github.com/aloncn/graphics-go@v0.0.1/src/runtime/vdso_linux_amd64.go (about) 1 // Copyright 2012 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package runtime 6 7 import ( 8 "runtime/internal/sys" 9 "unsafe" 10 ) 11 12 // Look up symbols in the Linux vDSO. 13 14 // This code was originally based on the sample Linux vDSO parser at 15 // https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/vDSO/parse_vdso.c 16 17 // This implements the ELF dynamic linking spec at 18 // http://sco.com/developers/gabi/latest/ch5.dynamic.html 19 20 // The version section is documented at 21 // http://refspecs.linuxfoundation.org/LSB_3.2.0/LSB-Core-generic/LSB-Core-generic/symversion.html 22 23 const ( 24 _AT_RANDOM = 25 25 _AT_SYSINFO_EHDR = 33 26 _AT_NULL = 0 /* End of vector */ 27 28 _PT_LOAD = 1 /* Loadable program segment */ 29 _PT_DYNAMIC = 2 /* Dynamic linking information */ 30 31 _DT_NULL = 0 /* Marks end of dynamic section */ 32 _DT_HASH = 4 /* Dynamic symbol hash table */ 33 _DT_STRTAB = 5 /* Address of string table */ 34 _DT_SYMTAB = 6 /* Address of symbol table */ 35 _DT_VERSYM = 0x6ffffff0 36 _DT_VERDEF = 0x6ffffffc 37 38 _VER_FLG_BASE = 0x1 /* Version definition of file itself */ 39 40 _SHN_UNDEF = 0 /* Undefined section */ 41 42 _SHT_DYNSYM = 11 /* Dynamic linker symbol table */ 43 44 _STT_FUNC = 2 /* Symbol is a code object */ 45 46 _STB_GLOBAL = 1 /* Global symbol */ 47 _STB_WEAK = 2 /* Weak symbol */ 48 49 _EI_NIDENT = 16 50 ) 51 52 /* How to extract and insert information held in the st_info field. */ 53 func _ELF64_ST_BIND(val byte) byte { return val >> 4 } 54 func _ELF64_ST_TYPE(val byte) byte { return val & 0xf } 55 56 type elf64Sym struct { 57 st_name uint32 58 st_info byte 59 st_other byte 60 st_shndx uint16 61 st_value uint64 62 st_size uint64 63 } 64 65 type elf64Verdef struct { 66 vd_version uint16 /* Version revision */ 67 vd_flags uint16 /* Version information */ 68 vd_ndx uint16 /* Version Index */ 69 vd_cnt uint16 /* Number of associated aux entries */ 70 vd_hash uint32 /* Version name hash value */ 71 vd_aux uint32 /* Offset in bytes to verdaux array */ 72 vd_next uint32 /* Offset in bytes to next verdef entry */ 73 } 74 75 type elf64Ehdr struct { 76 e_ident [_EI_NIDENT]byte /* Magic number and other info */ 77 e_type uint16 /* Object file type */ 78 e_machine uint16 /* Architecture */ 79 e_version uint32 /* Object file version */ 80 e_entry uint64 /* Entry point virtual address */ 81 e_phoff uint64 /* Program header table file offset */ 82 e_shoff uint64 /* Section header table file offset */ 83 e_flags uint32 /* Processor-specific flags */ 84 e_ehsize uint16 /* ELF header size in bytes */ 85 e_phentsize uint16 /* Program header table entry size */ 86 e_phnum uint16 /* Program header table entry count */ 87 e_shentsize uint16 /* Section header table entry size */ 88 e_shnum uint16 /* Section header table entry count */ 89 e_shstrndx uint16 /* Section header string table index */ 90 } 91 92 type elf64Phdr struct { 93 p_type uint32 /* Segment type */ 94 p_flags uint32 /* Segment flags */ 95 p_offset uint64 /* Segment file offset */ 96 p_vaddr uint64 /* Segment virtual address */ 97 p_paddr uint64 /* Segment physical address */ 98 p_filesz