
    94  		// If the previous sizeclass chose the same
    95  		// allocation size and fit the same number of
    96  		// objects into the page, we might as well
    97  		// use just this size instead of having two
    98  		// different sizes.
    99  		if sizeclass > 1 && npages == int(class_to_allocnpages[sizeclass-1]) && allocsize/size == allocsize/int(class_to_size[sizeclass-1]) {
   100  			class_to_size[sizeclass-1] = int32(size)
   101  			continue
   102  		}
   103  
   104  		class_to_allocnpages[sizeclass] = int32(npages)
   105  		class_to_size[sizeclass] = int32(size)
   106  		sizeclass++
   107  	}
   108  	if sizeclass != _NumSizeClasses {
   109  		print("sizeclass=", sizeclass, " NumSizeClasses=", _NumSizeClasses, "\n")
   110  		throw("InitSizes - bad NumSizeClasses")
   111  	}
   112  
   113  	// Initialize the size_to_class tables.
   114  	nextsize := 0
   115  	for sizeclass = 1; sizeclass < _NumSizeClasses; sizeclass++ {
   116  		for ; nextsize < 1024 && nextsize <= int(class_to_size[sizeclass]); nextsize += 8 {
   117  			size_to_class8[nextsize/8] = int8(sizeclass)
   118  		}
   119  		if nextsize >= 1024 {
   120  			for ; nextsize <= int(class_to_size[sizeclass]); nextsize += 128 {
   121  				size_to_class128[(nextsize-1024)/128] = int8(sizeclass)
   122  			}
   123  		}
   124  	}
   125  
   126  	// Double-check SizeToClass.
   127  	if false {
   128  		for n := int32(0); n < _MaxSmallSize; n++ {
   129  			sizeclass := sizeToClass(n)
   130  			if sizeclass < 1 || sizeclass >= _NumSizeClasses || class_to_size[sizeclass] < n {
   131  				print("size=", n, " sizeclass=", sizeclass, " runtime·class_to_size=", class_to_size[sizeclass], "\n")
   132  				print("incorrect SizeToClass\n")
   133  				goto dump
   134  			}
   135  			if sizeclass > 1 && class_to_size[sizeclass-1] >= n {
   136  				print("size=", n, " sizeclass=", sizeclass, " runtime·class_to_size=", class_to_size[sizeclass], "\n")
   137  				print("SizeToClass too big\n")
   138  				goto dump
   139  			}
   140  		}
   141  	}
   142  
   143  	testdefersizes()
   144  
   145  	// Copy out for statistics table.
   146  	for i := 0; i < len(class_to_size); i++ {
   147  		memstats.by_size[i].size = uint32(class_to_size[i])
   148  	}
   149  
   150  	for i := 1; i < len(class_to_size); i++ {
   151  		class_to_divmagic[i] = computeDivMagic(uint32(class_to_size[i]))
   152  	}
   153  
   154  	return
   155  
   156  dump:
   157  	if true {
   158  		print("NumSizeClasses=", _NumSizeClasses, "\n")
   159  		print("runtime·class_to_size:")
   160  		for sizeclass = 0; sizeclass < _NumSizeClasses; sizeclass++ {
   161  			print(" ", class_to_size[sizeclass], "")
   162  		}
   163  		print("\n\n")
   164  		print("size_to_class8:")
   165  		for i := 0; i < len(size_to_class8); i++ {
   166  			print(" ", i*8, "=>", size_to_class8[i], "(", class_to_size[size_to_class8[i]], ")\n")
   167  		}
   168  		print("\n")
   169  		print("size_to_class128:")
   170  		for i := 0; i < len(size_to_class128); i++ {
   171  			print(" ", i*128, "=>", size_to_class128[i], "(", class_to_size[size_to_class128[i]], ")\n")
   172  		}
   173  		print("\n")
   174  	}
   175  	throw("InitSizes failed")
   176  }
   177  
   178  // Returns size of the memory block that mallocgc will allocate if you ask for the size.
   179  func roundupsize(size uintptr) uintptr {
   180  	if size < _MaxSmallSize {
   181  		if size <= 1024-8 {
   182  			return uintptr(class_to_size[size_to_class8[(size+7)>>3]])
   183  		} else {
   184  			return uintptr(class_to_size[size_to_class128[(size-1024+127)>>7]])
   185  		}
   186  	}
   187  	if size+_PageSize < size {
   188  		return size
   189  	}
   190  	return round(size, _PageSize)
   191  }
   192  
   193  // divMagic holds magic constants to implement division
   194  // by a particular constant as a shift, multiply, and shift.
   195  // That is, given
   196  //	m = computeMagic(d)
   197  // then
   198  //	n/d == ((n>>m.shift) * m.mul) >> m.shift2
   199  //
   200  // The magic computation picks m such that
   201  //	d = d₁*d₂
   202  //	d₂= 2^m.shift
   203  //	m.mul = ⌈2^m.shift2 / d₁⌉
   204  //
   205  // The magic computation here is tailored for malloc block sizes
   206  // and does not handle arbitrary d correctly. Malloc block sizes d are
   207  // always even, so the first shift implements the factors of 2 in d
   208  // and then the mul and second shift implement the odd factor
   209  // that remains. Because the first shift divides n by at least 2 (actually 8)
   210  // before the multiply gets involved, the huge corner cases that
   211  // require additional adjustment are impossible, so the usual
   212  // fixup is not needed.
   213  //
   214  // For more details see Hacker's Delight, Chapter 10, and
   215  // http://ridiculousfish.com/blog/posts/labor-of-division-episode-i.html
   216  // http://ridiculousfish.com/blog/posts/labor-of-division-episode-iii.html
   217  type divMagic struct {
   218  	shift    uint8
   219  	mul      uint32
   220  	shift2   uint8
   221  	baseMask uintptr
   222  }
   223  
   224  func computeDivMagic(d uint32) divMagic {
   225  	var m divMagic
   226  
   227  	// If the size is a power of two, heapBitsForObject can divide even faster by masking.
   228  	// Compute this mask.
   229  	if d&(d-1) == 0 {
   230  		// It is a power of 2 (assuming dinptr != 1)
   231  		m.baseMask = ^(uintptr(d) - 1)
   232  	} else {
   233  		m.baseMask = 0
   234  	}
   235  
   236  	// Compute pre-shift by factoring power of 2 out of d.
   237  	for d&1 == 0 {
   238  		m.shift++
   239  		d >>= 1
   240  	}
   241  
   242  	// Compute largest k such that ⌈2^k / d⌉ fits in a 32-bit int.
   243  	// This is always a good enough approximation.
   244  	// We could use smaller k for some divisors but there's no point.
   245  	k := uint8(63)
   246  	d64 := uint64(d)
   247  	for ((1<<k)+d64-1)/d64 >= 1<<32 {
   248  		k--
   249  	}
   250  	m.mul = uint32(((1 << k) + d64 - 1) / d64) //  ⌈2^k / d⌉
   251  	m.shift2 = k
   252  
   253  	return m
   254  }