github.com/amarpal/go-tools@v0.0.0-20240422043104-40142f59f616/go/ir/ssa.go (about)

     1  // Copyright 2013 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package ir
     6  
     7  // This package defines a high-level intermediate representation for
     8  // Go programs using static single-information (SSI) form.
     9  
    10  import (
    11  	"fmt"
    12  	"go/ast"
    13  	"go/constant"
    14  	"go/token"
    15  	"go/types"
    16  	"math/big"
    17  	"sync"
    18  
    19  	"github.com/amarpal/go-tools/go/types/typeutil"
    20  )
    21  
    22  const (
    23  	// Replace CompositeValue with only constant values with AggregateConst. Currently disabled because it breaks field
    24  	// tracking in U1000.
    25  	doSimplifyConstantCompositeValues = false
    26  )
    27  
    28  type ID int
    29  
    30  // A Program is a partial or complete Go program converted to IR form.
    31  type Program struct {
    32  	Fset       *token.FileSet              // position information for the files of this Program
    33  	PrintFunc  string                      // create ir.html for function specified in PrintFunc
    34  	imported   map[string]*Package         // all importable Packages, keyed by import path
    35  	packages   map[*types.Package]*Package // all loaded Packages, keyed by object
    36  	mode       BuilderMode                 // set of mode bits for IR construction
    37  	MethodSets typeutil.MethodSetCache     // cache of type-checker's method-sets
    38  
    39  	methodsMu    sync.Mutex                 // guards the following maps:
    40  	methodSets   typeutil.Map[*methodSet]   // maps type to its concrete methodSet
    41  	runtimeTypes typeutil.Map[bool]         // types for which rtypes are needed
    42  	canon        typeutil.Map[types.Type]   // type canonicalization map
    43  	bounds       map[*types.Func]*Function  // bounds for curried x.Method closures
    44  	thunks       map[selectionKey]*Function // thunks for T.Method expressions
    45  }
    46  
    47  // A Package is a single analyzed Go package containing Members for
    48  // all package-level functions, variables, constants and types it
    49  // declares.  These may be accessed directly via Members, or via the
    50  // type-specific accessor methods Func, Type, Var and Const.
    51  //
    52  // Members also contains entries for "init" (the synthetic package
    53  // initializer) and "init#%d", the nth declared init function,
    54  // and unspecified other things too.
    55  type Package struct {
    56  	Prog      *Program               // the owning program
    57  	Pkg       *types.Package         // the corresponding go/types.Package
    58  	Members   map[string]Member      // all package members keyed by name (incl. init and init#%d)
    59  	Functions []*Function            // all functions, excluding anonymous ones
    60  	values    map[types.Object]Value // package members (incl. types and methods), keyed by object
    61  	init      *Function              // Func("init"); the package's init function
    62  	debug     bool                   // include full debug info in this package
    63  	printFunc string                 // which function to print in HTML form
    64  
    65  	// The following fields are set transiently, then cleared
    66  	// after building.
    67  	buildOnce sync.Once   // ensures package building occurs once
    68  	ninit     int32       // number of init functions
    69  	info      *types.Info // package type information
    70  	files     []*ast.File // package ASTs
    71  }
    72  
    73  // A Member is a member of a Go package, implemented by *NamedConst,
    74  // *Global, *Function, or *Type; they are created by package-level
    75  // const, var, func and type declarations respectively.
    76  type Member interface {
    77  	Name() string                    // declared name of the package member
    78  	String() string                  // package-qualified name of the package member
    79  	RelString(*types.Package) string // like String, but relative refs are unqualified
    80  	Object() types.Object            // typechecker's object for this member, if any
    81  	Type() types.Type                // type of the package member
    82  	Token() token.Token              // token.{VAR,FUNC,CONST,TYPE}
    83  	Package() *Package               // the containing package
    84  }
    85  
    86  // A Type is a Member of a Package representing a package-level named type.
    87  type Type struct {
    88  	object *types.TypeName
    89  	pkg    *Package
    90  }
    91  
    92  // A NamedConst is a Member of a Package representing a package-level
    93  // named constant.
    94  //
    95  // Pos() returns the position of the declaring ast.ValueSpec.Names[*]
    96  // identifier.
    97  //
    98  // NB: a NamedConst is not a Value; it contains a constant Value, which
    99  // it augments with the name and position of its 'const' declaration.
   100  type NamedConst struct {
   101  	object *types.Const
   102  	Value  *Const
   103  	pkg    *Package
   104  }
   105  
   106  // A Value is an IR value that can be referenced by an instruction.
   107  type Value interface {
   108  	setID(ID)
   109  
   110  	// Name returns the name of this value, and determines how
   111  	// this Value appears when used as an operand of an
   112  	// Instruction.
   113  	//
   114  	// This is the same as the source name for Parameters,
   115  	// Builtins, Functions, FreeVars, Globals.
   116  	// For constants, it is a representation of the constant's value
   117  	// and type.  For all other Values this is the name of the
   118  	// virtual register defined by the instruction.
   119  	//
   120  	// The name of an IR Value is not semantically significant,
   121  	// and may not even be unique within a function.
   122  	Name() string
   123  
   124  	// ID returns the ID of this value. IDs are unique within a single
   125  	// function and are densely numbered, but may contain gaps.
   126  	// Values and other Instructions share the same ID space.
   127  	// Globally, values are identified by their addresses. However,
   128  	// IDs exist to facilitate efficient storage of mappings between
   129  	// values and data when analysing functions.
   130  	//
   131  	// NB: IDs are allocated late in the IR construction process and
   132  	// are not available to early stages of said process.
   133  	ID() ID
   134  
   135  	// If this value is an Instruction, String returns its
   136  	// disassembled form; otherwise it returns unspecified
   137  	// human-readable information about the Value, such as its
   138  	// kind, name and type.
   139  	String() string
   140  
   141  	// Type returns the type of this value.  Many instructions
   142  	// (e.g. IndexAddr) change their behaviour depending on the
   143  	// types of their operands.
   144  	Type() types.Type
   145  
   146  	// Parent returns the function to which this Value belongs.
   147  	// It returns nil for named Functions, Builtin and Global.
   148  	Parent() *Function
   149  
   150  	// Referrers returns the list of instructions that have this
   151  	// value as one of their operands; it may contain duplicates
   152  	// if an instruction has a repeated operand.
   153  	//
   154  	// Referrers actually returns a pointer through which the
   155  	// caller may perform mutations to the object's state.
   156  	//
   157  	// Referrers is currently only defined if Parent()!=nil,
   158  	// i.e. for the function-local values FreeVar, Parameter,
   159  	// Functions (iff anonymous) and all value-defining instructions.
   160  	// It returns nil for named Functions, Builtin and Global.
   161  	//
   162  	// Instruction.Operands contains the inverse of this relation.
   163  	Referrers() *[]Instruction
   164  
   165  	Operands(rands []*Value) []*Value // nil for non-Instructions
   166  
   167  	// Source returns the AST node responsible for creating this
   168  	// value. A single AST node may be responsible for more than one
   169  	// value, and not all values have an associated AST node.
   170  	//
   171  	// Do not use this method to find a Value given an ast.Expr; use
   172  	// ValueForExpr instead.
   173  	Source() ast.Node
   174  
   175  	// Pos returns Source().Pos() if Source is not nil, else it
   176  	// returns token.NoPos.
   177  	Pos() token.Pos
   178  }
   179  
   180  // An Instruction is an IR instruction that computes a new Value or
   181  // has some effect.
   182  //
   183  // An Instruction that defines a value (e.g. BinOp) also implements
   184  // the Value interface; an Instruction that only has an effect (e.g. Store)
   185  // does not.
   186  type Instruction interface {
   187  	setSource(ast.Node)
   188  	setID(ID)
   189  
   190  	Comment() string
   191  
   192  	// String returns the disassembled form of this value.
   193  	//
   194  	// Examples of Instructions that are Values:
   195  	//       "BinOp <int> {+} t1 t2"  (BinOp)
   196  	//       "Call <int> len t1"      (Call)
   197  	// Note that the name of the Value is not printed.
   198  	//
   199  	// Examples of Instructions that are not Values:
   200  	//       "Return t1"              (Return)
   201  	//       "Store {int} t2 t1"      (Store)
   202  	//
   203  	// (The separation of Value.Name() from Value.String() is useful
   204  	// for some analyses which distinguish the operation from the
   205  	// value it defines, e.g., 'y = local int' is both an allocation
   206  	// of memory 'local int' and a definition of a pointer y.)
   207  	String() string
   208  
   209  	// ID returns the ID of this instruction. IDs are unique within a single
   210  	// function and are densely numbered, but may contain gaps.
   211  	// Globally, instructions are identified by their addresses. However,
   212  	// IDs exist to facilitate efficient storage of mappings between
   213  	// instructions and data when analysing functions.
   214  	//
   215  	// NB: IDs are allocated late in the IR construction process and
   216  	// are not available to early stages of said process.
   217  	ID() ID
   218  
   219  	// Parent returns the function to which this instruction
   220  	// belongs.
   221  	Parent() *Function
   222  
   223  	// Block returns the basic block to which this instruction
   224  	// belongs.
   225  	Block() *BasicBlock
   226  
   227  	// setBlock sets the basic block to which this instruction belongs.
   228  	setBlock(*BasicBlock)
   229  
   230  	// Operands returns the operands of this instruction: the
   231  	// set of Values it references.
   232  	//
   233  	// Specifically, it appends their addresses to rands, a
   234  	// user-provided slice, and returns the resulting slice,
   235  	// permitting avoidance of memory allocation.
   236  	//
   237  	// The operands are appended in undefined order, but the order
   238  	// is consistent for a given Instruction; the addresses are
   239  	// always non-nil but may point to a nil Value.  Clients may
   240  	// store through the pointers, e.g. to effect a value
   241  	// renaming.
   242  	//
   243  	// Value.Referrers is a subset of the inverse of this
   244  	// relation.  (Referrers are not tracked for all types of
   245  	// Values.)