uint64 /* Segment size in file */ 99 p_memsz uint64 /* Segment size in memory */ 100 p_align uint64 /* Segment alignment */ 101 } 102 103 type elf64Shdr struct { 104 sh_name uint32 /* Section name (string tbl index) */ 105 sh_type uint32 /* Section type */ 106 sh_flags uint64 /* Section flags */ 107 sh_addr uint64 /* Section virtual addr at execution */ 108 sh_offset uint64 /* Section file offset */ 109 sh_size uint64 /* Section size in bytes */ 110 sh_link uint32 /* Link to another section */ 111 sh_info uint32 /* Additional section information */ 112 sh_addralign uint64 /* Section alignment */ 113 sh_entsize uint64 /* Entry size if section holds table */ 114 } 115 116 type elf64Dyn struct { 117 d_tag int64 /* Dynamic entry type */ 118 d_val uint64 /* Integer value */ 119 } 120 121 type elf64Verdaux struct { 122 vda_name uint32 /* Version or dependency names */ 123 vda_next uint32 /* Offset in bytes to next verdaux entry */ 124 } 125 126 type elf64Auxv struct { 127 a_type uint64 /* Entry type */ 128 a_val uint64 /* Integer value */ 129 } 130 131 type symbol_key struct { 132 name string 133 sym_hash uint32 134 ptr *uintptr 135 } 136 137 type version_key struct { 138 version string 139 ver_hash uint32 140 } 141 142 type vdso_info struct { 143 valid bool 144 145 /* Load information */ 146 load_addr uintptr 147 load_offset uintptr /* load_addr - recorded vaddr */ 148 149 /* Symbol table */ 150 symtab *[1 << 32]elf64Sym 151 symstrings *[1 << 32]byte 152 chain []uint32 153 bucket []uint32 154 155 /* Version table */ 156 versym *[1 << 32]uint16 157 verdef *elf64Verdef 158 } 159 160 var linux26 = version_key{"LINUX_2.6", 0x3ae75f6} 161 162 var sym_keys = []symbol_key{ 163 {"__vdso_time", 0xa33c485, &__vdso_time_sym}, 164 {"__vdso_gettimeofday", 0x315ca59, &__vdso_gettimeofday_sym}, 165 {"__vdso_clock_gettime", 0xd35ec75, &__vdso_clock_gettime_sym}, 166 } 167 168 // initialize with vsyscall fallbacks 169 var ( 170 __vdso_time_sym uintptr = 0xffffffffff600400 171 __vdso_gettimeofday_sym uintptr = 0xffffffffff600000 172 __vdso_clock_gettime_sym uintptr = 0 173 ) 174 175 func vdso_init_from_sysinfo_ehdr(info *vdso_info, hdr *elf64Ehdr) { 176 info.valid = false 177 info.load_addr = uintptr(unsafe.Pointer(hdr)) 178 179 pt := unsafe.Pointer(info.load_addr + uintptr(hdr.e_phoff)) 180 181 // We need two things from the segment table: the load offset 182 // and the dynamic table. 183 var found_vaddr bool 184 var dyn *[1 << 20]elf64Dyn 185 for i := uint16(0); i < hdr.e_phnum; i++ { 186 pt := (*elf64Phdr)(add(pt, uintptr(i)*unsafe.Sizeof(elf64Phdr{}))) 187 switch pt.p_type { 188 case _PT_LOAD: 189 if !found_vaddr { 190 found_vaddr = true 191 info.load_offset = info.load_addr + uintptr(pt.p_offset-pt.p_vaddr) 192 } 193 194 case _PT_DYNAMIC: 195 dyn = (*[1 << 20]elf64Dyn)(unsafe.Pointer(info.load_addr + uintptr(pt.p_offset))) 196 } 197 } 198 199 if !found_vaddr || dyn == nil { 200 return // Failed 201 } 202 203 // Fish out the useful bits of the dynamic table. 