github.com/amarpal/go-tools@v0.0.0-20240422043104-40142f59f616/go/ir/dom.go (about) 1 // Copyright 2013 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package ir 6 7 // This file defines algorithms related to dominance. 8 9 // Dominator tree construction ---------------------------------------- 10 // 11 // We use the algorithm described in Lengauer & Tarjan. 1979. A fast 12 // algorithm for finding dominators in a flowgraph. 13 // https://doi.acm.org/10.1145/357062.357071 14 // 15 // We also apply the optimizations to SLT described in Georgiadis et 16 // al, Finding Dominators in Practice, JGAA 2006, 17 // https://jgaa.info/accepted/2006/GeorgiadisTarjanWerneck2006.10.1.pdf 18 // to avoid the need for buckets of size > 1. 19 20 import ( 21 "bytes" 22 "fmt" 23 "io" 24 "math/big" 25 "os" 26 "sort" 27 ) 28 29 // Idom returns the block that immediately dominates b: 30 // its parent in the dominator tree, if any. 31 // The entry node (b.Index==0) does not have a parent. 32 func (b *BasicBlock) Idom() *BasicBlock { return b.dom.idom } 33 34 // Dominees returns the list of blocks that b immediately dominates: 35 // its children in the dominator tree. 36 func (b *BasicBlock) Dominees() []*BasicBlock { return b.dom.children } 37 38 // Dominates reports whether b dominates c. 39 func (b *BasicBlock) Dominates(c *BasicBlock) bool { 40 return b.dom.pre <= c.dom.pre && c.dom.post <= b.dom.post 41 } 42 43 type byDomPreorder []*BasicBlock 44 45 func (a byDomPreorder) Len() int { return len(a) } 46 func (a byDomPreorder) Swap(i, j int) { a[i], a[j] = a[j], a[i] } 47 func (a byDomPreorder) Less(i, j int) bool { return a[i].dom.pre < a[j].dom.pre } 48 49 // DomPreorder returns a new slice containing the blocks of f in 50 // dominator tree preorder. 51 func (f *Function) DomPreorder() []*BasicBlock { 52 n := len(f.Blocks) 53 order := make(byDomPreorder, n) 54 copy(order, f.Blocks) 55 sort.Sort(order) 56 return order 57 } 58 59 // domInfo contains a BasicBlock's dominance information. 60 type domInfo struct { 61 idom *BasicBlock // immediate dominator (parent in domtree) 62 children []*BasicBlock // nodes immediately dominated by this one 63 pre, post int32 // pre- and post-order numbering within domtree 64 } 65 66 // buildDomTree computes the dominator tree of f using the LT algorithm. 67 // Precondition: all blocks are reachable (e.g. optimizeBlocks has been run). 68 func buildDomTree(fn *Function) { 69 // The step numbers refer to the original LT paper; the 70 // reordering is due to Georgiadis. 71 72 // Clear any previous domInfo. 73 for _, b := range fn.Blocks { 74 b.dom = domInfo{} 75 } 76 77 idoms := make([]*BasicBlock, len(fn.Blocks)) 78 79 order := make([]*BasicBlock, 0, len(fn.Blocks)) 80 seen := fn.blockset(0) 81 var dfs func(b *BasicBlock) 82 dfs = func(b *BasicBlock) { 83 if !seen.Add(b) { 84 return 85 } 86 for _, succ := range b.Succs { 87 dfs(succ) 88 } 89 if fn.fakeExits.Has(b) { 90 dfs(fn.Exit) 91 } 92 order = append(order, b) 93 b.post = len(order) - 1 94 } 95 dfs(fn.Blocks[0]) 96 97 for i := 0; i < len(order)/2; i++ { 98 o := len(order) - i - 1 99 order[i], order[o] = order[o], order[i] 100 } 101 102 idoms[fn.Blocks[0].Index] = fn.Blocks[0] 