   246  	Operands(rands []*Value) []*Value
   247  
   248  	Referrers() *[]Instruction // nil for non-Values
   249  
   250  	// Source returns the AST node responsible for creating this
   251  	// instruction. A single AST node may be responsible for more than
   252  	// one instruction, and not all instructions have an associated
   253  	// AST node.
   254  	Source() ast.Node
   255  
   256  	// Pos returns Source().Pos() if Source is not nil, else it
   257  	// returns token.NoPos.
   258  	Pos() token.Pos
   259  }
   260  
   261  // A Node is a node in the IR value graph.  Every concrete type that
   262  // implements Node is also either a Value, an Instruction, or both.
   263  //
   264  // Node contains the methods common to Value and Instruction, plus the
   265  // Operands and Referrers methods generalized to return nil for
   266  // non-Instructions and non-Values, respectively.
   267  //
   268  // Node is provided to simplify IR graph algorithms.  Clients should
   269  // use the more specific and informative Value or Instruction
   270  // interfaces where appropriate.
   271  type Node interface {
   272  	setID(ID)
   273  
   274  	// Common methods:
   275  	ID() ID
   276  	String() string
   277  	Source() ast.Node
   278  	Pos() token.Pos
   279  	Parent() *Function
   280  
   281  	// Partial methods:
   282  	Operands(rands []*Value) []*Value // nil for non-Instructions
   283  	Referrers() *[]Instruction        // nil for non-Values
   284  }
   285  
   286  type Synthetic int
   287  
   288  const (
   289  	SyntheticLoadedFromExportData Synthetic = iota + 1
   290  	SyntheticPackageInitializer
   291  	SyntheticThunk
   292  	SyntheticWrapper
   293  	SyntheticBound
   294  	SyntheticGeneric
   295  )
   296  
   297  func (syn Synthetic) String() string {
   298  	switch syn {
   299  	case SyntheticLoadedFromExportData:
   300  		return "loaded from export data"
   301  	case SyntheticPackageInitializer:
   302  		return "package initializer"
   303  	case SyntheticThunk:
   304  		return "thunk"
   305  	case SyntheticWrapper:
   306  		return "wrapper"
   307  	case SyntheticBound:
   308  		return "bound"
   309  	case SyntheticGeneric:
   310  		return "generic"
   311  	default:
   312  		return fmt.Sprintf("Synthetic(%d)", syn)
   313  	}
   314  }
   315  
   316  // Function represents the parameters, results, and code of a function
   317  // or method.
   318  //
   319  // If Blocks is nil, this indicates an external function for which no
   320  // Go source code is available.  In this case, FreeVars and Locals
   321  // are nil too.  Clients performing whole-program analysis must
   322  // handle external functions specially.
   323  //
   324  // Blocks contains the function's control-flow graph (CFG).
   325  // Blocks[0] is the function entry point; block order is not otherwise
   326  // semantically significant, though it may affect the readability of
   327  // the disassembly.
   328  // To iterate over the blocks in dominance order, use DomPreorder().
   329  //
   330  // A nested function (Parent()!=nil) that refers to one or more
   331  // lexically enclosing local variables ("free variables") has FreeVars.
   332  // Such functions cannot be called directly but require a
   333  // value created by MakeClosure which, via its Bindings, supplies
   334  // values for these parameters.
   335  //
   336  // If the function is a method (Signature.Recv() != nil) then the first
   337  // element of Params is the receiver parameter.
   338  //
   339  // A Go package may declare many functions called "init".
   340  // For each one, Object().Name() returns "init" but Name() returns
   341  // "init#1", etc, in declaration order.
   342  //
   343  // Pos() returns the declaring ast.FuncLit.Type.Func or the position
   344  // of the ast.FuncDecl.Name, if the function was explicit in the
   345  // source.  Synthetic wrappers, for which Synthetic != "", may share
   346  // the same position as the function they wrap.
   347  // Syntax.Pos() always returns the position of the declaring "func" token.
   348  //
   349  // Type() returns the function's Signature.
   350  type Function struct {
   351  	node
   352  
   353  	name      string
   354  	object    types.Object     // a declared *types.Func or one of its wrappers
   355  	method    *types.Selection // info about provenance of synthetic methods
   356  	Signature *types.Signature
   357  	generics  instanceWrapperMap
   358  
   359  	Synthetic Synthetic
   360  	parent    *Function     // enclosing function if anon; nil if global
   361  	Pkg       *Package      // enclosing package; nil for shared funcs (wrappers and error.Error)
   362  	Prog      *Program      // enclosing program
   363  	Params    []*Parameter  // function parameters; for methods, includes receiver
   364  	FreeVars  []*FreeVar    // free variables whose values must be supplied by closure
   365  	Locals    []*Alloc      // local variables of this function
   366  	Blocks    []*BasicBlock // basic blocks of the function; nil => external
   367  	Exit      *BasicBlock   // The function's exit block
   368  	AnonFuncs []*Function   // anonymous functions directly beneath this one
   369  	referrers []Instruction // referring instructions (iff Parent() != nil)
   370  	NoReturn  NoReturn      // Calling this function will always terminate control flow.
   371  
   372  	*functionBody
   373  }
   374  
   375  type instanceWrapperMap struct {
   376  	h       typeutil.Hasher
   377  	entries map[uint32][]struct {
   378  		key *types.TypeList
   379  		val *Function
   380  	}
   381  	len int
   382  }
   383  
   384  func typeListIdentical(l1, l2 *types.TypeList) bool {
   385  	if l1.Len() != l2.Len() {
   386  		return false
   387  	}
   388  	for i := 0; i < l1.Len(); i++ {
   389  		t1 := l1.At(i)
   390  		t2 := l2.At(i)
   391  		if !types.Identical(t1, t2) {
   392  			return false
   393  		}
   394  	}
   395  	return true
   396  }
   397  
   398  func (m *instanceWrapperMap) At(key *types.TypeList) *Function {
   399  	if m.entries == nil {
   400  		m.entries = make(map[uint32][]struct {
   401  			key *types.TypeList
   402  			val *Function
   403  		})
   404  		m.h = typeutil.MakeHasher()
   405  	}
   406  
   407  	var hash uint32
   408  	for i := 0; i < key.Len(); i++ {
   409  		t := key.At(i)
   410  		hash += m.h.Hash(t)
   411  	}
   412  
   413  	for _, e := range m.entries[hash] {
   414  		if typeListIdentical(e.key, key) {
   415  			return e.val
   416  		}
   417  	}
   418  	return nil
   419  }
   420  
   421  func (m *instanceWrapperMap) Set(key *types.TypeList, val *Function) {
   422  	if m.entries == nil {
   423  		m.entries = make(map[uint32][]struct {
   424  			key *types.TypeList
   425  			val *Function
   426  		})
   427  		m.h = typeutil.MakeHasher()
   428  	}
   429  
   430  	var hash uint32
   431  	for i := 0; i < key.Len(); i++ {
   432  		t := key.At(i)
   433  		hash += m.h.Hash(t)
   434  	}
   435  	for i, e := range m.entries[hash] {
   436  		if typeListIdentical(e.key, key) {
   437  			m.entries[hash][i].val = val
   438  			return
   439  		}
   440  	}
   441  	m.entries[hash] = append(m.entries[hash], struct {
   442  		key *types.TypeList
   443  		val *Function
   444  	}{key, val})
   445  	m.len++
   446  }
   447  
   448  func (m *instanceWrapperMap) Len() int {
   449  	return m.len
   450  }
   451  
   452  type NoReturn uint8
   453  
   454  const (
   455  	Returns NoReturn = iota
   456  	AlwaysExits
   457  	AlwaysUnwinds
   458  	NeverReturns
   459  )
   460  
   461  type constValue struct {
   462  	c   Constant
   463  	idx int
   464  }
   465  
   466  type functionBody struct {
   467  	// The following fields are set transiently during building,
   468  	// then cleared.
   469  	currentBlock    *BasicBlock              // where to emit code
   470  	objects         map[types.Object]Value   // addresses of local variables
   471  	namedResults    []*Alloc                 // tuple of named results
   472  	implicitResults []*Alloc                 // tuple of results
   473  	targets         *targets                 // linked stack of branch targets
   474  	lblocks         map[types.Object]*lblock // labelled blocks
   475  
   476  	consts          map[constKey]constValue
   477  	aggregateConsts typeutil.Map[[]*AggregateConst]
   478  
   479  	wr        *HTMLWriter
   480  	fakeExits BlockSet
   481  	blocksets [5]BlockSet
   482  	hasDefer  bool
   483  
   484  	// a contiguous block of instructions that will be used by blocks,
   485  	// to avoid making multiple allocations.
   486  	scratchInstructions []Instruction
   487  }
   488  
   489  func (fn *Function) results() []*Alloc {
   490  	if len(fn.namedResults) > 0 {
   491  		return fn.namedResults
   492  	}
   493  	return fn.implicitResults
   494  }
   495  
   496  // BasicBlock represents an IR basic block.
   497  //
   498  // The final element of Instrs is always an explicit transfer of
   499  // control (If, Jump, Return, Panic, or Unreachable).
   500  //
   501  // A block may contain no Instructions only if it is unreachable,
   502  // i.e., Preds is nil.  Empty blocks are typically pruned.
   503  //
   504  // BasicBlocks and their Preds/Succs relation form a (possibly cyclic)
   505  // graph independent of the IR Value graph: the control-flow graph or
   506  // CFG.  It is illegal for multiple edges to exist between the same
   507  // pair of blocks.
   508  //
   509  // Each BasicBlock is also a node in the dominator tree of the CFG.
   510  // The tree may be navigated using Idom()/Dominees() and queried using
   511  // Dominates().
   512  //
   513  // The order of Preds and Succs is significant (to Phi and If
   514  // instructions, respectively).
   515  type BasicBlock struct {
   516  	Index        int            // index of this block within Parent().Blocks
   517  	Comment      string         // optional label; no semantic significance
   518  	parent       *Function      // parent function
   519  	Instrs       []Instruction  // instructions in order
   520  	Preds, Succs []*BasicBlock  // predecessors and successors
   521  	succs2       [2]*BasicBlock // initial space for Succs
   522  	dom          domInfo        // dominator tree info
   523  	pdom         domInfo        // post-dominator tree info
   524  	post         int
   525  	gaps         int // number of nil Instrs (transient)
   526  	rundefers    int // number of rundefers (transient)
   527  }
   528  
   529  // Pure values ----------------------------------------
   530  
   531  // A FreeVar represents a free variable of the function to which it
   532  // belongs.
