github.com/amazechain/amc@v0.1.3/accounts/abi/bind/bind.go (about)

     1  // Copyright 2023 The AmazeChain Authors
     2  // This file is part of the AmazeChain library.
     3  //
     4  // The AmazeChain library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The AmazeChain library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the AmazeChain library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  // Package bind generates Ethereum contract Go bindings.
    18  //
    19  // Detailed usage document and tutorial available on the go-ethereum Wiki page:
    20  // https://github.com/ethereum/go-ethereum/wiki/Native-DApps:-Go-bindings-to-Ethereum-contracts
    21  package bind
    22  
    23  import (
    24  	"bytes"
    25  	"errors"
    26  	"fmt"
    27  	"github.com/amazechain/amc/accounts/abi"
    28  	"github.com/amazechain/amc/log"
    29  	"go/format"
    30  	"regexp"
    31  	"strings"
    32  	"text/template"
    33  	"unicode"
    34  )
    35  
    36  // Lang is a target programming language selector to generate bindings for.
    37  type Lang int
    38  
    39  const (
    40  	LangGo Lang = iota
    41  	LangJava
    42  	LangObjC
    43  )
    44  
    45  func isKeyWord(arg string) bool {
    46  	switch arg {
    47  	case "break":
    48  	case "case":
    49  	case "chan":
    50  	case "const":
    51  	case "continue":
    52  	case "default":
    53  	case "defer":
    54  	case "else":
    55  	case "fallthrough":
    56  	case "for":
    57  	case "func":
    58  	case "go":
    59  	case "goto":
    60  	case "if":
    61  	case "import":
    62  	case "interface":
    63  	case "iota":
    64  	case "map":
    65  	case "make":
    66  	case "new":
    67  	case "package":
    68  	case "range":
    69  	case "return":
    70  	case "select":
    71  	case "struct":
    72  	case "switch":
    73  	case "type":
    74  	case "var":
    75  	default:
    76  		return false
    77  	}
    78  
    79  	return true
    80  }
    81  
    82  // Bind generates a Go wrapper around a contract ABI. This wrapper isn't meant
    83  // to be used as is in client code, but rather as an intermediate struct which
    84  // enforces compile time type safety and naming convention opposed to having to
    85  // manually maintain hard coded strings that break on runtime.
    86  func Bind(types []string, abis []string, bytecodes []string, fsigs []map[string]string, pkg string, lang Lang, libs map[string]string, aliases map[string]string) (string, error) {
    87  	var (
    88  		// contracts is the map of each individual contract requested binding
    89  		contracts = make(map[string]*tmplContract)
    90  
    91  		// structs is the map of all redeclared structs shared by passed contracts.
    92  		structs = make(map[string]*tmplStruct)
    93  
    94  		// isLib is the map used to flag each encountered library as such
    95  		isLib = make(map[string]struct{})
    96  	)
    97  	for i := 0; i < len(types); i++ {
    98  		// Parse the actual ABI to generate the binding for
    99  		evmABI, err := abi.JSON(strings.NewReader(abis[i]))
   100  		if err != nil {
   101  			return "", err
   102  		}
   103  		// Strip any whitespace from the JSON ABI
   104  		strippedABI := strings.Map(func(r rune) rune {
   105  			if unicode.IsSpace(r) {
   106  				return -1
   107  			}
   108  			return r
   109  		}, abis[i])
   110  
   111  		// Extract the call and transact methods; events, struct definitions; and sort them alphabetically
   112  		var (
   113  			calls     = make(map[string]*tmplMethod)
   114  			transacts = make(map[string]*tmplMethod)
   115  			events    = make(map[string]*tmplEvent)
   116  			fallback  *tmplMethod
   117  			receive   *tmplMethod
   118  
   119  			// identifiers are used to detect duplicated identifiers of functions
   120  			// and events. For all calls, transacts and events, abigen will generate
   121  			// corresponding bindings. However we have to ensure there is no
   122  			// identifier collisions in the bindings of these categories.