204 205 var hash *[1 << 30]uint32 206 hash = nil 207 info.symstrings = nil 208 info.symtab = nil 209 info.versym = nil 210 info.verdef = nil 211 for i := 0; dyn[i].d_tag != _DT_NULL; i++ { 212 dt := &dyn[i] 213 p := info.load_offset + uintptr(dt.d_val) 214 switch dt.d_tag { 215 case _DT_STRTAB: 216 info.symstrings = (*[1 << 32]byte)(unsafe.Pointer(p)) 217 case _DT_SYMTAB: 218 info.symtab = (*[1 << 32]elf64Sym)(unsafe.Pointer(p)) 219 case _DT_HASH: 220 hash = (*[1 << 30]uint32)(unsafe.Pointer(p)) 221 case _DT_VERSYM: 222 info.versym = (*[1 << 32]uint16)(unsafe.Pointer(p)) 223 case _DT_VERDEF: 224 info.verdef = (*elf64Verdef)(unsafe.Pointer(p)) 225 } 226 } 227 228 if info.symstrings == nil || info.symtab == nil || hash == nil { 229 return // Failed 230 } 231 232 if info.verdef == nil { 233 info.versym = nil 234 } 235 236 // Parse the hash table header. 237 nbucket := hash[0] 238 nchain := hash[1] 239 info.bucket = hash[2 : 2+nbucket] 240 info.chain = hash[2+nbucket : 2+nbucket+nchain] 241 242 // That's all we need. 243 info.valid = true 244 } 245 246 func vdso_find_version(info *vdso_info, ver *version_key) int32 { 247 if !info.valid { 248 return 0 249 } 250 251 def := info.verdef 252 for { 253 if def.vd_flags&_VER_FLG_BASE == 0 { 254 aux := (*elf64Verdaux)(add(unsafe.Pointer(def), uintptr(def.vd_aux))) 255 if def.vd_hash == ver.ver_hash && ver.version == gostringnocopy(&info.symstrings[aux.vda_name]) { 256 return int32(def.vd_ndx & 0x7fff) 257 } 258 } 259 260 if def.vd_next == 0 { 261 break 262 } 263 def = (*elf64Verdef)(add(unsafe.Pointer(def), uintptr(def.vd_next))) 264 } 265 266 return -1 // can not match any version 267 } 268 269 func vdso_parse_symbols(info *vdso_info, version int32) { 270 if !info.valid { 271 return 272 } 273 274 for _, k := range sym_keys { 275 for chain := info.bucket[k.sym_hash%uint32(len(info.bucket))]; chain != 0; chain = info.chain[chain] { 276 sym := &info.symtab[chain] 277 typ := _ELF64_ST_TYPE(sym.st_info) 278 bind := _ELF64_ST_BIND(sym.st_info) 279 if typ != _STT_FUNC || bind != _STB_GLOBAL && bind != _STB_WEAK || sym.st_shndx == _SHN_UNDEF { 280 continue 281 } 282 if k.name != gostringnocopy(&info.symstrings[sym.st_name]) { 283 continue 284 } 285 286 // Check symbol version. 287 if info.versym != nil && version != 0 && int32(info.versym[chain]&0x7fff) != version { 288 continue 289 } 290 291 *k.ptr = info.load_offset + uintptr(sym.st_value) 292 break 293 } 294 } 295 } 296 297 func sysargs(argc int32, argv **byte) { 298 n := argc + 1 299 300 // skip envp to get to ELF auxiliary vector. 301 for argv_index(argv, n) != nil { 302 n++ 303 } 304 305 // skip NULL separator 306 n++ 307 308 // now argv+n is auxv 309 auxv := (*[1 << 32]elf64Auxv)(add(unsafe.Pointer(argv), uintptr(n)*sys.PtrSize)) 310 311 for i := 0; auxv[i].a_type != _AT_NULL; i++ { 312 av := &auxv[i] 313 switch av.a_type { 314 case _AT_SYSINFO_EHDR: 315 if av.a_val == 0 { 316 // Something went wrong 317 continue 318 } 319 var info vdso_info 320 // TODO(rsc): I don't understand why the compiler thinks info escapes 321 // when passed to the three functions below. 322 info1 := (*vdso_info)(noescape(unsafe.Pointer(&info))) 323 vdso_init_from_sysinfo_ehdr(info1, (*elf64Ehdr)(unsafe.Pointer(uintptr(av.a_val)))) 324 vdso_parse_symbols(info1, vdso_find_version(info1, &linux26)) 325 326 case _AT_RANDOM: 327 startupRandomData = (*[16]byte)(unsafe.Pointer(uintptr(av.a_val)))[:] 328 } 329 } 330 }