   533  //
   534  // FreeVars are used to implement anonymous functions, whose free
   535  // variables are lexically captured in a closure formed by
   536  // MakeClosure.  The value of such a free var is an Alloc or another
   537  // FreeVar and is considered a potentially escaping heap address, with
   538  // pointer type.
   539  //
   540  // FreeVars are also used to implement bound method closures.  Such a
   541  // free var represents the receiver value and may be of any type that
   542  // has concrete methods.
   543  //
   544  // Pos() returns the position of the value that was captured, which
   545  // belongs to an enclosing function.
   546  type FreeVar struct {
   547  	node
   548  
   549  	name      string
   550  	typ       types.Type
   551  	parent    *Function
   552  	referrers []Instruction
   553  
   554  	// Transiently needed during building.
   555  	outer Value // the Value captured from the enclosing context.
   556  }
   557  
   558  // A Parameter represents an input parameter of a function.
   559  type Parameter struct {
   560  	register
   561  
   562  	name   string
   563  	object types.Object // a *types.Var; nil for non-source locals
   564  }
   565  
   566  // A Const represents the value of a constant expression.
   567  //
   568  // The underlying type of a constant may be any boolean, numeric, or
   569  // string type.  In addition, a Const may represent the nil value of
   570  // any reference type---interface, map, channel, pointer, slice, or
   571  // function---but not "untyped nil".
   572  //
   573  // All source-level constant expressions are represented by a Const
   574  // of the same type and value.
   575  //
   576  // Value holds the exact value of the constant, independent of its
   577  // Type(), using the same representation as package go/constant uses for
   578  // constants, or nil for a typed nil value.
   579  //
   580  // Pos() returns token.NoPos.
   581  //
   582  // Example printed form:
   583  //
   584  //	Const <int> {42}
   585  //	Const <untyped string> {"test"}
   586  //	Const <MyComplex> {(3 + 4i)}
   587  type Const struct {
   588  	register
   589  
   590  	Value constant.Value
   591  }
   592  
   593  type AggregateConst struct {
   594  	register
   595  
   596  	Values []Value
   597  }
   598  
   599  type CompositeValue struct {
   600  	register
   601  
   602  	// Bitmap records which elements were explicitly provided. For example, [4]byte{2: x} would have a bitmap of 0010.
   603  	Bitmap big.Int
   604  	// The number of bits set in Bitmap
   605  	NumSet int
   606  	// Dense list of values in the composite literal. Omitted elements are filled in with zero values.
   607  	Values []Value
   608  }
   609  
   610  // TODO add the element's zero constant to ArrayConst
   611  type ArrayConst struct {
   612  	register
   613  }
   614  
   615  type GenericConst struct {
   616  	register
   617  }
   618  
   619  type Constant interface {
   620  	Instruction
   621  	Value
   622  	aConstant()
   623  	RelString(*types.Package) string
   624  	equal(Constant) bool
   625  	setType(types.Type)
   626  }
   627  
   628  func (*Const) aConstant()          {}
   629  func (*AggregateConst) aConstant() {}
   630  func (*ArrayConst) aConstant()     {}
   631  func (*GenericConst) aConstant()   {}
   632  
   633  // A Global is a named Value holding the address of a package-level
   634  // variable.
   635  //
   636  // Pos() returns the position of the ast.ValueSpec.Names[*]
   637  // identifier.
   638  type Global struct {
   639  	node
   640  
   641  	name   string
   642  	object types.Object // a *types.Var; may be nil for synthetics e.g. init$guard
   643  	typ    types.Type
   644  
   645  	Pkg *Package
   646  }
   647  
   648  // A Builtin represents a specific use of a built-in function, e.g. len.
   649  //
   650  // Builtins are immutable values.  Builtins do not have addresses.
   651  // Builtins can only appear in CallCommon.Func.
   652  //
   653  // Name() indicates the function: one of the built-in functions from the
   654  // Go spec (excluding "make" and "new") or one of these ir-defined
   655  // intrinsics:
   656  //
   657  //	// wrapnilchk returns ptr if non-nil, panics otherwise.
   658  //	// (For use in indirection wrappers.)
   659  //	func ir:wrapnilchk(ptr *T, recvType, methodName string) *T
   660  //
   661  //	// noreturnWasPanic returns true if the previously called
   662  //	// function panicked, false if it exited the process.
   663  //	func ir:noreturnWasPanic() bool
   664  //
   665  // Object() returns a *types.Builtin for built-ins defined by the spec,
   666  // nil for others.
   667  //
   668  // Type() returns a *types.Signature representing the effective
   669  // signature of the built-in for this call.
   670  type Builtin struct {
   671  	node
   672  
   673  	name string
   674  	sig  *types.Signature
   675  }
   676  
   677  // Value-defining instructions  ----------------------------------------
   678  
   679  // The Alloc instruction reserves space for a variable of the given type,
   680  // zero-initializes it, and yields its address.
   681  //
   682  // Alloc values are always addresses, and have pointer types, so the
   683  // type of the allocated variable is actually
   684  // Type().Underlying().(*types.Pointer).Elem().
   685  //
   686  // If Heap is false, Alloc allocates space in the function's
   687  // activation record (frame); we refer to an Alloc(Heap=false) as a
   688  // "stack" alloc.  Each stack Alloc returns the same address each time
   689  // it is executed within the same activation; the space is
   690  // re-initialized to zero.
   691  //
   692  // If Heap is true, Alloc allocates space in the heap; we
   693  // refer to an Alloc(Heap=true) as a "heap" alloc.  Each heap Alloc
   694  // returns a different address each time it is executed.
   695  //
   696  // When Alloc is applied to a channel, map or slice type, it returns
   697  // the address of an uninitialized (nil) reference of that kind; store
   698  // the result of MakeSlice, MakeMap or MakeChan in that location to
   699  // instantiate these types.
   700  //
   701  // Pos() returns the ast.CompositeLit.Lbrace for a composite literal,
   702  // or the ast.CallExpr.Rparen for a call to new() or for a call that
   703  // allocates a varargs slice.
   704  //
   705  // Example printed form:
   706  //
   707  //	t1 = StackAlloc <*int>
   708  //	t2 = HeapAlloc <*int> (new)
   709  type Alloc struct {
   710  	register
   711  	Heap  bool
   712  	index int // dense numbering; for lifting
   713  }
   714  
   715  var _ Instruction = (*Sigma)(nil)
   716  var _ Value = (*Sigma)(nil)
   717  
   718  // The Sigma instruction represents an SSI σ-node, which splits values
   719  // at branches in the control flow.
   720  //
   721  // Conceptually, σ-nodes exist at the end of blocks that branch and
   722  // constitute parallel assignments to one value per destination block.
   723  // However, such a representation would be awkward to work with, so
   724  // instead we place σ-nodes at the beginning of branch targets. The
   725  // From field denotes to which incoming edge the node applies.
   726  //
   727  // Within a block, all σ-nodes must appear before all non-σ nodes.
   728  //
   729  // Example printed form:
   730  //
   731  //	t2 = Sigma <int> [#0] t1 (x)
   732  type Sigma struct {
   733  	register
   734  	From *BasicBlock
   735  	X    Value
   736  
   737  	live bool // used during lifting
   738  }
   739  
   740  type CopyInfo uint64
   741  
   742  const (
   743  	CopyInfoUnspecified CopyInfo = 0
   744  	CopyInfoNotNil      CopyInfo = 1 << iota
   745  	CopyInfoNotZeroLength
   746  	CopyInfoNotNegative
   747  	CopyInfoSingleConcreteType
   748  	CopyInfoClosed
   749  )
   750  
   751  type Copy struct {
   752  	register
   753  	X    Value
   754  	Why  Instruction
   755  	Info CopyInfo
   756  }
   757  
   758  // The Phi instruction represents an SSA φ-node, which combines values
   759  // that differ across incoming control-flow edges and yields a new
   760  // value.  Within a block, all φ-nodes must appear before all non-φ, non-σ
   761  // nodes.
   762  //
   763  // Pos() returns the position of the && or || for short-circuit
   764  // control-flow joins, or that of the *Alloc for φ-nodes inserted
   765  // during SSA renaming.
   766  //
   767  // Example printed form:
   768  //
   769  //	t3 = Phi <int> 2:t1 4:t2 (x)
   770  type Phi struct {
   771  	register
   772  	Edges []Value // Edges[i] is value for Block().Preds[i]
   773  
   774  	live bool // used during lifting
   775  }
   776  
   777  // The Call instruction represents a function or method call.
   778  //
   779  // The Call instruction yields the function result if there is exactly
   780  // one.  Otherwise it returns a tuple, the components of which are
   781  // accessed via Extract.
   782  //
   783  // See CallCommon for generic function call documentation.
   784  //
   785  // Pos() returns the ast.CallExpr.Lparen, if explicit in the source.
   786  //
   787  // Example printed form:
   788  //
   789  //	t3 = Call <()> println t1 t2
   790  //	t4 = Call <()> foo$1
   791  //	t6 = Invoke <string> t5.String
   792  type Call struct {
   793  	register
   794  	Call CallCommon
   795  }
   796  
   797  // The BinOp instruction yields the result of binary operation X Op Y.
   798  //
   799  // Pos() returns the ast.BinaryExpr.OpPos, if explicit in the source.
   800  //
   801  // Example printed form:
   802  //
   803  //	t3 = BinOp <int> {+} t2 t1
   804  type BinOp struct {
   805  	register
   806  	// One of:
   807  	// ADD SUB MUL QUO REM          + - * / %
   808  	// AND OR XOR SHL SHR AND_NOT   & | ^ << >> &^
   809  	// EQL NEQ LSS LEQ GTR GEQ      == != < <= < >=
   810  	Op   token.Token
   811  	X, Y Value
   812  }
   813  
   814  // The UnOp instruction yields the result of Op X.
