github.com/alwaysproblem/mlserving-tutorial@v0.0.0-20221124033215-121cfddbfbf4/TFserving/ClientAPI/python/grpc_model_status.py (about) 1 """Grpc request for model status""" 2 import numpy as np 3 4 from tensorflow_serving.apis import predict_pb2 5 from tensorflow_serving.apis import model_service_pb2_grpc 6 import grpc 7 8 host = "0.0.0.0" 9 port = 8500 10 server = host + ":" + str(port) 11 timeout_req = 30.0 12 13 req_data = np.array([[1., 2.], [1., 3.]]) 14 15 if __name__ == "__main__": 16 17 import argparse 18 19 parse = argparse.ArgumentParser(prog="the tensorflow client for python.") 20 parse.add_argument( 21 "-m", "--model", type=str, action="store", dest="model", default="Toy" 22 ) 23 parse.add_argument( 24 "-v", "--version", type=int, action="store", dest="version", default=-1 25 ) 26 27 args = parse.parse_args() 28 29 channel = grpc.insecure_channel(server) 30 31 # for output tensor 32 request = predict_pb2.PredictRequest() 33 request.model_spec.name = args.model 34 35 if args.version > -1: 36 request.model_spec.version.value = args.version 37 38 request.model_spec.signature_name = "serving_default" 39 40 # this HandleReloadConfigRequest is for the reload API of the model specified 41 modelstub = model_service_pb2_grpc.ModelServiceStub(channel) 42 43 # this can get the status for model served. 44 model_status = modelstub.GetModelStatus(request, timeout_req) 45 print(model_status) 46 47 # # for output filter out (you can also check the grpc api `predict.proto` ) 48 # print(resp.outputs["output_1"].float_val)