github.com/alphadose/zenq/v2@v2.8.4/lib_runtime_linkage.go (about) 1 package zenq 2 3 import ( 4 "runtime" 5 "unsafe" 6 _ "unsafe" 7 8 "github.com/alphadose/zenq/v2/constants" 9 ) 10 11 type cacheLinePadding struct { 12 _ [constants.CacheLinePadSize]byte 13 } 14 15 // Linking ZenQ with golang internal runtime library to allow usage of scheduling primitives 16 // like goready(), mcall() etc to allow low-level scheduling of goroutines 17 18 type mutex struct { 19 // Futex-based impl treats it as uint32 key, 20 // while sema-based impl as M* waitm. 21 // Used to be a union, but unions break precise GC. 22 key uintptr 23 } 24 25 // The functions below are used for scheduling goroutines with exclusive control 26 // Shifting to the below flow will remove the spinning and mutex lock implementations 27 28 //go:linkname lock runtime.lock 29 func lock(l *mutex) 30 31 //go:linkname nanotime runtime.nanotime 32 func nanotime() int64 33 34 //go:linkname unlock runtime.unlock 35 func unlock(l *mutex) 36 37 //go:linkname goparkunlock runtime.goparkunlock 38 func goparkunlock(lock *mutex, reason waitReason, traceEv byte, traceskip int) 39 40 // GetG returns the pointer to the current goroutine 41 // defined in the asm files 42 func GetG() unsafe.Pointer 43 44 //go:linkname Fastlog2 runtime.fastlog2 45 func Fastlog2(x float64) float64 46 47 //go:linkname goready runtime.goready 48 func goready(goroutinePtr unsafe.Pointer, traceskip int) 49 50 //go:linkname gopark runtime.gopark 51 func gopark(unlockf func(unsafe.Pointer, unsafe.Pointer) bool, lock unsafe.Pointer, reason waitReason, traceEv byte, traceskip int) 52 53 // Active spinning runtime support. 54 // runtime_canSpin reports whether spinning makes sense at the moment. 55 //go:linkname runtime_canSpin sync.runtime_canSpin 56 func runtime_canSpin(i int) bool 57 58 // runtime_doSpin does active spinning. 59 // //go:linkname runtime_doSpin sync.runtime_doSpin 60 // func runtime_doSpin() 61 62 func runtime_doSpin() { 63 spin(30) 64 } 65 66 //go:linkname osyield runtime.osyield 67 func osyield() 68 69 //go:linkname runtime_nanotime sync.runtime_nanotime 70 func runtime_nanotime() int64 71 72 // Semacquire waits until *s > 0 and then atomically decrements it. 73 // It is intended as a simple sleep primitive for use by the synchronization 74 // library and should not be used directly. 75 //go:linkname runtime_Semacquire sync.runtime_Semacquire 76 func runtime_Semacquire(s *uint32) 77 78 // SemacquireMutex is like Semacquire, but for profiling contended Mutexes. 79 // If lifo is true, queue waiter at the head of wait queue. 80 // skipframes is the number of frames to omit during tracing, counting from 81 // runtime_SemacquireMutex's caller. 82 //go:linkname runtime_SemacquireMutex sync.runtime_SemacquireMutex 83 func runtime_SemacquireMutex(s *uint32, lifo bool, skipframes int) 84 85 // Semrelease atomically increments *s and notifies a waiting goroutine 86 // if one is blocked in Semacquire. 87 // It is intended as a simple wakeup primitive for use by the synchronization 88 // library and should not be used directly. 89 // If handoff is true, pass count directly to the first waiter. 90 // skipframes is the number of frames to omit during tracing, counting from 91 // runtime_Semrelease's caller. 92 //go:linkname runtime_Semrelease sync.runtime_Semrelease 93 func runtime_Semrelease(s *uint32, handoff bool, skipframes int) 94 95 //go:linkname goyield runtime.goyield 96 func goyield() 97 98 //go:linkname mcall runtime.mcall 99 func mcall(fn func(unsafe.Pointer)) 100 101 //go:linkname park_m runtime.park_m 102 func park_m(gp unsafe.Pointer) 103 104 //go:linkname fastrandn runtime.fastrandn 105 func fastrandn(n uint32) uint32 106 107 //go:linkname throw runtime.throw 108 func throw(s string) 109 110 //go:linkname Readgstatus runtime.readgstatus 111 func Readgstatus(gp unsafe.Pointer) uint32 112 113 //go:linkname casgstatus runtime.casgstatus 