   815  // XOR is bitwise complement.
   816  // SUB is negation.
   817  // NOT is logical negation.
   818  //
   819  // Example printed form:
   820  //
   821  //	t2 = UnOp <int> {^} t1
   822  type UnOp struct {
   823  	register
   824  	Op token.Token // One of: NOT SUB XOR ! - ^
   825  	X  Value
   826  }
   827  
   828  // The Load instruction loads a value from a memory address.
   829  //
   830  // For implicit memory loads, Pos() returns the position of the
   831  // most closely associated source-level construct; the details are not
   832  // specified.
   833  //
   834  // Example printed form:
   835  //
   836  //	t2 = Load <int> t1
   837  type Load struct {
   838  	register
   839  	X Value
   840  }
   841  
   842  // The ChangeType instruction applies to X a value-preserving type
   843  // change to Type().
   844  //
   845  // Type changes are permitted:
   846  //   - between a named type and its underlying type.
   847  //   - between two named types of the same underlying type.
   848  //   - between (possibly named) pointers to identical base types.
   849  //   - from a bidirectional channel to a read- or write-channel,
   850  //     optionally adding/removing a name.
   851  //
   852  // This operation cannot fail dynamically.
   853  //
   854  // Pos() returns the ast.CallExpr.Lparen, if the instruction arose
   855  // from an explicit conversion in the source.
   856  //
   857  // Example printed form:
   858  //
   859  //	t2 = ChangeType <*T> t1
   860  type ChangeType struct {
   861  	register
   862  	X Value
   863  }
   864  
   865  // The Convert instruction yields the conversion of value X to type
   866  // Type().  One or both of those types is basic (but possibly named).
   867  //
   868  // A conversion may change the value and representation of its operand.
   869  // Conversions are permitted:
   870  //   - between real numeric types.
   871  //   - between complex numeric types.
   872  //   - between string and []byte or []rune.
   873  //   - between pointers and unsafe.Pointer.
   874  //   - between unsafe.Pointer and uintptr.
   875  //   - from (Unicode) integer to (UTF-8) string.
   876  //
   877  // A conversion may imply a type name change also.
   878  //
   879  // This operation cannot fail dynamically.
   880  //
   881  // Conversions of untyped string/number/bool constants to a specific
   882  // representation are eliminated during IR construction.
   883  //
   884  // Pos() returns the ast.CallExpr.Lparen, if the instruction arose
   885  // from an explicit conversion in the source.
   886  //
   887  // Example printed form:
   888  //
   889  //	t2 = Convert <[]byte> t1
   890  type Convert struct {
   891  	register
   892  	X Value
   893  }
   894  
   895  // ChangeInterface constructs a value of one interface type from a
   896  // value of another interface type known to be assignable to it.
   897  // This operation cannot fail.
   898  //
   899  // Pos() returns the ast.CallExpr.Lparen if the instruction arose from
   900  // an explicit T(e) conversion; the ast.TypeAssertExpr.Lparen if the
   901  // instruction arose from an explicit e.(T) operation; or token.NoPos
   902  // otherwise.
   903  //
   904  // Example printed form:
   905  //
   906  //	t2 = ChangeInterface <I1> t1
   907  type ChangeInterface struct {
   908  	register
   909  	X Value
   910  }
   911  
   912  // The SliceToArrayPointer instruction yields the conversion of slice X to
   913  // array pointer.
   914  //
   915  // Pos() returns the ast.CallExpr.Lparen, if the instruction arose
   916  // from an explicit conversion in the source.
   917  //
   918  // Example printed form:
   919  //
   920  //	t2 = SliceToArrayPointer <*[4]byte> t1
   921  type SliceToArrayPointer struct {
   922  	register
   923  	X Value
   924  }
   925  
   926  // The SliceToArray instruction yields the conversion of slice X to
   927  // array.
   928  //
   929  // Pos() returns the ast.CallExpr.Lparen, if the instruction arose
   930  // from an explicit conversion in the source.
   931  //
   932  // Example printed form:
   933  //
   934  //	t2 = SliceToArray <[4]byte> t1
   935  type SliceToArray struct {
   936  	register
   937  	X Value
   938  }
   939  
   940  // MakeInterface constructs an instance of an interface type from a
   941  // value of a concrete type.
   942  //
   943  // Use Program.MethodSets.MethodSet(X.Type()) to find the method-set
   944  // of X, and Program.MethodValue(m) to find the implementation of a method.
   945  //
   946  // To construct the zero value of an interface type T, use:
   947  //
   948  //	NewConst(constant.MakeNil(), T, pos)
   949  //
   950  // Pos() returns the ast.CallExpr.Lparen, if the instruction arose
   951  // from an explicit conversion in the source.
   952  //
   953  // Example printed form:
   954  //
   955  //	t2 = MakeInterface <interface{}> t1
   956  type MakeInterface struct {
   957  	register
   958  	X Value
   959  }
   960  
   961  // The MakeClosure instruction yields a closure value whose code is
   962  // Fn and whose free variables' values are supplied by Bindings.
   963  //
   964  // Type() returns a (possibly named) *types.Signature.
   965  //
   966  // Pos() returns the ast.FuncLit.Type.Func for a function literal
   967  // closure or the ast.SelectorExpr.Sel for a bound method closure.
   968  //
   969  // Example printed form:
   970  //
   971  //	t1 = MakeClosure <func()> foo$1 t1 t2
   972  //	t5 = MakeClosure <func(int)> (T).foo$bound t4
   973  type MakeClosure struct {
   974  	register
   975  	Fn       Value   // always a *Function
   976  	Bindings []Value // values for each free variable in Fn.FreeVars
   977  }
   978  
   979  // The MakeMap instruction creates a new hash-table-based map object
   980  // and yields a value of kind map.
   981  //
   982  // Type() returns a (possibly named) *types.Map.
   983  //
   984  // Pos() returns the ast.CallExpr.Lparen, if created by make(map), or
   985  // the ast.CompositeLit.Lbrack if created by a literal.
   986  //
   987  // Example printed form:
   988  //
   989  //	t1 = MakeMap <map[string]int>
   990  //	t2 = MakeMap <StringIntMap> t1
   991  type MakeMap struct {
   992  	register
   993  	Reserve Value // initial space reservation; nil => default
   994  }
   995  
   996  // The MakeChan instruction creates a new channel object and yields a
   997  // value of kind chan.
   998  //
   999  // Type() returns a (possibly named) *types.Chan.
  1000  //
  1001  // Pos() returns the ast.CallExpr.Lparen for the make(chan) that
  1002  // created it.
  1003  //
  1004  // Example printed form:
  1005  //
  1006  //	t3 = MakeChan <chan int> t1
  1007  //	t4 = MakeChan <chan IntChan> t2
  1008  type MakeChan struct {
  1009  	register
  1010  	Size Value // int; size of buffer; zero => synchronous.
  1011  }
  1012  
  1013  // The MakeSlice instruction yields a slice of length Len backed by a
  1014  // newly allocated array of length Cap.
  1015  //
  1016  // Both Len and Cap must be non-nil Values of integer type.
  1017  //
  1018  // (Alloc(types.Array) followed by Slice will not suffice because
  1019  // Alloc can only create arrays of constant length.)
  1020  //
  1021  // Type() returns a (possibly named) *types.Slice.
  1022  //
  1023  // Pos() returns the ast.CallExpr.Lparen for the make([]T) that
  1024  // created it.
  1025  //
  1026  // Example printed form:
  1027  //
  1028  //	t3 = MakeSlice <[]string> t1 t2
  1029  //	t4 = MakeSlice <StringSlice> t1 t2
  1030  type MakeSlice struct {
  1031  	register
  1032  	Len Value
  1033  	Cap Value
  1034  }
  1035  
  1036  // The Slice instruction yields a slice of an existing string, slice
  1037  // or *array X between optional integer bounds Low and High.
  1038  //
  1039  // Dynamically, this instruction panics if X evaluates to a nil *array
  1040  // pointer.
  1041  //
  1042  // Type() returns string if the type of X was string, otherwise a
  1043  // *types.Slice with the same element type as X.
  1044  //
  1045  // Pos() returns the ast.SliceExpr.Lbrack if created by a x[:] slice
  1046  // operation, the ast.CompositeLit.Lbrace if created by a literal, or
  1047  // NoPos if not explicit in the source (e.g. a variadic argument slice).
  1048  //
  1049  // Example printed form:
  1050  //
  1051  //	t4 = Slice <[]int> t3 t2 t1 <nil>
  1052  type Slice struct {
  1053  	register
  1054  	X              Value // slice, string, or *array
  1055  	Low, High, Max Value // each may be nil
  1056  }
  1057  
  1058  // The FieldAddr instruction yields the address of Field of *struct X.
  1059  //
  1060  // The field is identified by its index within the field list of the
  1061  // struct type of X.
  1062  //
  1063  // Dynamically, this instruction panics if X evaluates to a nil
  1064  // pointer.
  1065  //
  1066  // Type() returns a (possibly named) *types.Pointer.
  1067  //
  1068  // Pos() returns the position of the ast.SelectorExpr.Sel for the
  1069  // field, if explicit in the source.
  1070  //
  1071  // Example printed form:
  1072  //
  1073  //	t2 = FieldAddr <*int> [0] (X) t1
  1074  type FieldAddr struct {
  1075  	register
  1076  	X     Value // *struct
  1077  	Field int   // field is X.Type().Underlying().(*types.Pointer).Elem().Underlying().(*types.Struct).Field(Field)
  1078  }
  1079  
  1080  // The Field instruction yields the Field of struct X.
  1081  //
  1082  // The field is identified by its index within the field list of the
  1083  // struct type of X; by using numeric indices we avoid ambiguity of
  1084  // package-local identifiers and permit compact representations.
  1085  //
  1086  // Pos() returns the position of the ast.SelectorExpr.Sel for the
  1087  // field, if explicit in the source.