103 changed := true 104 for changed { 105 changed = false 106 // iterate over all nodes in reverse postorder, except for the 107 // entry node 108 for _, b := range order[1:] { 109 var newIdom *BasicBlock 110 do := func(p *BasicBlock) { 111 if idoms[p.Index] == nil { 112 return 113 } 114 if newIdom == nil { 115 newIdom = p 116 } else { 117 finger1 := p 118 finger2 := newIdom 119 for finger1 != finger2 { 120 for finger1.post < finger2.post { 121 finger1 = idoms[finger1.Index] 122 } 123 for finger2.post < finger1.post { 124 finger2 = idoms[finger2.Index] 125 } 126 } 127 newIdom = finger1 128 } 129 } 130 for _, p := range b.Preds { 131 do(p) 132 } 133 if b == fn.Exit { 134 for _, p := range fn.Blocks { 135 if fn.fakeExits.Has(p) { 136 do(p) 137 } 138 } 139 } 140 141 if idoms[b.Index] != newIdom { 142 idoms[b.Index] = newIdom 143 changed = true 144 } 145 } 146 } 147 148 for i, b := range idoms { 149 fn.Blocks[i].dom.idom = b 150 if b == nil { 151 // malformed CFG 152 continue 153 } 154 if i == b.Index { 155 continue 156 } 157 b.dom.children = append(b.dom.children, fn.Blocks[i]) 158 } 159 160 numberDomTree(fn.Blocks[0], 0, 0) 161 162 // printDomTreeDot(os.Stderr, fn) // debugging 163 // printDomTreeText(os.Stderr, root, 0) // debugging 164 165 if fn.Prog.mode&SanityCheckFunctions != 0 { 166 sanityCheckDomTree(fn) 167 } 168 } 169 170 // buildPostDomTree is like buildDomTree, but builds the post-dominator tree instead. 171 func buildPostDomTree(fn *Function) { 172 // The step numbers refer to the original LT paper; the 173 // reordering is due to Georgiadis. 174 175 // Clear any previous domInfo. 176 for _, b := range fn.Blocks { 177 b.pdom = domInfo{} 178 } 179 180 idoms := make([]*BasicBlock, len(fn.Blocks)) 181 182 order := make([]*BasicBlock, 0, len(fn.Blocks)) 183 seen := fn.blockset(0) 184 var dfs func(b *BasicBlock) 185 dfs = func(b *BasicBlock) { 186 if !seen.Add(b) { 187 return 188 } 189 for _, pred := range b.Preds { 190 dfs(pred) 191 } 192 if b == fn.Exit { 193 for _, p := range fn.Blocks { 194 if fn.fakeExits.Has(p) { 195 dfs(p) 196 } 197 } 198 } 199 order = append(order, b) 200 b.post = len(order) - 1 201 } 202 dfs(fn.Exit) 203 204 for i := 0; i < len(order)/2; i++ { 205 o := len(order) - i - 1 206 order[i], order[o] = order[o], order[i] 207 } 208 209 idoms[fn.Exit.Index] = fn.Exit 210 changed := true 211 for changed { 212 changed = false 213 // iterate over all nodes in reverse postorder, except for the 214 // exit node 215 for _, b := range order[1:] { 216 var newIdom *BasicBlock 217 do := func(p *BasicBlock) { 218 if idoms[p.Index] == nil { 219 return 220 } 221 if newIdom == nil { 222 newIdom = p 223 } else { 224 finger1 := p 225 finger2 := newIdom 226 for finger1 != finger2 { 227 for finger1.post < finger2.post { 228 finger1 = idoms[finger1.Index] 229 } 230 for finger2.post < finger1.post { 231 finger2 = idoms[finger2.Index] 232 } 233 } 234 newIdom = finger1 235 } 236 } 237 for _, p := range b.Succs { 238 do(p) 239 } 240 if fn.fakeExits.Has(b) { 241 do(fn.Exit) 242 } 243 244 if idoms[b.Index] != newIdom { 245 idoms[b.Index] = newIdom 246 changed = true 247 } 248 } 249 } 250 251 for i, b := range idoms { 252 fn.Blocks[i].pdom.idom = b 253 if b == nil { 254 // malformed CFG 255 continue 256 } 257 if i == b.Index { 258 continue 259 } 260 b.pdom.children = append(b.pdom.children, fn.Blocks[i]) 261 } 262 263 numberPostDomTree(fn.Exit, 0, 0) 264 265 // printPostDomTreeDot(os.Stderr, fn) // debugging 266 // printPostDomTreeText(os.Stderr, fn.Exit, 0) // debugging 267 268 if fn.Prog.mode&SanityCheckFunctions != 0 { // XXX 269 sanityCheckDomTree(fn) // XXX 270 } 271 } 272 273 // numberDomTree sets the pre- and post-order numbers of a depth-first 274 // traversal of the dominator tree rooted at v. These are used to 275 // answer dominance queries in constant time. 276 func numberDomTree(v *BasicBlock, pre, post int32) (int32, int32) { 277 v.dom.pre = pre 278 pre++ 279 for _, child := range v.dom.children { 280 pre, post = numberDomTree(child, pre, post) 281 } 282 v.dom.post = post 283 post++ 284 return pre, post 285 } 286 287 // numberPostDomTree sets the pre- and post-order numbers of a depth-first 288 // traversal of the post-dominator tree rooted at v. These are used to 289 // answer post-dominance queries in constant time. 290 func numberPostDomTree(v *BasicBlock, pre, post int32) (int32, int32) { 291 v.pdom.pre = pre 292 pre++ 293 for _, child := range v.pdom.children { 294 pre, post = numberPostDomTree(child, pre, post) 295 } 296 v.pdom.post = post 297 post++ 298 return pre, post 299 } 300 301 // Testing utilities ---------------------------------------- 302 303 // sanityCheckDomTree checks the correctness of the dominator tree 304 // computed by the LT algorithm by comparing against the dominance 305 // relation computed by a naive Kildall-style forward dataflow 306 // analysis (Algorithm 10.16 from the "Dragon" book). 307 func sanityCheckDomTree(f *Function) { 308 n := len(f.Blocks) 309 310 // D[i] is the set of blocks that dominate f.Blocks[i], 311 // represented as a bit-set of block indices. 312 D := make([]big.Int, n) 313 314 one := big.NewInt(1) 315 316 // all is the set of all blocks; constant. 317 var all big.Int 318 all.Set(one).Lsh(&all, uint(n)).Sub(&all, one) 319 320 // Initialization. 321 for i := range f.Blocks { 322 if i == 0 { 323 // A root is dominated only by itself. 324 D[i].SetBit(&D[0], 0, 1) 325 } else { 326 // All other blocks are (initially) dominated 327 // by every block. 328 D[i].Set(&all) 329 } 330 } 331 332 // Iteration until fixed point. 333 for changed := true; changed; { 334 changed = false 335 for i, b := range f.Blocks { 336 if i == 0 { 337 continue 338 } 339 // Compute intersection across predecessors. 340 var x big.Int 341 x.Set(&all) 342 for _, pred := range b.Preds { 343 x.And(&x, &D[pred.Index]) 344 } 345 if b == f.Exit { 346 for _, p := range f.Blocks { 347 if f.fakeExits.Has(p) { 348 x.And(&x, &D[p.Index]) 349 } 350 } 351 } 352 x.SetBit(&x, i, 1) // a block always dominates itself. 353 if D[i].Cmp(&x) != 0 { 354 D[i].Set(&x) 355 changed = true 356 } 357 } 358 } 359 360 // Check the entire relation. O(n^2). 