114 func casgstatus(gp unsafe.Pointer, oldval, newval uint32) 115 116 //go:linkname dropg runtime.dropg 117 func dropg() 118 119 //go:linkname schedule runtime.schedule 120 func schedule() 121 122 //go:linkname mallocgc runtime.mallocgc 123 func mallocgc(size uintptr, typ unsafe.Pointer, needzero bool) unsafe.Pointer 124 125 //go:linkname sysFree runtime.sysFree 126 func sysFree(v unsafe.Pointer, n uintptr, sysStat unsafe.Pointer) 127 128 //go:linkname sysFreeOS runtime.sysFreeOS 129 func sysFreeOS(v unsafe.Pointer, n uintptr) 130 131 //go:linkname gosched_m runtime.gosched_m 132 func gosched_m(gp unsafe.Pointer) 133 134 //go:linkname spin runtime.procyield 135 func spin(cycles uint32) 136 137 //go:linkname noescape runtime.noescape 138 func noescape(p unsafe.Pointer) unsafe.Pointer 139 140 // ProcPin and ProcUnpin disable pre-emption for any calling goroutine 141 // can be used to guarantee consistent latency 142 //go:linkname ProcPin runtime.procPin 143 func ProcPin() int 144 145 //go:linkname ProcUnpin runtime.procUnpin 146 func ProcUnpin() 147 148 //go:linkname memequal runtime.memequal 149 func memequal(a, b unsafe.Pointer, size uintptr) bool 150 151 //go:linkname Load8 runtime/internal/atomic.Load8 152 func Load8(ptr *uint8) uint8 153 154 //go:linkname And8 runtime/internal/atomic.And8 155 func And8(ptr *uint8, val uint8) 156 157 //go:linkname Or8 runtime/internal/atomic.Or8 158 func Or8(ptr *uint8, val uint8) 159 160 //go:linkname Store8 runtime/internal/atomic.Store8 161 func Store8(ptr *uint8, val uint8) 162 163 // custom parking function 164 func fast_park(gp unsafe.Pointer) { 165 dropg() 166 casgstatus(gp, _Grunning, _Gwaiting) 167 schedule() 168 } 169 170 // whether the system has multiple cores or a single core 171 var multicore = runtime.NumCPU() > 1 172 173 // call ready after ensuring the goroutine is parked 174 func safe_ready(gp unsafe.Pointer) { 175 // for better microprocessor branch prediction 176 if multicore { 177 for Readgstatus(gp)&^_Gscan != _Gwaiting { 178 spin(20) 179 } 180 } else { 181 for Readgstatus(gp)&^_Gscan != _Gwaiting { 182 mcall(gosched_m) 183 } 184 } 185 goready(gp, 1) 186 } 187 188 // simple wait 189 func wait() { 190 if multicore { 191 spin(20) 192 } else { 193 mcall(gosched_m) 194 } 195 } 196 197 type waitReason uint8 198 199 const ( 200 waitReasonZero waitReason = iota // "" 201 waitReasonGCAssistMarking // "GC assist marking" 202 waitReasonIOWait // "IO wait" 203 waitReasonChanReceiveNilChan // "chan receive (nil chan)" 204 waitReasonChanSendNilChan // "chan send (nil chan)" 205 waitReasonDumpingHeap // "dumping heap" 206 waitReasonGarbageCollection // "garbage collection" 207 waitReasonGarbageCollectionScan // "garbage collection scan" 208 waitReasonPanicWait // "panicwait" 209 waitReasonSelect // "select" 210 waitReasonSelectNoCases // "select (no cases)" 211 waitReasonGCAssistWait // "GC assist wait" 212 waitReasonGCSweepWait // "GC sweep wait" 213 waitReasonGCScavengeWait // "GC scavenge wait" 214 waitReasonChanReceive // "chan receive" 215 waitReasonChanSend // "chan send" 216 waitReasonFinalizerWait // "finalizer wait" 217 waitReasonForceGCIdle // "force gc (idle)" 218 waitReasonSemacquire // "semacquire" 219 waitReasonSleep // "sleep" 220 waitReasonSyncCondWait // "sync.Cond.Wait" 221 waitReasonTimerGoroutineIdle // "timer goroutine (idle)" 222 waitReasonTraceReaderBlocked // "trace reader (blocked)" 223 waitReasonWaitForGCCycle // "wait for GC cycle" 224 waitReasonGCWorkerIdle // "GC worker (idle)" 225 waitReasonPreempted // "preempted" 226 waitReasonDebugCall // "debug call" 227 ) 228 229 // Event types in the trace, args are given in square brackets. 