github.com/amanya/packer@v0.12.1-0.20161117214323-902ac5ab2eb6/builder/azure/pkcs12/rc2/rc2.go (about) 1 // Package rc2 implements the RC2 cipher 2 /* 3 https://www.ietf.org/rfc/rfc2268.txt 4 http://people.csail.mit.edu/rivest/pubs/KRRR98.pdf 5 6 This code is licensed under the MIT license. 7 */ 8 package rc2 9 10 import ( 11 "crypto/cipher" 12 "encoding/binary" 13 "strconv" 14 ) 15 16 // The rc2 block size in bytes 17 const BlockSize = 8 18 19 type rc2Cipher struct { 20 k [64]uint16 21 } 22 23 // KeySizeError indicates the supplied key was invalid 24 type KeySizeError int 25 26 func (k KeySizeError) Error() string { return "rc2: invalid key size " + strconv.Itoa(int(k)) } 27 28 // EffectiveKeySizeError indicates the supplied effective key length was invalid 29 type EffectiveKeySizeError int 30 31 func (k EffectiveKeySizeError) Error() string { 32 return "rc2: invalid effective key size " + strconv.Itoa(int(k)) 33 } 34 35 // New returns a new rc2 cipher with the given key and effective key length t1 36 func New(key []byte, t1 int) (cipher.Block, error) { 37 if l := len(key); l == 0 || l > 128 { 38 return nil, KeySizeError(l) 39 } 40 41 if t1 < 8 || t1 > 1024 { 42 return nil, EffectiveKeySizeError(t1) 43 } 44 45 return &rc2Cipher{ 46 k: expandKey(key, t1), 47 }, nil 48 } 49 50 func (c *rc2Cipher) BlockSize() int { return BlockSize } 51 52 var piTable = [256]byte{ 53 0xd9, 0x78, 0xf9, 0xc4, 0x19, 0xdd, 0xb5, 0xed, 0x28, 0xe9, 0xfd, 0x79, 0x4a, 0xa0, 0xd8, 0x9d, 54 0xc6, 0x7e, 0x37, 0x83, 0x2b, 0x76, 0x53, 0x8e, 0x62, 0x4c, 0x64, 0x88, 0x44, 0x8b, 0xfb, 0xa2, 55 0x17, 0x9a, 0x59, 0xf5, 0x87, 0xb3, 0x4f, 0x13, 0x61, 0x45, 0x6d, 0x8d, 0x09, 0x81, 0x7d, 0x32, 56 0xbd, 0x8f, 0x40, 0xeb, 0x86, 0xb7, 0x7b, 0x0b, 0xf0, 0x95, 0x21, 0x22, 0x5c, 0x6b, 0x4e, 0x82, 57 0x54, 0xd6, 0x65, 0x93, 0xce, 0x60, 0xb2, 0x1c, 0x73, 0x56, 0xc0, 0x14, 0xa7, 0x8c, 0xf1, 0xdc, 58 0x12, 0x75, 0xca, 0x1f, 0x3b, 0xbe, 0xe4, 0xd1, 0x42, 0x3d, 0xd4, 0x30, 0xa3, 0x3c, 0xb6, 0x26, 59 0x6f, 0xbf, 0x0e, 0xda, 0x46, 0x69, 0x07, 0x57, 0x27, 0xf2, 0x1d, 0x9b, 0xbc, 0x94, 0x43, 0x03, 60 0xf8, 0x11, 0xc7, 0xf6, 0x90, 0xef, 0x3e, 0xe7, 0x06, 0xc3, 0xd5, 0x2f, 0xc8, 0x66, 0x1e, 0xd7, 61 0x08, 0xe8, 0xea, 0xde, 0x80, 0x52, 0xee, 0xf7, 0x84, 0xaa, 0x72, 0xac, 0x35, 0x4d, 0x6a, 0x2a, 62 0x96, 0x1a, 0xd2, 0x71, 0x5a, 0x15, 0x49, 0x74, 0x4b, 0x9f, 0xd0, 0x5e, 0x04, 0x18, 0xa4, 0xec, 63 0xc2, 0xe0, 0x41, 0x6e, 0x0f, 0x51, 0xcb, 0xcc, 0x24, 0x91, 0xaf, 0x50, 0xa1, 0xf4, 0x70, 0x39, 64 0x99, 0x7c, 0x3a, 0x85, 0x23, 0xb8, 0xb4, 