  1088  //
  1089  // Example printed form:
  1090  //
  1091  //	t2 = FieldAddr <int> [0] (X) t1
  1092  type Field struct {
  1093  	register
  1094  	X     Value // struct
  1095  	Field int   // index into X.Type().(*types.Struct).Fields
  1096  }
  1097  
  1098  // The IndexAddr instruction yields the address of the element at
  1099  // index Index of collection X.  Index is an integer expression.
  1100  //
  1101  // The elements of maps and strings are not addressable; use StringLookup, MapLookup or
  1102  // MapUpdate instead.
  1103  //
  1104  // Dynamically, this instruction panics if X evaluates to a nil *array
  1105  // pointer.
  1106  //
  1107  // Type() returns a (possibly named) *types.Pointer.
  1108  //
  1109  // Pos() returns the ast.IndexExpr.Lbrack for the index operation, if
  1110  // explicit in the source.
  1111  //
  1112  // Example printed form:
  1113  //
  1114  //	t3 = IndexAddr <*int> t2 t1
  1115  type IndexAddr struct {
  1116  	register
  1117  	X     Value // slice or *array,
  1118  	Index Value // numeric index
  1119  }
  1120  
  1121  // The Index instruction yields element Index of array X.
  1122  //
  1123  // Pos() returns the ast.IndexExpr.Lbrack for the index operation, if
  1124  // explicit in the source.
  1125  //
  1126  // Example printed form:
  1127  //
  1128  //	t3 = Index <int> t2 t1
  1129  type Index struct {
  1130  	register
  1131  	X     Value // array
  1132  	Index Value // integer index
  1133  }
  1134  
  1135  // The MapLookup instruction yields element Index of collection X, a map.
  1136  //
  1137  // If CommaOk, the result is a 2-tuple of the value above and a
  1138  // boolean indicating the result of a map membership test for the key.
  1139  // The components of the tuple are accessed using Extract.
  1140  //
  1141  // Pos() returns the ast.IndexExpr.Lbrack, if explicit in the source.
  1142  //
  1143  // Example printed form:
  1144  //
  1145  //	t4 = MapLookup <string> t3 t1
  1146  //	t6 = MapLookup <(string, bool)> t3 t2
  1147  type MapLookup struct {
  1148  	register
  1149  	X       Value // map
  1150  	Index   Value // key-typed index
  1151  	CommaOk bool  // return a value,ok pair
  1152  }
  1153  
  1154  // The StringLookup instruction yields element Index of collection X, a string.
  1155  // Index is an integer expression.
  1156  //
  1157  // Pos() returns the ast.IndexExpr.Lbrack, if explicit in the source.
  1158  //
  1159  // Example printed form:
  1160  //
  1161  //	t3 = StringLookup <uint8> t2 t1
  1162  type StringLookup struct {
  1163  	register
  1164  	X     Value // string
  1165  	Index Value // numeric index
  1166  }
  1167  
  1168  // SelectState is a helper for Select.
  1169  // It represents one goal state and its corresponding communication.
  1170  type SelectState struct {
  1171  	Dir       types.ChanDir // direction of case (SendOnly or RecvOnly)
  1172  	Chan      Value         // channel to use (for send or receive)
  1173  	Send      Value         // value to send (for send)
  1174  	Pos       token.Pos     // position of token.ARROW
  1175  	DebugNode ast.Node      // ast.SendStmt or ast.UnaryExpr(<-) [debug mode]
  1176  }
  1177  
  1178  // The Select instruction tests whether (or blocks until) one
  1179  // of the specified sent or received states is entered.
  1180  //
  1181  // Let n be the number of States for which Dir==RECV and Tᵢ (0 ≤ i < n)
  1182  // be the element type of each such state's Chan.
  1183  // Select returns an n+2-tuple
  1184  //
  1185  //	(index int, recvOk bool, r₀ T₀, ... rₙ-1 Tₙ-1)
  1186  //
  1187  // The tuple's components, described below, must be accessed via the
  1188  // Extract instruction.
  1189  //
  1190  // If Blocking, select waits until exactly one state holds, i.e. a
  1191  // channel becomes ready for the designated operation of sending or
  1192  // receiving; select chooses one among the ready states
  1193  // pseudorandomly, performs the send or receive operation, and sets
  1194  // 'index' to the index of the chosen channel.
  1195  //
  1196  // If !Blocking, select doesn't block if no states hold; instead it
  1197  // returns immediately with index equal to -1.
  1198  //
  1199  // If the chosen channel was used for a receive, the rᵢ component is
  1200  // set to the received value, where i is the index of that state among
  1201  // all n receive states; otherwise rᵢ has the zero value of type Tᵢ.
  1202  // Note that the receive index i is not the same as the state
  1203  // index index.
  1204  //
  1205  // The second component of the triple, recvOk, is a boolean whose value
  1206  // is true iff the selected operation was a receive and the receive
  1207  // successfully yielded a value.
  1208  //
  1209  // Pos() returns the ast.SelectStmt.Select.
  1210  //
  1211  // Example printed form:
  1212  //
  1213  //	t6 = SelectNonBlocking <(index int, ok bool, int)> [<-t4, t5<-t1]
  1214  //	t11 = SelectBlocking <(index int, ok bool)> []
  1215  type Select struct {
  1216  	register
  1217  	States   []*SelectState
  1218  	Blocking bool
  1219  }
  1220  
  1221  // The Range instruction yields an iterator over the domain and range
  1222  // of X, which must be a string or map.
  1223  //
  1224  // Elements are accessed via Next.
  1225  //
  1226  // Type() returns an opaque and degenerate "rangeIter" type.
  1227  //
  1228  // Pos() returns the ast.RangeStmt.For.
  1229  //
  1230  // Example printed form:
  1231  //
  1232  //	t2 = Range <iter> t1
  1233  type Range struct {
  1234  	register
  1235  	X Value // string or map
  1236  }
  1237  
  1238  // The Next instruction reads and advances the (map or string)
  1239  // iterator Iter and returns a 3-tuple value (ok, k, v).  If the
  1240  // iterator is not exhausted, ok is true and k and v are the next
  1241  // elements of the domain and range, respectively.  Otherwise ok is
  1242  // false and k and v are undefined.
  1243  //
  1244  // Components of the tuple are accessed using Extract.
  1245  //
  1246  // The IsString field distinguishes iterators over strings from those
  1247  // over maps, as the Type() alone is insufficient: consider
  1248  // map[int]rune.
  1249  //
  1250  // Type() returns a *types.Tuple for the triple (ok, k, v).
  1251  // The types of k and/or v may be types.Invalid.
  1252  //
  1253  // Example printed form:
  1254  //
  1255  //	t5 = Next <(ok bool, k int, v rune)> t2
  1256  //	t5 = Next <(ok bool, k invalid type, v invalid type)> t2
  1257  type Next struct {
  1258  	register
  1259  	Iter     Value
  1260  	IsString bool // true => string iterator; false => map iterator.
  1261  }
  1262  
  1263  // The TypeAssert instruction tests whether interface value X has type
  1264  // AssertedType.
  1265  //
  1266  // If !CommaOk, on success it returns v, the result of the conversion
  1267  // (defined below); on failure it panics.
  1268  //
  1269  // If CommaOk: on success it returns a pair (v, true) where v is the
  1270  // result of the conversion; on failure it returns (z, false) where z
  1271  // is AssertedType's zero value.  The components of the pair must be
  1272  // accessed using the Extract instruction.
  1273  //
  1274  // If AssertedType is a concrete type, TypeAssert checks whether the
  1275  // dynamic type in interface X is equal to it, and if so, the result
  1276  // of the conversion is a copy of the value in the interface.
  1277  //
  1278  // If AssertedType is an interface, TypeAssert checks whether the
  1279  // dynamic type of the interface is assignable to it, and if so, the
  1280  // result of the conversion is a copy of the interface value X.
  1281  // If AssertedType is a superinterface of X.Type(), the operation will
  1282  // fail iff the operand is nil.  (Contrast with ChangeInterface, which
  1283  // performs no nil-check.)
  1284  //
  1285  // Type() reflects the actual type of the result, possibly a
  1286  // 2-types.Tuple; AssertedType is the asserted type.
  1287  //
  1288  // Pos() returns the ast.CallExpr.Lparen if the instruction arose from
  1289  // an explicit T(e) conversion; the ast.TypeAssertExpr.Lparen if the
  1290  // instruction arose from an explicit e.(T) operation; or the
  1291  // ast.CaseClause.Case if the instruction arose from a case of a
  1292  // type-switch statement.
  1293  //
  1294  // Example printed form:
  1295  //
  1296  //	t2 = TypeAssert <int> t1
  1297  //	t4 = TypeAssert <(value fmt.Stringer, ok bool)> t1
  1298  type TypeAssert struct {
  1299  	register
  1300  	X            Value
  1301  	AssertedType types.Type
  1302  	CommaOk      bool
  1303  }
  1304  
  1305  // The Extract instruction yields component Index of Tuple.
  1306  //
  1307  // This is used to access the results of instructions with multiple
  1308  // return values, such as Call, TypeAssert, Next, Recv,
  1309  // MapLookup and others.
  1310  //
  1311  // Example printed form:
  1312  //
  1313  //	t7 = Extract <bool> [1] (ok) t4
  1314  type Extract struct {
  1315  	register
  1316  	Tuple Value
  1317  	Index int
  1318  }
  1319  
  1320  // Instructions executed for effect.  They do not yield a value. --------------------
  1321  
  1322  // The Jump instruction transfers control to the sole successor of its
  1323  // owning block.
  1324  //
  1325  // A Jump must be the last instruction of its containing BasicBlock.
  1326  //
  1327  // Pos() returns NoPos.
  1328  //
  1329  // Example printed form:
  1330  //
  1331  //	Jump → b1
  1332  type Jump struct {
  1333  	anInstruction
  1334  }
  1335  
  1336  // The Unreachable pseudo-instruction signals that execution cannot
  1337  // continue after the preceding function call because it terminates
  1338  // the process.
  1339  //
  1340  // The instruction acts as a control instruction, jumping to the exit
  1341  // block. However, this jump will never execute.
  1342  //
  1343  // An Unreachable instruction must be the last instruction of its
  1344  // containing BasicBlock.