361 ok := true 362 for i := 0; i < n; i++ { 363 for j := 0; j < n; j++ { 364 b, c := f.Blocks[i], f.Blocks[j] 365 actual := b.Dominates(c) 366 expected := D[j].Bit(i) == 1 367 if actual != expected { 368 fmt.Fprintf(os.Stderr, "dominates(%s, %s)==%t, want %t\n", b, c, actual, expected) 369 ok = false 370 } 371 } 372 } 373 374 preorder := f.DomPreorder() 375 for _, b := range f.Blocks { 376 if got := preorder[b.dom.pre]; got != b { 377 fmt.Fprintf(os.Stderr, "preorder[%d]==%s, want %s\n", b.dom.pre, got, b) 378 ok = false 379 } 380 } 381 382 if !ok { 383 panic("sanityCheckDomTree failed for " + f.String()) 384 } 385 386 } 387 388 // Printing functions ---------------------------------------- 389 390 // printDomTree prints the dominator tree as text, using indentation. 391 // 392 //lint:ignore U1000 used during debugging 393 func printDomTreeText(buf *bytes.Buffer, v *BasicBlock, indent int) { 394 fmt.Fprintf(buf, "%*s%s\n", 4*indent, "", v) 395 for _, child := range v.dom.children { 396 printDomTreeText(buf, child, indent+1) 397 } 398 } 399 400 // printDomTreeDot prints the dominator tree of f in AT&T GraphViz 401 // (.dot) format. 402 // 403 //lint:ignore U1000 used during debugging 404 func printDomTreeDot(buf io.Writer, f *Function) { 405 fmt.Fprintln(buf, "//", f) 406 fmt.Fprintln(buf, "digraph domtree {") 407 for i, b := range f.Blocks { 408 v := b.dom 409 fmt.Fprintf(buf, "\tn%d [label=\"%s (%d, %d)\",shape=\"rectangle\"];\n", v.pre, b, v.pre, v.post) 410 // TODO(adonovan): improve appearance of edges 411 // belonging to both dominator tree and CFG. 412 413 // Dominator tree edge. 414 if i != 0 { 415 fmt.Fprintf(buf, "\tn%d -> n%d [style=\"solid\",weight=100];\n", v.idom.dom.pre, v.pre) 416 } 417 // CFG edges. 418 for _, pred := range b.Preds { 419 fmt.Fprintf(buf, "\tn%d -> n%d [style=\"dotted\",weight=0];\n", pred.dom.pre, v.pre) 420 } 421 422 if f.fakeExits.Has(b) { 423 fmt.Fprintf(buf, "\tn%d -> n%d [style=\"dotted\",weight=0,color=red];\n", b.dom.pre, f.Exit.dom.pre) 424 } 425 } 426 fmt.Fprintln(buf, "}") 427 } 428 429 // printDomTree prints the dominator tree as text, using indentation. 430 // 431 //lint:ignore U1000 used during debugging 432 func printPostDomTreeText(buf io.Writer, v *BasicBlock, indent int) { 433 fmt.Fprintf(buf, "%*s%s\n", 4*indent, "", v) 434 for _, child := range v.pdom.children { 435 printPostDomTreeText(buf, child, indent+1) 436 } 437 } 438 439 // printDomTreeDot prints the dominator tree of f in AT&T GraphViz 440 // (.dot) format. 441 // 442 //lint:ignore U1000 used during debugging 443 func printPostDomTreeDot(buf io.Writer, f *Function) { 444 fmt.Fprintln(buf, "//", f) 445 fmt.Fprintln(buf, "digraph pdomtree {") 446 for _, b := range f.Blocks { 447 v := b.pdom 448 fmt.Fprintf(buf, "\tn%d [label=\"%s (%d, %d)\",shape=\"rectangle\"];\n", v.pre, b, v.pre, v.post) 449 // TODO(adonovan): improve appearance of edges 450 // belonging to both dominator tree and CFG. 451 452 // Dominator tree edge. 453 if b != f.Exit { 454 fmt.Fprintf(buf, "\tn%d -> n%d [style=\"solid\",weight=100];\n", v.idom.pdom.pre, v.pre) 455 } 456 // CFG edges. 457 for _, pred := range b.Preds { 458 fmt.Fprintf(buf, "\tn%d -> n%d [style=\"dotted\",weight=0];\n", pred.pdom.pre, v.pre) 459 } 460 461 if f.fakeExits.Has(b) { 462 fmt.Fprintf(buf, "\tn%d -> n%d [style=\"dotted\",weight=0,color=red];\n", b.dom.pre, f.Exit.dom.pre) 463 } 464 } 465 fmt.Fprintln(buf, "}") 466 }