230 const ( 231 traceEvNone = 0 // unused 232 traceEvBatch = 1 // start of per-P batch of events [pid, timestamp] 233 traceEvFrequency = 2 // contains tracer timer frequency [frequency (ticks per second)] 234 traceEvStack = 3 // stack [stack id, number of PCs, array of {PC, func string ID, file string ID, line}] 235 traceEvGomaxprocs = 4 // current value of GOMAXPROCS [timestamp, GOMAXPROCS, stack id] 236 traceEvProcStart = 5 // start of P [timestamp, thread id] 237 traceEvProcStop = 6 // stop of P [timestamp] 238 traceEvGCStart = 7 // GC start [timestamp, seq, stack id] 239 traceEvGCDone = 8 // GC done [timestamp] 240 traceEvGCSTWStart = 9 // GC STW start [timestamp, kind] 241 traceEvGCSTWDone = 10 // GC STW done [timestamp] 242 traceEvGCSweepStart = 11 // GC sweep start [timestamp, stack id] 243 traceEvGCSweepDone = 12 // GC sweep done [timestamp, swept, reclaimed] 244 traceEvGoCreate = 13 // goroutine creation [timestamp, new goroutine id, new stack id, stack id] 245 traceEvGoStart = 14 // goroutine starts running [timestamp, goroutine id, seq] 246 traceEvGoEnd = 15 // goroutine ends [timestamp] 247 traceEvGoStop = 16 // goroutine stops (like in select{}) [timestamp, stack] 248 traceEvGoSched = 17 // goroutine calls Gosched [timestamp, stack] 249 traceEvGoPreempt = 18 // goroutine is preempted [timestamp, stack] 250 traceEvGoSleep = 19 // goroutine calls Sleep [timestamp, stack] 251 traceEvGoBlock = 20 // goroutine blocks [timestamp, stack] 252 traceEvGoUnblock = 21 // goroutine is unblocked [timestamp, goroutine id, seq, stack] 253 traceEvGoBlockSend = 22 // goroutine blocks on chan send [timestamp, stack] 254 traceEvGoBlockRecv = 23 // goroutine blocks on chan recv [timestamp, stack] 255 traceEvGoBlockSelect = 24 // goroutine blocks on select [timestamp, stack] 256 traceEvGoBlockSync = 25 // goroutine blocks on Mutex/RWMutex [timestamp, stack] 257 traceEvGoBlockCond = 26 // goroutine blocks on Cond [timestamp, stack] 258 traceEvGoBlockNet = 27 // goroutine blocks on network [timestamp, stack] 259 traceEvGoSysCall = 28 // syscall enter [timestamp, stack] 260 traceEvGoSysExit = 29 // syscall exit [timestamp, goroutine id, seq, real timestamp] 261 traceEvGoSysBlock = 30 // syscall blocks [timestamp] 262 traceEvGoWaiting = 31 // denotes that goroutine is blocked when tracing starts [timestamp, goroutine id] 263 traceEvGoInSyscall = 32 // denotes that goroutine is in syscall when tracing starts [timestamp, goroutine id] 264 traceEvHeapAlloc = 33 // gcController.heapLive change [timestamp, heap_alloc] 265 traceEvHeapGoal = 34 // gcController.heapGoal (formerly next_gc) change [timestamp, heap goal in bytes] 266 traceEvTimerGoroutine = 35 // not currently used; previously denoted timer goroutine [timer goroutine id] 267 traceEvFutileWakeup = 36 // denotes that the previous wakeup of this goroutine was futile [timestamp] 268 traceEvString = 37 // string dictionary entry [ID, length, string] 269 traceEvGoStartLocal = 38 // goroutine starts running on the same P as the last event [timestamp, goroutine id] 270 traceEvGoUnblockLocal = 39 // goroutine is unblocked on the same P as the last event [timestamp, goroutine id, stack] 271 traceEvGoSysExitLocal = 40 // syscall exit on the same P as the last event [timestamp, goroutine id, real timestamp] 272 traceEvGoStartLabel = 41 // goroutine starts running with label [timestamp, goroutine id, seq, label string id] 273 traceEvGoBlockGC = 42 // goroutine blocks on GC assist [timestamp, stack] 274 traceEvGCMarkAssistStart = 43 // GC mark assist start [timestamp, stack] 275 traceEvGCMarkAssistDone = 44 // GC mark assist done [timestamp] 276 traceEvUserTaskCreate = 45 // trace.NewContext [timestamp, internal task id, internal parent task id, stack, name string] 277 traceEvUserTaskEnd = 46 // end of a task [timestamp, internal task id, stack] 278 traceEvUserRegion = 47 // trace.WithRegion [timestamp, internal task id, mode(0:start, 1:end), stack, name string] 279 traceEvUserLog = 48 // trace.Log [timestamp, internal task id, key string id, stack, value string] 280 traceEvCount = 49 281 // Byte is used but only 6 bits are available for event type. 282 // The remaining 2 bits are used to specify the number of arguments. 