  1345  //
  1346  // Example printed form:
  1347  //
  1348  //	Unreachable → b1
  1349  type Unreachable struct {
  1350  	anInstruction
  1351  }
  1352  
  1353  // The If instruction transfers control to one of the two successors
  1354  // of its owning block, depending on the boolean Cond: the first if
  1355  // true, the second if false.
  1356  //
  1357  // An If instruction must be the last instruction of its containing
  1358  // BasicBlock.
  1359  //
  1360  // Pos() returns the *ast.IfStmt, if explicit in the source.
  1361  //
  1362  // Example printed form:
  1363  //
  1364  //	If t2 → b1 b2
  1365  type If struct {
  1366  	anInstruction
  1367  	Cond Value
  1368  }
  1369  
  1370  type ConstantSwitch struct {
  1371  	anInstruction
  1372  	Tag Value
  1373  	// Constant branch conditions. A nil Value denotes the (implicit
  1374  	// or explicit) default branch.
  1375  	Conds []Value
  1376  }
  1377  
  1378  type TypeSwitch struct {
  1379  	register
  1380  	Tag   Value
  1381  	Conds []types.Type
  1382  }
  1383  
  1384  // The Return instruction returns values and control back to the calling
  1385  // function.
  1386  //
  1387  // len(Results) is always equal to the number of results in the
  1388  // function's signature.
  1389  //
  1390  // If len(Results) > 1, Return returns a tuple value with the specified
  1391  // components which the caller must access using Extract instructions.
  1392  //
  1393  // There is no instruction to return a ready-made tuple like those
  1394  // returned by a "value,ok"-mode TypeAssert, MapLookup or Recv or
  1395  // a tail-call to a function with multiple result parameters.
  1396  //
  1397  // Return must be the last instruction of its containing BasicBlock.
  1398  // Such a block has no successors.
  1399  //
  1400  // Pos() returns the ast.ReturnStmt.Return, if explicit in the source.
  1401  //
  1402  // Example printed form:
  1403  //
  1404  //	Return
  1405  //	Return t1 t2
  1406  type Return struct {
  1407  	anInstruction
  1408  	Results []Value
  1409  }
  1410  
  1411  // The RunDefers instruction pops and invokes the entire stack of
  1412  // procedure calls pushed by Defer instructions in this function.
  1413  //
  1414  // It is legal to encounter multiple 'rundefers' instructions in a
  1415  // single control-flow path through a function; this is useful in
  1416  // the combined init() function, for example.
  1417  //
  1418  // Pos() returns NoPos.
  1419  //
  1420  // Example printed form:
  1421  //
  1422  //	RunDefers
  1423  type RunDefers struct {
  1424  	anInstruction
  1425  }
  1426  
  1427  // The Panic instruction initiates a panic with value X.
  1428  //
  1429  // A Panic instruction must be the last instruction of its containing
  1430  // BasicBlock, which must have one successor, the exit block.
  1431  //
  1432  // NB: 'go panic(x)' and 'defer panic(x)' do not use this instruction;
  1433  // they are treated as calls to a built-in function.
  1434  //
  1435  // Pos() returns the ast.CallExpr.Lparen if this panic was explicit
  1436  // in the source.
  1437  //
  1438  // Example printed form:
  1439  //
  1440  //	Panic t1
  1441  type Panic struct {
  1442  	anInstruction
  1443  	X Value // an interface{}
  1444  }
  1445  
  1446  // The Go instruction creates a new goroutine and calls the specified
  1447  // function within it.
  1448  //
  1449  // See CallCommon for generic function call documentation.
  1450  //
  1451  // Pos() returns the ast.GoStmt.Go.
  1452  //
  1453  // Example printed form:
  1454  //
  1455  //	Go println t1
  1456  //	Go t3
  1457  //	GoInvoke t4.Bar t2
  1458  type Go struct {
  1459  	anInstruction
  1460  	Call CallCommon
  1461  }
  1462  
  1463  // The Defer instruction pushes the specified call onto a stack of
  1464  // functions to be called by a RunDefers instruction or by a panic.
  1465  //
  1466  // See CallCommon for generic function call documentation.
  1467  //
  1468  // Pos() returns the ast.DeferStmt.Defer.
  1469  //
  1470  // Example printed form:
  1471  //
  1472  //	Defer println t1
  1473  //	Defer t3
  1474  //	DeferInvoke t4.Bar t2
  1475  type Defer struct {
  1476  	anInstruction
  1477  	Call CallCommon
  1478  }
  1479  
  1480  // The Send instruction sends X on channel Chan.
  1481  //
  1482  // Pos() returns the ast.SendStmt.Arrow, if explicit in the source.
  1483  //
  1484  // Example printed form:
  1485  //
  1486  //	Send t2 t1
  1487  type Send struct {
  1488  	anInstruction
  1489  	Chan, X Value
  1490  }
  1491  
  1492  // The Recv instruction receives from channel Chan.
  1493  //
  1494  // If CommaOk, the result is a 2-tuple of the value above
  1495  // and a boolean indicating the success of the receive.  The
  1496  // components of the tuple are accessed using Extract.
  1497  //
  1498  // Pos() returns the ast.UnaryExpr.OpPos, if explicit in the source.
  1499  // For receive operations implicit in ranging over a channel,
  1500  // Pos() returns the ast.RangeStmt.For.
  1501  //
  1502  // Example printed form:
  1503  //
  1504  //	t2 = Recv <int> t1
  1505  //	t3 = Recv <(int, bool)> t1
  1506  type Recv struct {
  1507  	register
  1508  	Chan    Value
  1509  	CommaOk bool
  1510  }
  1511  
  1512  // The Store instruction stores Val at address Addr.
  1513  // Stores can be of arbitrary types.
  1514  //
  1515  // Pos() returns the position of the source-level construct most closely
  1516  // associated with the memory store operation.
  1517  // Since implicit memory stores are numerous and varied and depend upon
  1518  // implementation choices, the details are not specified.
  1519  //
  1520  // Example printed form:
  1521  //
  1522  //	Store {int} t2 t1
  1523  type Store struct {
  1524  	anInstruction
  1525  	Addr Value
  1526  	Val  Value
  1527  }
  1528  
  1529  // The BlankStore instruction is emitted for assignments to the blank
  1530  // identifier.
  1531  //
  1532  // BlankStore is a pseudo-instruction: it has no dynamic effect.
  1533  //
  1534  // Pos() returns NoPos.
  1535  //
  1536  // Example printed form:
  1537  //
  1538  //	BlankStore t1
  1539  type BlankStore struct {
  1540  	anInstruction
  1541  	Val Value
  1542  }
  1543  
  1544  // The MapUpdate instruction updates the association of Map[Key] to
  1545  // Value.
  1546  //
  1547  // Pos() returns the ast.KeyValueExpr.Colon or ast.IndexExpr.Lbrack,
  1548  // if explicit in the source.
  1549  //
  1550  // Example printed form:
  1551  //
  1552  //	MapUpdate t3 t1 t2
  1553  type MapUpdate struct {
  1554  	anInstruction
  1555  	Map   Value
  1556  	Key   Value
  1557  	Value Value
  1558  }
  1559  
  1560  // A DebugRef instruction maps a source-level expression Expr to the
  1561  // IR value X that represents the value (!IsAddr) or address (IsAddr)
  1562  // of that expression.
  1563  //
  1564  // DebugRef is a pseudo-instruction: it has no dynamic effect.
  1565  //
  1566  // Pos() returns Expr.Pos(), the start position of the source-level
  1567  // expression.  This is not the same as the "designated" token as
  1568  // documented at Value.Pos(). e.g. CallExpr.Pos() does not return the
  1569  // position of the ("designated") Lparen token.
  1570  //
  1571  // DebugRefs are generated only for functions built with debugging
  1572  // enabled; see Package.SetDebugMode() and the GlobalDebug builder
  1573  // mode flag.
  1574  //
  1575  // DebugRefs are not emitted for ast.Idents referring to constants or
  1576  // predeclared identifiers, since they are trivial and numerous.
  1577  // Nor are they emitted for ast.ParenExprs.
  1578  //
  1579  // (By representing these as instructions, rather than out-of-band,
  1580  // consistency is maintained during transformation passes by the
  1581  // ordinary SSA renaming machinery.)
  1582  //
  1583  // Example printed form:
  1584  //
  1585  //	; *ast.CallExpr @ 102:9 is t5
  1586  //	; var x float64 @ 109:72 is x
  1587  //	; address of *ast.CompositeLit @ 216:10 is t0
  1588  type DebugRef struct {
  1589  	anInstruction
  1590  	Expr   ast.Expr     // the referring expression (never *ast.ParenExpr)
  1591  	object types.Object // the identity of the source var/func
  1592  	IsAddr bool         // Expr is addressable and X is the address it denotes
  1593  	X      Value        // the value or address of Expr
  1594  }
  1595  
  1596  // Embeddable mix-ins and helpers for common parts of other structs. -----------
  1597  
  1598  // register is a mix-in embedded by all IR values that are also
  1599  // instructions, i.e. virtual registers, and provides a uniform
  1600  // implementation of most of the Value interface: Value.Name() is a
  1601  // numbered register (e.g. "t0"); the other methods are field accessors.
  1602  //
  1603  // Temporary names are automatically assigned to each register on
  1604  // completion of building a function in IR form.
  1605  type register struct {
  1606  	anInstruction
  1607  	typ       types.Type // type of virtual register
  1608  	referrers []Instruction
  1609  }
  1610  
  1611  type node struct {
  1612  	source ast.Node
  1613  	id     ID
  1614  }
  1615  
  1616  func (n *node) setID(id ID) { n.id = id }
  1617  func (n node) ID() ID       { return n.id }
  1618  
  1619  func (n *node) setSource(source ast.Node) { n.source = source }
  1620  func (n *node) Source() ast.Node          { return n.source }
  1621  
  1622  func (n *node) Pos() token.Pos {
  1623  	if n.source != nil {
  1624  		return n.source.Pos()
  1625  	}
  1626  	return token.NoPos
  1627  }
  1628  
  1629  // anInstruction is a mix-in embedded by all Instructions.
