github.com/alwaysproblem/mlserving-tutorial@v0.0.0-20221124033215-121cfddbfbf4/TFserving/ClientAPI/python/grpc_metadata.py (about) 1 """Module for requesting server metadata python api example.""" 2 import grpc 3 from tensorflow_serving.apis import prediction_service_pb2_grpc 4 from tensorflow_serving.apis import get_model_metadata_pb2 5 6 host = "0.0.0.0" 7 port = 8500 8 server = host + ":" + str(port) 9 10 if __name__ == "__main__": 11 12 import argparse 13 14 parse = argparse.ArgumentParser(prog="the tensorflow client for python.") 15 parse.add_argument( 16 "-m", "--model", type=str, action="store", dest="model", default="Toy" 17 ) 18 parse.add_argument( 19 "-v", "--version", type=int, action="store", dest="version", default=-1 20 ) 21 22 args = parse.parse_args() 23 24 channel = grpc.insecure_channel(server) 25 stub = prediction_service_pb2_grpc.PredictionServiceStub(channel) 26 27 get_model_metadata_request = get_model_metadata_pb2.GetModelMetadataRequest() 28 get_model_metadata_request.model_spec.name = args.model 29 if args.version > -1: 30 get_model_metadata_request.model_spec.version.value = args.version 31 get_model_metadata_request.metadata_field.append("signature_def") 32 33 resp = stub.GetModelMetadata(get_model_metadata_request) 34 print(resp)