github.com/amarpal/go-tools@v0.0.0-20240422043104-40142f59f616/go/ir/dom.go (about)

     1  // Copyright 2013 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package ir
     6  
     7  // This file defines algorithms related to dominance.
     8  
     9  // Dominator tree construction ----------------------------------------
    10  //
    11  // We use the algorithm described in Lengauer & Tarjan. 1979.  A fast
    12  // algorithm for finding dominators in a flowgraph.
    13  // https://doi.acm.org/10.1145/357062.357071
    14  //
    15  // We also apply the optimizations to SLT described in Georgiadis et
    16  // al, Finding Dominators in Practice, JGAA 2006,
    17  // https://jgaa.info/accepted/2006/GeorgiadisTarjanWerneck2006.10.1.pdf
    18  // to avoid the need for buckets of size > 1.
    19  
    20  import (
    21  	"bytes"
    22  	"fmt"
    23  	"io"
    24  	"math/big"
    25  	"os"
    26  	"sort"
    27  )
    28  
    29  // Idom returns the block that immediately dominates b:
    30  // its parent in the dominator tree, if any.
    31  // The entry node (b.Index==0) does not have a parent.
    32  func (b *BasicBlock) Idom() *BasicBlock { return b.dom.idom }
    33  
    34  // Dominees returns the list of blocks that b immediately dominates:
    35  // its children in the dominator tree.
    36  func (b *BasicBlock) Dominees() []*BasicBlock { return b.dom.children }
    37  
    38  // Dominates reports whether b dominates c.
    39  func (b *BasicBlock) Dominates(c *BasicBlock) bool {
    40  	return b.dom.pre <= c.dom.pre && c.dom.post <= b.dom.post
    41  }
    42  
    43  type byDomPreorder []*BasicBlock
    44  
    45  func (a byDomPreorder) Len() int           { return len(a) }
    46  func (a byDomPreorder) Swap(i, j int)      { a[i], a[j] = a[j], a[i] }
    47  func (a byDomPreorder) Less(i, j int) bool { return a[i].dom.pre < a[j].dom.pre }
    48  
    49  // DomPreorder returns a new slice containing the blocks of f in
    50  // dominator tree preorder.
    51  func (f *Function) DomPreorder() []*BasicBlock {
    52  	n := len(f.Blocks)
    53  	order := make(byDomPreorder, n)
    54  	copy(order, f.Blocks)
    55  	sort.Sort(order)
    56  	return order
    57  }
    58  
    59  // domInfo contains a BasicBlock's dominance information.
    60  type domInfo struct {
    61  	idom      *BasicBlock   // immediate dominator (parent in domtree)
    62  	children  []*BasicBlock // nodes immediately dominated by this one
    63  	pre, post int32         // pre- and post-order numbering within domtree
    64  }
    65  
    66  // buildDomTree computes the dominator tree of f using the LT algorithm.
    67  // Precondition: all blocks are reachable (e.g. optimizeBlocks has been run).
    68  func buildDomTree(fn *Function) {
    69  	// The step numbers refer to the original LT paper; the
    70  	// reordering is due to Georgiadis.
    71  
    72  	// Clear any previous domInfo.
    73  	for _, b := range fn.Blocks {
    74  		b.dom = domInfo{}
    75  	}
    76  
    77  	idoms := make([]*BasicBlock, len(fn.Blocks))
    78  
    79  	order := make([]*BasicBlock, 0, len(fn.Blocks))
    80  	seen := fn.blockset(0)
    81  	var dfs func(b *BasicBlock)
    82  	dfs = func(b *BasicBlock) {
    83  		if !seen.Add(b) {
    84  			return
    85  		}
    86  		for _, succ := range b.Succs {
    87  			dfs(succ)
    88  		}
    89  		if fn.fakeExits.Has(b) {
    90  			dfs(fn.Exit)
    91  		}
    92  		order = append(order, b)
    93  		b.post = len(order) - 1
    94  	}
    95  	dfs(fn.Blocks[0])
    96  
    97  	for i := 0; i < len(order)/2; i++ {
    98  		o := len(order) - i - 1
    99  		order[i], order[o] = order[o], order[i]
   100  	}
   101  
   102  	idoms[fn.Blocks[0].Index] = fn.Blocks[0]
   103  	changed := true
   104  	for changed {
   105  		changed = false
   106  		// iterate over all nodes in reverse postorder, except for the
   107  		// entry node
   108  		for _, b := range order[1:] {
   109  			var newIdom *BasicBlock
   110  			do := func(p *BasicBlock) {
   111  				if idoms[p.Index] == nil {
   112  					return
   113  				}
   114  				if newIdom == nil {
   115  					newIdom = p
   116  				} else {
   117  					finger1 := p
   118  					finger2 := newIdom
   119  					for finger1 != finger2 {
   120  						for finger1.post < finger2.post {