  1630  // It provides the implementations of the Block and setBlock methods.
  1631  type anInstruction struct {
  1632  	node
  1633  	block   *BasicBlock // the basic block of this instruction
  1634  	comment string
  1635  }
  1636  
  1637  func (instr anInstruction) Comment() string {
  1638  	return instr.comment
  1639  }
  1640  
  1641  // CallCommon is contained by Go, Defer and Call to hold the
  1642  // common parts of a function or method call.
  1643  //
  1644  // Each CallCommon exists in one of two modes, function call and
  1645  // interface method invocation, or "call" and "invoke" for short.
  1646  //
  1647  // 1. "call" mode: when Method is nil (!IsInvoke), a CallCommon
  1648  // represents an ordinary function call of the value in Value,
  1649  // which may be a *Builtin, a *Function or any other value of kind
  1650  // 'func'.
  1651  //
  1652  // Value may be one of:
  1653  //
  1654  //	(a) a *Function, indicating a statically dispatched call
  1655  //	    to a package-level function, an anonymous function, or
  1656  //	    a method of a named type.
  1657  //	(b) a *MakeClosure, indicating an immediately applied
  1658  //	    function literal with free variables.
  1659  //	(c) a *Builtin, indicating a statically dispatched call
  1660  //	    to a built-in function.
  1661  //	(d) any other value, indicating a dynamically dispatched
  1662  //	    function call.
  1663  //
  1664  // StaticCallee returns the identity of the callee in cases
  1665  // (a) and (b), nil otherwise.
  1666  //
  1667  // Args contains the arguments to the call.  If Value is a method,
  1668  // Args[0] contains the receiver parameter.
  1669  //
  1670  // Example printed form:
  1671  //
  1672  //	t3 = Call <()> println t1 t2
  1673  //	Go t3
  1674  //	Defer t3
  1675  //
  1676  // 2. "invoke" mode: when Method is non-nil (IsInvoke), a CallCommon
  1677  // represents a dynamically dispatched call to an interface method.
  1678  // In this mode, Value is the interface value and Method is the
  1679  // interface's abstract method.  Note: an abstract method may be
  1680  // shared by multiple interfaces due to embedding; Value.Type()
  1681  // provides the specific interface used for this call.
  1682  //
  1683  // Value is implicitly supplied to the concrete method implementation
  1684  // as the receiver parameter; in other words, Args[0] holds not the
  1685  // receiver but the first true argument.
  1686  //
  1687  // Example printed form:
  1688  //
  1689  //	t6 = Invoke <string> t5.String
  1690  //	GoInvoke t4.Bar t2
  1691  //	DeferInvoke t4.Bar t2
  1692  //
  1693  // For all calls to variadic functions (Signature().Variadic()),
  1694  // the last element of Args is a slice.
  1695  type CallCommon struct {
  1696  	Value    Value       // receiver (invoke mode) or func value (call mode)
  1697  	Method   *types.Func // abstract method (invoke mode)
  1698  	Args     []Value     // actual parameters (in static method call, includes receiver)
  1699  	TypeArgs []types.Type
  1700  	Results  Value
  1701  }
  1702  
  1703  // IsInvoke returns true if this call has "invoke" (not "call") mode.
  1704  func (c *CallCommon) IsInvoke() bool {
  1705  	return c.Method != nil
  1706  }
  1707  
  1708  // Signature returns the signature of the called function.
  1709  //
  1710  // For an "invoke"-mode call, the signature of the interface method is
  1711  // returned.
  1712  //
  1713  // In either "call" or "invoke" mode, if the callee is a method, its
  1714  // receiver is represented by sig.Recv, not sig.Params().At(0).
  1715  func (c *CallCommon) Signature() *types.Signature {
  1716  	if c.Method != nil {
  1717  		return c.Method.Type().(*types.Signature)
  1718  	}
  1719  	return typeutil.CoreType(c.Value.Type()).(*types.Signature)
  1720  }
  1721  
  1722  // StaticCallee returns the callee if this is a trivially static
  1723  // "call"-mode call to a function.
  1724  func (c *CallCommon) StaticCallee() *Function {
  1725  	switch fn := c.Value.(type) {
  1726  	case *Function:
  1727  		return fn
  1728  	case *MakeClosure:
  1729  		return fn.Fn.(*Function)
  1730  	}
  1731  	return nil
  1732  }
  1733  
  1734  // Description returns a description of the mode of this call suitable
  1735  // for a user interface, e.g., "static method call".
  1736  func (c *CallCommon) Description() string {
  1737  	switch fn := c.Value.(type) {
  1738  	case *Builtin:
  1739  		return "built-in function call"
  1740  	case *MakeClosure:
  1741  		return "static function closure call"
  1742  	case *Function:
  1743  		if fn.Signature.Recv() != nil {
  1744  			return "static method call"
  1745  		}
  1746  		return "static function call"
  1747  	}
  1748  	if c.IsInvoke() {
  1749  		return "dynamic method call" // ("invoke" mode)
  1750  	}
  1751  	return "dynamic function call"
  1752  }
  1753  
  1754  // The CallInstruction interface, implemented by *Go, *Defer and *Call,
  1755  // exposes the common parts of function-calling instructions,
  1756  // yet provides a way back to the Value defined by *Call alone.
  1757  type CallInstruction interface {
  1758  	Instruction
  1759  	Common() *CallCommon // returns the common parts of the call
  1760  	Value() *Call
  1761  }
  1762  
  1763  func (s *Call) Common() *CallCommon  { return &s.Call }
  1764  func (s *Defer) Common() *CallCommon { return &s.Call }
  1765  func (s *Go) Common() *CallCommon    { return &s.Call }
  1766  
  1767  func (s *Call) Value() *Call  { return s }
  1768  func (s *Defer) Value() *Call { return nil }
  1769  func (s *Go) Value() *Call    { return nil }
  1770  
  1771  func (v *Builtin) Type() types.Type        { return v.sig }
  1772  func (v *Builtin) Name() string            { return v.name }
  1773  func (*Builtin) Referrers() *[]Instruction { return nil }
  1774  func (v *Builtin) Pos() token.Pos          { return token.NoPos }
  1775  func (v *Builtin) Object() types.Object    { return types.Universe.Lookup(v.name) }
  1776  func (v *Builtin) Parent() *Function       { return nil }
  1777  
  1778  func (v *FreeVar) Type() types.Type          { return v.typ }
  1779  func (v *FreeVar) Name() string              { return v.name }
  1780  func (v *FreeVar) Referrers() *[]Instruction { return &v.referrers }
  1781  func (v *FreeVar) Parent() *Function         { return v.parent }
  1782  
  1783  func (v *Global) Type() types.Type                     { return v.typ }
  1784  func (v *Global) Name() string                         { return v.name }
  1785  func (v *Global) Parent() *Function                    { return nil }
  1786  func (v *Global) Referrers() *[]Instruction            { return nil }
  1787  func (v *Global) Token() token.Token                   { return token.VAR }
  1788  func (v *Global) Object() types.Object                 { return v.object }
  1789  func (v *Global) String() string                       { return v.RelString(nil) }
  1790  func (v *Global) Package() *Package                    { return v.Pkg }
  1791  func (v *Global) RelString(from *types.Package) string { return relString(v, from) }
  1792  
  1793  func (v *Function) Name() string         { return v.name }
  1794  func (v *Function) Type() types.Type     { return v.Signature }
  1795  func (v *Function) Token() token.Token   { return token.FUNC }
  1796  func (v *Function) Object() types.Object { return v.object }
  1797  func (v *Function) String() string       { return v.RelString(nil) }
  1798  func (v *Function) Package() *Package    { return v.Pkg }
  1799  func (v *Function) Parent() *Function    { return v.parent }
  1800  func (v *Function) Referrers() *[]Instruction {
  1801  	if v.parent != nil {
  1802  		return &v.referrers
  1803  	}
  1804  	return nil
  1805  }
  1806  
  1807  func (v *Parameter) Object() types.Object { return v.object }
  1808  
  1809  func (v *Alloc) Type() types.Type          { return v.typ }
  1810  func (v *Alloc) Referrers() *[]Instruction { return &v.referrers }
  1811  
  1812  func (v *register) Type() types.Type          { return v.typ }
  1813  func (v *register) setType(typ types.Type)    { v.typ = typ }
  1814  func (v *register) Name() string              { return fmt.Sprintf("t%d", v.id) }
  1815  func (v *register) Referrers() *[]Instruction { return &v.referrers }
  1816  
  1817  func (v *anInstruction) Parent() *Function          { return v.block.parent }
  1818  func (v *anInstruction) Block() *BasicBlock         { return v.block }
  1819  func (v *anInstruction) setBlock(block *BasicBlock) { v.block = block }
  1820  func (v *anInstruction) Referrers() *[]Instruction  { return nil }
  1821  
  1822  func (t *Type) Name() string                         { return t.object.Name() }
  1823  func (t *Type) Pos() token.Pos                       { return t.object.Pos() }
  1824  func (t *Type) Type() types.Type                     { return t.object.Type() }
  1825  func (t *Type) Token() token.Token                   { return token.TYPE }
  1826  func (t *Type) Object() types.Object                 { return t.object }
  1827  func (t *Type) String() string                       { return t.RelString(nil) }
  1828  func (t *Type) Package() *Package                    { return t.pkg }
  1829  func (t *Type) RelString(from *types.Package) string { return relString(t, from) }
  1830  
  1831  func (c *NamedConst) Name() string                         { return c.object.Name() }
  1832  func (c *NamedConst) Pos() token.Pos                       { return c.object.Pos() }
  1833  func (c *NamedConst) String() string                       { return c.RelString(nil) }
  1834  func (c *NamedConst) Type() types.Type                     { return c.object.Type() }
  1835  func (c *NamedConst) Token() token.Token                   { return token.CONST }
  1836  func (c *NamedConst) Object() types.Object                 { return c.object }
  1837  func (c *NamedConst) Package() *Package                    { return c.pkg }
  1838  func (c *NamedConst) RelString(from *types.Package) string { return relString(c, from) }
  1839  
  1840  // Func returns the package-level function of the specified name,
  1841  // or nil if not found.