0x7a, 0xfc, 0x02, 0x36, 0x5b, 0x25, 0x55, 0x97, 0x31, 65 0x2d, 0x5d, 0xfa, 0x98, 0xe3, 0x8a, 0x92, 0xae, 0x05, 0xdf, 0x29, 0x10, 0x67, 0x6c, 0xba, 0xc9, 66 0xd3, 0x00, 0xe6, 0xcf, 0xe1, 0x9e, 0xa8, 0x2c, 0x63, 0x16, 0x01, 0x3f, 0x58, 0xe2, 0x89, 0xa9, 67 0x0d, 0x38, 0x34, 0x1b, 0xab, 0x33, 0xff, 0xb0, 0xbb, 0x48, 0x0c, 0x5f, 0xb9, 0xb1, 0xcd, 0x2e, 68 0xc5, 0xf3, 0xdb, 0x47, 0xe5, 0xa5, 0x9c, 0x77, 0x0a, 0xa6, 0x20, 0x68, 0xfe, 0x7f, 0xc1, 0xad, 69 } 70 71 func expandKey(key []byte, t1 int) [64]uint16 { 72 73 l := make([]byte, 128) 74 copy(l, key) 75 76 var t = len(key) 77 var t8 = (t1 + 7) / 8 78 var tm = byte(255 % uint(1<<(8+uint(t1)-8*uint(t8)))) 79 80 for i := len(key); i < 128; i++ { 81 l[i] = piTable[l[i-1]+l[uint8(i-t)]] 82 } 83 84 l[128-t8] = piTable[l[128-t8]&tm] 85 86 for i := 127 - t8; i >= 0; i-- { 87 l[i] = piTable[l[i+1]^l[i+t8]] 88 } 89 90 var k [64]uint16 91 92 for i := range k { 93 k[i] = uint16(l[2*i]) + uint16(l[2*i+1])*256 94 } 95 96 return k 97 } 98 99 func rotl16(x uint16, b uint) uint16 { 100 return (x >> (16 - b)) | (x << b) 101 } 102 103 func (c *rc2Cipher) Encrypt(dst, src []byte) { 104 105 r0 := binary.LittleEndian.Uint16(src[0:]) 106 r1 := binary.LittleEndian.Uint16(src[2:]) 107 r2 := binary.LittleEndian.Uint16(src[4:]) 108 r3 := binary.LittleEndian.Uint16(src[6:]) 109 110 var j int 111 112 // These three mix blocks have not been extracted to a common function for to performance reasons. 113 for j <= 16 { 114 // mix r0 115 r0 = r0 + c.k[j] + (r3 & r2) + ((^r3) & r1) 116 r0 = rotl16(r0, 1) 117 j++ 118 119 // mix r1 120 r1 = r1 + c.k[j] + (r0 & r3) + ((^r0) & r2) 121 r1 = rotl16(r1, 2) 122 j++ 123 124 // mix r2 125 r2 = r2 + c.k[j] + (r1 & r0) + ((^r1) & r3) 126 r2 = rotl16(r2, 3) 127 j++ 128 129 // mix r3 130 r3 = r3 + c.k[j] + (r2 & r1) + ((^r2) & r0) 131 r3 = rotl16(r3, 5) 132 j++ 133 } 134 135 r0 = r0 + c.k[r3&63] 136 r1 = r1 + c.k[r0&63] 137 r2 = r2 + c.k[r1&63] 138 r3 = r3 + c.k[r2&63] 139 140 for j <= 40 { 141 // mix r0 142 r0 = r0 + c.k[j] + (r3 & r2) + ((^r3) & r1) 143 r0 = rotl16(r0, 1) 144 j++ 145 146 // mix r1 147 r1 = r1 + c.k[j] + (r0 & r3) + ((^r0) & r2) 148 r1 = rotl16(r1, 2) 149 j++ 150 151 // mix r2 152 r2 = r2 + c.k[j] + (r1 & r0) + ((^r1) & r3) 153 r2 = rotl16(r2, 3) 154 j++ 155 156 // mix r3 157 r3 = r3 + c.k[j] + (r2 & r1) + ((^r2) & r0) 158 r3 = rotl16(r3, 5) 159 j++ 160 } 161 162 r0 = r0 + c.k[r3&63] 163 r1 = r1 + c.k[r0&63] 164 r2 = r2 + c.k[r1&63] 165 r3 = r3 + c.k[r2&63] 166 167 for j <= 60 { 168 // mix r0 169 r0 = r0 + c.k[j] + (r3 & r2) + ((^r3) & r1) 170 r0 = rotl16(r0, 1) 171 j++ 172 173 // mix r1 174 r1 = r1 + c.k[j] + (r0 & r3) + ((^r0) & r2) 175 r1 = rotl16(r1, 2) 176 j++ 177 178 // mix r2 179 r2 = r2 + c.k[j] + (r1 & r0) + ((^r1) & r3) 180 r2 = rotl16(r2, 3) 181 j++ 182 183 // mix r3 184 r3 = r3 + c.k[j] + (r2 & r1) + ((^r2) & r0) 185 r3 = rotl16(r3, 5) 186 j++ 187 } 188 189 binary.LittleEndian.PutUint16(dst[0:], r0) 190 binary.LittleEndian.PutUint16(dst[2:], r1) 191 binary.LittleEndian.PutUint16(dst[4:], r2) 192 binary.LittleEndian.PutUint16(dst[6:], r3) 193 } 194 195 func (c *rc2Cipher) Decrypt(dst, src []byte) { 196 197 r0 := binary.LittleEndian.Uint16(src[0:]) 198 r1 := binary.LittleEndian.Uint16(src[2:]) 199 r2 := binary.LittleEndian.Uint16(src[4:]) 200 r3 := binary.LittleEndian.Uint16(src[6:]) 201 202 j := 63 203 204 for j >= 44 { 205 // unmix r3 206 r3 = rotl16(r3, 16-5) 207 r3 = r3 - c.k[j] - (r2 & r1) - ((^r2) & r0) 208 j-- 209 210 // unmix r2 211 r2 = rotl16(r2, 16-3) 212 r2 = r2 - c.k[j] - (r1 & r0) - ((^r1) & r3) 213 j-- 214 215 // unmix r1 216 r1 = rotl16(r1, 16-2) 217 r1 = r1 - c.k[j] - (r0 & r3) - ((^r0) & r2) 218 j-- 219 220 // unmix r0 221 r0 = rotl16(r0, 16-1) 222 r0 = r0 - c.k[j] - (r3 & r2) - ((^r3) & r1) 223 j-- 224 } 225 226 r3 = r3 - c.k[r2&63] 227 r2 = r2 - c.k[r1&63] 228 r1 = r1 - c.k[r0&63] 229 r0 = r0 - c.k[r3&63] 230 231 for j >= 20 { 232 // unmix r3 233 r3 = rotl16(r3, 16-5) 234 r3 = r3 - c.k[j] - (r2 & r1) - ((^r2) & r0) 235 j-- 236 237 // unmix r2 238 r2 = rotl16(r2, 16-3) 239 r2 = r2 - c.k[j] - (r1 & r0) - ((^r1) & r3) 240 j-- 241 242 // unmix r1 243 r1 = rotl16(r1, 16-2) 244 r1 = r1 - c.k[j] - (r0 & r3) - ((^r0) & r2) 245 j-- 246 247 // unmix r0 248 r0 = rotl16(r0, 16-1) 249 r0 = r0 - c.k[j] - (r3 & r2) - ((^r3) & r1) 250 j-- 251 } 252 253 r3 = r3 - c.k[r2&63] 254 r2 = r2 - c.k[r1&63] 255 r1 = r1 - c.k[r0&63] 256 r0 = r0 - c.k[r3&63] 257 258 for j >= 0 { 259 // unmix r3 260 r3 = rotl16(r3, 16-5) 261 r3 = r3 - c.k[j] - (r2 & r1) - ((^r2) & r0) 262 j-- 263 264 // unmix r2 265 r2 = rotl16(r2, 16-3) 266 r2 = r2 - c.k[j] - (r1 & r0) - ((^r1) & r3) 267 j-- 268 269 // unmix r1 270 r1 = rotl16(r1, 16-2) 271 r1 = r1 - c.k[j] - (r0 & r3) - ((^r0) & r2) 272 j-- 273 274 // unmix r0 275 r0 = rotl16(r0, 16-1) 276 r0 = r0 - c.k[j] - (r3 & r2) - ((^r3) & r1) 277 j-- 278 } 279 280 binary.LittleEndian.PutUint16(dst[0:], r0) 281 binary.LittleEndian.PutUint16(dst[2:], r1) 282 binary.LittleEndian.PutUint16(dst[4:], r2) 283 binary.LittleEndian.PutUint16(dst[6:], r3) 284 }