   121  							finger1 = idoms[finger1.Index]
   122  						}
   123  						for finger2.post < finger1.post {
   124  							finger2 = idoms[finger2.Index]
   125  						}
   126  					}
   127  					newIdom = finger1
   128  				}
   129  			}
   130  			for _, p := range b.Preds {
   131  				do(p)
   132  			}
   133  			if b == fn.Exit {
   134  				for _, p := range fn.Blocks {
   135  					if fn.fakeExits.Has(p) {
   136  						do(p)
   137  					}
   138  				}
   139  			}
   140  
   141  			if idoms[b.Index] != newIdom {
   142  				idoms[b.Index] = newIdom
   143  				changed = true
   144  			}
   145  		}
   146  	}
   147  
   148  	for i, b := range idoms {
   149  		fn.Blocks[i].dom.idom = b
   150  		if b == nil {
   151  			// malformed CFG
   152  			continue
   153  		}
   154  		if i == b.Index {
   155  			continue
   156  		}
   157  		b.dom.children = append(b.dom.children, fn.Blocks[i])
   158  	}
   159  
   160  	numberDomTree(fn.Blocks[0], 0, 0)
   161  
   162  	// printDomTreeDot(os.Stderr, fn) // debugging
   163  	// printDomTreeText(os.Stderr, root, 0) // debugging
   164  
   165  	if fn.Prog.mode&SanityCheckFunctions != 0 {
   166  		sanityCheckDomTree(fn)
   167  	}
   168  }
   169  
   170  // buildPostDomTree is like buildDomTree, but builds the post-dominator tree instead.
   171  func buildPostDomTree(fn *Function) {
   172  	// The step numbers refer to the original LT paper; the
   173  	// reordering is due to Georgiadis.
   174  
   175  	// Clear any previous domInfo.
   176  	for _, b := range fn.Blocks {
   177  		b.pdom = domInfo{}
   178  	}
   179  
   180  	idoms := make([]*BasicBlock, len(fn.Blocks))
   181  
   182  	order := make([]*BasicBlock, 0, len(fn.Blocks))
   183  	seen := fn.blockset(0)
   184  	var dfs func(b *BasicBlock)
   185  	dfs = func(b *BasicBlock) {
   186  		if !seen.Add(b) {
   187  			return
   188  		}
   189  		for _, pred := range b.Preds {
   190  			dfs(pred)
   191  		}
   192  		if b == fn.Exit {
   193  			for _, p := range fn.Blocks {
   194  				if fn.fakeExits.Has(p) {
   195  					dfs(p)
   196  				}
   197  			}
   198  		}
   199  		order = append(order, b)
   200  		b.post = len(order) - 1
   201  	}
   202  	dfs(fn.Exit)
   203  
   204  	for i := 0; i < len(order)/2; i++ {
   205  		o := len(order) - i - 1
   206  		order[i], order[o] = order[o], order[i]
   207  	}
   208  
   209  	idoms[fn.Exit.Index] = fn.Exit
   210  	changed := true
   211  	for changed {
   212  		changed = false
   213  		// iterate over all nodes in reverse postorder, except for the
   214  		// exit node
   215  		for _, b := range order[1:] {
   216  			var newIdom *BasicBlock
   217  			do := func(p *BasicBlock) {
   218  				if idoms[p.Index] == nil {
   219  					return
   220  				}
   221  				if newIdom == nil {
   222  					newIdom = p
   223  				} else {
   224  					finger1 := p
   225  					finger2 := newIdom
   226  					for finger1 != finger2 {
   227  						for finger1.post < finger2.post {
   228  							finger1 = idoms[finger1.Index]
   229  						}
   230  						for finger2.post < finger1.post {
   231  							finger2 = idoms[finger2.Index]
   232  						}
   233  					}
   234  					newIdom = finger1
   235  				}
   236  			}
   237  			for _, p := range b.Succs {
   238  				do(p)
   239  			}
   240  			if fn.fakeExits.Has(b) {
   241  				do(fn.Exit)
   242  			}
   243  
   244  			if idoms[b.Index] != newIdom {
   245  				idoms[b.Index] = newIdom
   246  				changed = true
   247  			}
   248  		}
   249  	}
   250  
   251  	for i, b := range idoms {
   252  		fn.Blocks[i].pdom.idom = b
   253  		if b == nil {
   254  			// malformed CFG
   255  			continue
   256  		}
   257  		if i == b.Index {
   258  			continue
   259  		}
   260  		b.pdom.children = append(b.pdom.children, fn.Blocks[i])
   261  	}
   262  
   263  	numberPostDomTree(fn.Exit, 0, 0)
   264  
   265  	// printPostDomTreeDot(os.Stderr, fn) // debugging
   266  	// printPostDomTreeText(os.Stderr, fn.Exit, 0) // debugging
   267  
   268  	if fn.Prog.mode&SanityCheckFunctions != 0 { // XXX
   269  		sanityCheckDomTree(fn) // XXX
   270  	}
   271  }
   272  
   273  // numberDomTree sets the pre- and post-order numbers of a depth-first
   274  // traversal of the dominator tree rooted at v.  These are used to
   275  // answer dominance queries in constant time.