  1842  func (p *Package) Func(name string) (f *Function) {
  1843  	f, _ = p.Members[name].(*Function)
  1844  	return
  1845  }
  1846  
  1847  // Var returns the package-level variable of the specified name,
  1848  // or nil if not found.
  1849  func (p *Package) Var(name string) (g *Global) {
  1850  	g, _ = p.Members[name].(*Global)
  1851  	return
  1852  }
  1853  
  1854  // Const returns the package-level constant of the specified name,
  1855  // or nil if not found.
  1856  func (p *Package) Const(name string) (c *NamedConst) {
  1857  	c, _ = p.Members[name].(*NamedConst)
  1858  	return
  1859  }
  1860  
  1861  // Type returns the package-level type of the specified name,
  1862  // or nil if not found.
  1863  func (p *Package) Type(name string) (t *Type) {
  1864  	t, _ = p.Members[name].(*Type)
  1865  	return
  1866  }
  1867  
  1868  func (s *DebugRef) Pos() token.Pos { return s.Expr.Pos() }
  1869  
  1870  // Operands.
  1871  
  1872  func (v *Alloc) Operands(rands []*Value) []*Value {
  1873  	return rands
  1874  }
  1875  
  1876  func (v *BinOp) Operands(rands []*Value) []*Value {
  1877  	return append(rands, &v.X, &v.Y)
  1878  }
  1879  
  1880  func (c *CallCommon) Operands(rands []*Value) []*Value {
  1881  	rands = append(rands, &c.Value)
  1882  	for i := range c.Args {
  1883  		rands = append(rands, &c.Args[i])
  1884  	}
  1885  	return rands
  1886  }
  1887  
  1888  func (s *Go) Operands(rands []*Value) []*Value {
  1889  	return s.Call.Operands(rands)
  1890  }
  1891  
  1892  func (s *Call) Operands(rands []*Value) []*Value {
  1893  	return s.Call.Operands(rands)
  1894  }
  1895  
  1896  func (s *Defer) Operands(rands []*Value) []*Value {
  1897  	return s.Call.Operands(rands)
  1898  }
  1899  
  1900  func (v *ChangeInterface) Operands(rands []*Value) []*Value {
  1901  	return append(rands, &v.X)
  1902  }
  1903  
  1904  func (v *ChangeType) Operands(rands []*Value) []*Value {
  1905  	return append(rands, &v.X)
  1906  }
  1907  
  1908  func (v *Convert) Operands(rands []*Value) []*Value {
  1909  	return append(rands, &v.X)
  1910  }
  1911  
  1912  func (v *SliceToArrayPointer) Operands(rands []*Value) []*Value {
  1913  	return append(rands, &v.X)
  1914  }
  1915  
  1916  func (v *SliceToArray) Operands(rands []*Value) []*Value {
  1917  	return append(rands, &v.X)
  1918  }
  1919  
  1920  func (s *DebugRef) Operands(rands []*Value) []*Value {
  1921  	return append(rands, &s.X)
  1922  }
  1923  
  1924  func (s *Copy) Operands(rands []*Value) []*Value {
  1925  	return append(rands, &s.X)
  1926  }
  1927  
  1928  func (v *Extract) Operands(rands []*Value) []*Value {
  1929  	return append(rands, &v.Tuple)
  1930  }
  1931  
  1932  func (v *Field) Operands(rands []*Value) []*Value {
  1933  	return append(rands, &v.X)
  1934  }
  1935  
  1936  func (v *FieldAddr) Operands(rands []*Value) []*Value {
  1937  	return append(rands, &v.X)
  1938  }
  1939  
  1940  func (s *If) Operands(rands []*Value) []*Value {
  1941  	return append(rands, &s.Cond)
  1942  }
  1943  
  1944  func (s *ConstantSwitch) Operands(rands []*Value) []*Value {
  1945  	rands = append(rands, &s.Tag)
  1946  	for i := range s.Conds {
  1947  		rands = append(rands, &s.Conds[i])
  1948  	}
  1949  	return rands
  1950  }
  1951  
  1952  func (s *TypeSwitch) Operands(rands []*Value) []*Value {
  1953  	rands = append(rands, &s.Tag)
  1954  	return rands
  1955  }
  1956  
  1957  func (v *Index) Operands(rands []*Value) []*Value {
  1958  	return append(rands, &v.X, &v.Index)
  1959  }
  1960  
  1961  func (v *IndexAddr) Operands(rands []*Value) []*Value {
  1962  	return append(rands, &v.X, &v.Index)
  1963  }
  1964  
  1965  func (*Jump) Operands(rands []*Value) []*Value {
  1966  	return rands
  1967  }
  1968  
  1969  func (*Unreachable) Operands(rands []*Value) []*Value {
  1970  	return rands
  1971  }
  1972  
  1973  func (v *MapLookup) Operands(rands []*Value) []*Value {
  1974  	return append(rands, &v.X, &v.Index)
  1975  }
  1976  
  1977  func (v *StringLookup) Operands(rands []*Value) []*Value {
  1978  	return append(rands, &v.X, &v.Index)
  1979  }
  1980  
  1981  func (v *MakeChan) Operands(rands []*Value) []*Value {
  1982  	return append(rands, &v.Size)
  1983  }
  1984  
  1985  func (v *MakeClosure) Operands(rands []*Value) []*Value {
  1986  	rands = append(rands, &v.Fn)
  1987  	for i := range v.Bindings {
  1988  		rands = append(rands, &v.Bindings[i])
  1989  	}
  1990  	return rands
  1991  }
  1992  
  1993  func (v *MakeInterface) Operands(rands []*Value) []*Value {
  1994  	return append(rands, &v.X)
  1995  }
  1996  
  1997  func (v *MakeMap) Operands(rands []*Value) []*Value {
  1998  	return append(rands, &v.Reserve)
  1999  }
  2000  
  2001  func (v *MakeSlice) Operands(rands []*Value) []*Value {
  2002  	return append(rands, &v.Len, &v.Cap)
  2003  }
  2004  
  2005  func (v *MapUpdate) Operands(rands []*Value) []*Value {
  2006  	return append(rands, &v.Map, &v.Key, &v.Value)
  2007  }
  2008  
  2009  func (v *Next) Operands(rands []*Value) []*Value {
  2010  	return append(rands, &v.Iter)
  2011  }
  2012  
  2013  func (s *Panic) Operands(rands []*Value) []*Value {
  2014  	return append(rands, &s.X)
  2015  }
  2016  
  2017  func (v *Sigma) Operands(rands []*Value) []*Value {
  2018  	return append(rands, &v.X)
  2019  }
  2020  
  2021  func (v *Phi) Operands(rands []*Value) []*Value {
  2022  	for i := range v.Edges {
  2023  		rands = append(rands, &v.Edges[i])
  2024  	}
  2025  	return rands
  2026  }
  2027  
  2028  func (v *Range) Operands(rands []*Value) []*Value {
  2029  	return append(rands, &v.X)
  2030  }
  2031  
  2032  func (s *Return) Operands(rands []*Value) []*Value {
  2033  	for i := range s.Results {
  2034  		rands = append(rands, &s.Results[i])
  2035  	}
  2036  	return rands
  2037  }
  2038  
  2039  func (*RunDefers) Operands(rands []*Value) []*Value {
  2040  	return rands
  2041  }
  2042  
  2043  func (v *Select) Operands(rands []*Value) []*Value {
  2044  	for i := range v.States {
  2045  		rands = append(rands, &v.States[i].Chan, &v.States[i].Send)
  2046  	}
  2047  	return rands
  2048  }
  2049  
  2050  func (s *Send) Operands(rands []*Value) []*Value {
  2051  	return append(rands, &s.Chan, &s.X)
  2052  }
  2053  
  2054  func (recv *Recv) Operands(rands []*Value) []*Value {
  2055  	return append(rands, &recv.Chan)
  2056  }
  2057  
  2058  func (v *Slice) Operands(rands []*Value) []*Value {
  2059  	return append(rands, &v.X, &v.Low, &v.High, &v.Max)
  2060  }
  2061  
  2062  func (s *Store) Operands(rands []*Value) []*Value {
  2063  	return append(rands, &s.Addr, &s.Val)
  2064  }
  2065  
  2066  func (s *BlankStore) Operands(rands []*Value) []*Value {
  2067  	return append(rands, &s.Val)
  2068  }
  2069  
  2070  func (v *TypeAssert) Operands(rands []*Value) []*Value {
  2071  	return append(rands, &v.X)
  2072  }
  2073  
  2074  func (v *UnOp) Operands(rands []*Value) []*Value {
  2075  	return append(rands, &v.X)
  2076  }
  2077  
  2078  func (v *Load) Operands(rands []*Value) []*Value {
  2079  	return append(rands, &v.X)
  2080  }
  2081  
  2082  func (v *AggregateConst) Operands(rands []*Value) []*Value {
  2083  	for i := range v.Values {
  2084  		rands = append(rands, &v.Values[i])
  2085  	}
  2086  	return rands
  2087  }
  2088  
  2089  func (v *CompositeValue) Operands(rands []*Value) []*Value {
  2090  	for i := range v.Values {
  2091  		rands = append(rands, &v.Values[i])
  2092  	}
  2093  	return rands
  2094  }
  2095  
  2096  // Non-Instruction Values:
  2097  func (v *Builtin) Operands(rands []*Value) []*Value      { return rands }
  2098  func (v *FreeVar) Operands(rands []*Value) []*Value      { return rands }
  2099  func (v *Const) Operands(rands []*Value) []*Value        { return rands }
  2100  func (v *ArrayConst) Operands(rands []*Value) []*Value   { return rands }
  2101  func (v *GenericConst) Operands(rands []*Value) []*Value { return rands }
  2102  func (v *Function) Operands(rands []*Value) []*Value     { return rands }
  2103  func (v *Global) Operands(rands []*Value) []*Value       { return rands }
  2104  func (v *Parameter) Operands(rands []*Value) []*Value    { return rands }