283 // That means, the max event type value is 63. 284 ) 285 286 // defined constants 287 const ( 288 // G status 289 // 290 // Beyond indicating the general state of a G, the G status 291 // acts like a lock on the goroutine's stack (and hence its 292 // ability to execute user code). 293 // 294 // If you add to this list, add to the list 295 // of "okay during garbage collection" status 296 // in mgcmark.go too. 297 // 298 // TODO(austin): The _Gscan bit could be much lighter-weight. 299 // For example, we could choose not to run _Gscanrunnable 300 // goroutines found in the run queue, rather than CAS-looping 301 // until they become _Grunnable. And transitions like 302 // _Gscanwaiting -> _Gscanrunnable are actually okay because 303 // they don't affect stack ownership. 304 305 // _Gidle means this goroutine was just allocated and has not 306 // yet been initialized. 307 _Gidle = iota // 0 308 309 // _Grunnable means this goroutine is on a run queue. It is 310 // not currently executing user code. The stack is not owned. 311 _Grunnable // 1 312 313 // _Grunning means this goroutine may execute user code. The 314 // stack is owned by this goroutine. It is not on a run queue. 315 // It is assigned an M and a P (g.m and g.m.p are valid). 316 _Grunning // 2 317 318 // _Gsyscall means this goroutine is executing a system call. 319 // It is not executing user code. The stack is owned by this 320 // goroutine. It is not on a run queue. It is assigned an M. 321 _Gsyscall // 3 322 323 // _Gwaiting means this goroutine is blocked in the runtime. 324 // It is not executing user code. It is not on a run queue, 325 // but should be recorded somewhere (e.g., a channel wait 326 // queue) so it can be ready()d when necessary. The stack is 327 // not owned *except* that a channel operation may read or 328 // write parts of the stack under the appropriate channel 329 // lock. Otherwise, it is not safe to access the stack after a 330 // goroutine enters _Gwaiting (e.g., it may get moved). 331 _Gwaiting // 4 332 333 // _Gmoribund_unused is currently unused, but hardcoded in gdb 334 // scripts. 335 _Gmoribund_unused // 5 336 337 // _Gdead means this goroutine is currently unused. It may be 338 // just exited, on a free list, or just being initialized. It 339 // is not executing user code. It may or may not have a stack 340 // allocated. The G and its stack (if any) are owned by the M 341 // that is exiting the G or that obtained the G from the free 342 // list. 343 _Gdead // 6 344 345 // _Genqueue_unused is currently unused. 346 _Genqueue_unused // 7 347 348 // _Gcopystack means this goroutine's stack is being moved. It 349 // is not executing user code and is not on a run queue. The 350 // stack is owned by the goroutine that put it in _Gcopystack. 351 _Gcopystack // 8 352 353 // _Gpreempted means this goroutine stopped itself for a 354 // suspendG preemption. It is like _Gwaiting, but nothing is 355 // yet responsible for ready()ing it. Some suspendG must CAS 356 // the status to _Gwaiting to take responsibility for 357 // ready()ing this G. 358 _Gpreempted // 9 359 360 // _Gscan combined with one of the above states other than 361 // _Grunning indicates that GC is scanning the stack. The 362 // goroutine is not executing user code and the stack is owned 363 // by the goroutine that set the _Gscan bit. 364 // 365 // _Gscanrunning is different: it is used to briefly block 366 // state transitions while GC signals the G to scan its own 367 // stack. This is otherwise like _Grunning. 368 // 369 // atomicstatus&~Gscan gives the state the goroutine will 370 // return to when the scan completes. 371 _Gscan = 0x1000 372 _Gscanrunnable = _Gscan + _Grunnable // 0x1001 373 _Gscanrunning = _Gscan + _Grunning // 0x1002 374 _Gscansyscall = _Gscan + _Gsyscall // 0x1003 375 _Gscanwaiting = _Gscan + _Gwaiting // 0x1004 376 _Gscanpreempted = _Gscan + _Gpreempted // 0x1009 377 )