   276  func numberDomTree(v *BasicBlock, pre, post int32) (int32, int32) {
   277  	v.dom.pre = pre
   278  	pre++
   279  	for _, child := range v.dom.children {
   280  		pre, post = numberDomTree(child, pre, post)
   281  	}
   282  	v.dom.post = post
   283  	post++
   284  	return pre, post
   285  }
   286  
   287  // numberPostDomTree sets the pre- and post-order numbers of a depth-first
   288  // traversal of the post-dominator tree rooted at v.  These are used to
   289  // answer post-dominance queries in constant time.
   290  func numberPostDomTree(v *BasicBlock, pre, post int32) (int32, int32) {
   291  	v.pdom.pre = pre
   292  	pre++
   293  	for _, child := range v.pdom.children {
   294  		pre, post = numberPostDomTree(child, pre, post)
   295  	}
   296  	v.pdom.post = post
   297  	post++
   298  	return pre, post
   299  }
   300  
   301  // Testing utilities ----------------------------------------
   302  
   303  // sanityCheckDomTree checks the correctness of the dominator tree
   304  // computed by the LT algorithm by comparing against the dominance
   305  // relation computed by a naive Kildall-style forward dataflow
   306  // analysis (Algorithm 10.16 from the "Dragon" book).
   307  func sanityCheckDomTree(f *Function) {
   308  	n := len(f.Blocks)
   309  
   310  	// D[i] is the set of blocks that dominate f.Blocks[i],
   311  	// represented as a bit-set of block indices.
   312  	D := make([]big.Int, n)
   313  
   314  	one := big.NewInt(1)
   315  
   316  	// all is the set of all blocks; constant.
   317  	var all big.Int
   318  	all.Set(one).Lsh(&all, uint(n)).Sub(&all, one)
   319  
   320  	// Initialization.
   321  	for i := range f.Blocks {
   322  		if i == 0 {
   323  			// A root is dominated only by itself.
   324  			D[i].SetBit(&D[0], 0, 1)
   325  		} else {
   326  			// All other blocks are (initially) dominated
   327  			// by every block.
   328  			D[i].Set(&all)
   329  		}
   330  	}
   331  
   332  	// Iteration until fixed point.
   333  	for changed := true; changed; {
   334  		changed = false
   335  		for i, b := range f.Blocks {
   336  			if i == 0 {
   337  				continue
   338  			}
   339  			// Compute intersection across predecessors.
   340  			var x big.Int
   341  			x.Set(&all)
   342  			for _, pred := range b.Preds {
   343  				x.And(&x, &D[pred.Index])
   344  			}
   345  			if b == f.Exit {
   346  				for _, p := range f.Blocks {
   347  					if f.fakeExits.Has(p) {
   348  						x.And(&x, &D[p.Index])
   349  					}
   350  				}
   351  			}
   352  			x.SetBit(&x, i, 1) // a block always dominates itself.
   353  			if D[i].Cmp(&x) != 0 {
   354  				D[i].Set(&x)
   355  				changed = true
   356  			}
   357  		}
   358  	}
   359  
   360  	// Check the entire relation.  O(n^2).
   361  	ok := true
   362  	for i := 0; i < n; i++ {
   363  		for j := 0; j < n; j++ {
   364  			b, c := f.Blocks[i], f.Blocks[j]
   365  			actual := b.Dominates(c)
   366  			expected := D[j].Bit(i) == 1
   367  			if actual != expected {
   368  				fmt.Fprintf(os.Stderr, "dominates(%s, %s)==%t, want %t\n", b, c, actual, expected)
   369  				ok = false
   370  			}
   371  		}
   372  	}
   373  
   374  	preorder := f.DomPreorder()
   375  	for _, b := range f.Blocks {
   376  		if got := preorder[b.dom.pre]; got != b {
   377  			fmt.Fprintf(os.Stderr, "preorder[%d]==%s, want %s\n", b.dom.pre, got, b)
   378  			ok = false
   379  		}
   380  	}
   381  
   382  	if !ok {
   383  		panic("sanityCheckDomTree failed for " + f.String())
   384  	}
   385  
   386  }
   387  
   388  // Printing functions ----------------------------------------
   389  
   390  // printDomTree prints the dominator tree as text, using indentation.
   391  //
   392  //lint:ignore U1000 used during debugging
   393  func printDomTreeText(buf *bytes.Buffer, v *BasicBlock, indent int) {
   394  	fmt.Fprintf(buf, "%*s%s\n", 4*indent, "", v)
   395  	for _, child := range v.dom.children {
   396  		printDomTreeText(buf, child, indent+1)
   397  	}
   398  }
   399  
   400  // printDomTreeDot prints the dominator tree of f in AT&T GraphViz
   401  // (.dot) format.
   402  //
   403  //lint:ignore U1000 used during debugging
   404  func printDomTreeDot(buf io.Writer, f *Function) {
   405  	fmt.Fprintln(buf, "//", f)
   406  	fmt.Fprintln(buf, "digraph domtree {")
   407  	for i, b := range f.Blocks {
   408  		v := b.dom
   409  		fmt.Fprintf(buf, "\tn%d [label=\"%s (%d, %d)\",shape=\"rectangle\"];\n", v.pre, b, v.pre, v.post)
   410  		// TODO(adonovan): improve appearance of edges
   411  		// belonging to both dominator tree and CFG.
   412  
   413  		// Dominator tree edge.
   414  		if i != 0 {
   415  			fmt.Fprintf(buf, "\tn%d -> n%d [style=\"solid\",weight=100];\n", v.idom.dom.pre, v.pre)
   416  		}
   417  		// CFG edges.
   418  		for _, pred := range b.Preds {
   419  			fmt.Fprintf(buf, "\tn%d -> n%d [style=\"dotted\",weight=0];\n", pred.dom.pre, v.pre)
   420  		}
   421  
   422  		if f.fakeExits.Has(b) {
   423  			fmt.Fprintf(buf, "\tn%d -> n%d [style=\"dotted\",weight=0,color=red];\n", b.dom.pre, f.Exit.dom.pre)
   424  		}
   425  	}
   426  	fmt.Fprintln(buf, "}")
   427  }
   428  
   429  // printDomTree prints the dominator tree as text, using indentation.
   430  //
   431  //lint:ignore U1000 used during debugging
   432  func printPostDomTreeText(buf io.Writer, v *BasicBlock, indent int) {
   433  	fmt.Fprintf(buf, "%*s%s\n", 4*indent, "", v)
   434  	for _, child := range v.pdom.children {
   435  		printPostDomTreeText(buf, child, indent+1)
   436  	}
   437  }
   438  
   439  // printDomTreeDot prints the dominator tree of f in AT&T GraphViz
   440  // (.dot) format.
   441  //
   442  //lint:ignore U1000 used during debugging
   443  func printPostDomTreeDot(buf io.Writer, f *Function) {
   444  	fmt.Fprintln(buf, "//", f)
   445  	fmt.Fprintln(buf, "digraph pdomtree {")
   446  	for _, b := range f.Blocks {
   447  		v := b.pdom
   448  		fmt.Fprintf(buf, "\tn%d [label=\"%s (%d, %d)\",shape=\"rectangle\"];\n", v.pre, b, v.pre, v.post)
   449  		// TODO(adonovan): improve appearance of edges
   450  		// belonging to both dominator tree and CFG.
   451  
   452  		// Dominator tree edge.
   453  		if b != f.Exit {
   454  			fmt.Fprintf(buf, "\tn%d -> n%d [style=\"solid\",weight=100];\n", v.idom.pdom.pre, v.pre)
   455  		}
   456  		// CFG edges.
   457  		for _, pred := range b.Preds {
   458  			fmt.Fprintf(buf, "\tn%d -> n%d [style=\"dotted\",weight=0];\n", pred.pdom.pre, v.pre)
   459  		}
   460  
   461  		if f.fakeExits.Has(b) {
   462  			fmt.Fprintf(buf, "\tn%d -> n%d [style=\"dotted\",weight=0,color=red];\n", b.dom.pre, f.Exit.dom.pre)
   463  		}
   464  	}
   465  	fmt.Fprintln(buf, "}")
   466  }