   123  			callIdentifiers     = make(map[string]bool)
   124  			transactIdentifiers = make(map[string]bool)
   125  			eventIdentifiers    = make(map[string]bool)
   126  		)
   127  
   128  		for _, input := range evmABI.Constructor.Inputs {
   129  			if hasStruct(input.Type) {
   130  				bindStructType[lang](input.Type, structs)
   131  			}
   132  		}
   133  
   134  		for _, original := range evmABI.Methods {
   135  			// Normalize the method for capital cases and non-anonymous inputs/outputs
   136  			normalized := original
   137  			normalizedName := methodNormalizer[lang](alias(aliases, original.Name))
   138  
   139  			// Ensure there is no duplicated identifier
   140  			var identifiers = callIdentifiers
   141  			if !original.IsConstant() {
   142  				identifiers = transactIdentifiers
   143  			}
   144  			if identifiers[normalizedName] {
   145  				return "", fmt.Errorf("duplicated identifier \"%s\"(normalized \"%s\"), use --alias for renaming", original.Name, normalizedName)
   146  			}
   147  			identifiers[normalizedName] = true
   148  
   149  			normalized.Name = normalizedName
   150  			normalized.Inputs = make([]abi.Argument, len(original.Inputs))
   151  			copy(normalized.Inputs, original.Inputs)
   152  			for j, input := range normalized.Inputs {
   153  				if input.Name == "" || isKeyWord(input.Name) {
   154  					normalized.Inputs[j].Name = fmt.Sprintf("arg%d", j)
   155  				}
   156  				if hasStruct(input.Type) {
   157  					bindStructType[lang](input.Type, structs)
   158  				}
   159  			}
   160  			normalized.Outputs = make([]abi.Argument, len(original.Outputs))
   161  			copy(normalized.Outputs, original.Outputs)
   162  			for j, output := range normalized.Outputs {
   163  				if output.Name != "" {
   164  					normalized.Outputs[j].Name = capitalise(output.Name)
   165  				}
   166  				if hasStruct(output.Type) {
   167  					bindStructType[lang](output.Type, structs)
   168  				}
   169  			}
   170  			// Append the methods to the call or transact lists
   171  			if original.IsConstant() {
   172  				calls[original.Name] = &tmplMethod{Original: original, Normalized: normalized, Structured: structured(original.Outputs)}
   173  			} else {
   174  				transacts[original.Name] = &tmplMethod{Original: original, Normalized: normalized, Structured: structured(original.Outputs)}
   175  			}
   176  		}
   177  		for _, original := range evmABI.Events {
   178  			// Skip anonymous events as they don't support explicit filtering
   179  			if original.Anonymous {
   180  				continue
   181  			}
   182  			// Normalize the event for capital cases and non-anonymous outputs
   183  			normalized := original
   184  
   185  			// Ensure there is no duplicated identifier
   186  			normalizedName := methodNormalizer[lang](alias(aliases, original.Name))
   187  			if eventIdentifiers[normalizedName] {
   188  				return "", fmt.Errorf("duplicated identifier \"%s\"(normalized \"%s\"), use --alias for renaming", original.Name, normalizedName)
   189  			}
   190  			eventIdentifiers[normalizedName] = true
   191  			normalized.Name = normalizedName
   192  
   193  			used := make(map[string]bool)
   194  			normalized.Inputs = make([]abi.Argument, len(original.Inputs))
   195  			copy(normalized.Inputs, original.Inputs)
   196  			for j, input := range normalized.Inputs {
   197  				if input.Name == "" || isKeyWord(input.Name) {
   198  					normalized.Inputs[j].Name = fmt.Sprintf("arg%d", j)
   199  				}
   200  				// Event is a bit special, we need to define event struct in binding,
   201  				// ensure there is no camel-case-style name conflict.
   202  				for index := 0; ; index++ {
   203  					if !used[capitalise(normalized.Inputs[j].Name)] {
   204  						used[capitalise(normalized.Inputs[j].Name)] = true
   205  						break
   206  					}
   207  					normalized.Inputs[j].Name = fmt.Sprintf("%s%d", normalized.Inputs[j].Name, index)
   208  				}
   209  				if hasStruct(input.Type) {
   210  					bindStructType[lang](input.Type, structs)
   211  				}
   212  			}
   213  			// Append the event to the accumulator list
   214  			events[original.Name] = &tmplEvent{Original: original, Normalized: normalized}
   215  		}
   216  		// Add two special fallback functions if they exist
   217  		if evmABI.HasFallback() {
   218  			fallback = &tmplMethod{Original: evmABI.Fallback}
   219  		}
   220  		if evmABI.HasReceive() {
   221  			receive = &tmplMethod{Original: evmABI.Receive}
   222  		}
   223  		// There is no easy way to pass arbitrary java objects to the Go side.
   224  		if len(structs) > 0 && lang == LangJava {
   225  			return "", errors.New("java binding for tuple arguments is not supported yet")
   226  		}
   227  
   228  		contracts[types[i]] = &tmplContract{
   229  			Type:        capitalise(types[i]),
   230  			InputABI:    strings.ReplaceAll(strippedABI, "\"", "\\\""),
   231  			InputBin:    strings.TrimPrefix(strings.TrimSpace(bytecodes[i]), "0x"),
   232  			Constructor: evmABI.Constructor,
   233  			Calls:       calls,
   234  			Transacts:   transacts,
   235  			Fallback:    fallback,
   236  			Receive:     receive,
   237  			Events:      events,
   238  			Libraries:   make(map[string]string),
   239  		}
   240  		// Function 4-byte signatures are stored in the same sequence
   241  		// as types, if available.
   242  		if len(fsigs) > i {
   243  			contracts[types[i]].FuncSigs = fsigs[i]
   244  		}
   245  		// Parse library references.
   246  		for pattern, name := range libs {
   247  			matched, err := regexp.Match("__\\$"+pattern+"\\$__", []byte(contracts[types[i]].InputBin))
   248  			if err != nil {
   249  				log.Error("Could not search for pattern", "pattern", pattern, "contract", contracts[types[i]], "err", err)
   250  			}
   251  			if matched {
   252  				contracts[types[i]].Libraries[pattern] = name
   253  				// keep track that this type is a library
   254  				if _, ok := isLib[name]; !ok {
   255  					isLib[name] = struct{}{}
   256  				}
   257  			}
   258  		}
   259  	}
   260  	// Check if that type has already been identified as a library
   261  	for i := 0; i < len(types); i++ {
   262  		_, ok := isLib[types[i]]
   263  		contracts[types[i]].Library = ok
   264  	}
   265  	// Generate the contract template data content and render it
   266  	data := &tmplData{
   267  		Package:   pkg,
   268  		Contracts: contracts,
   269  		Libraries: libs,
   270  		Structs:   structs,
   271  	}
   272  	buffer := new(bytes.Buffer)
   273  
   274  	funcs := map[string]interface{}{
   275  		"bindtype":      bindType[lang],
   276  		"bindtopictype": bindTopicType[lang],
   277  		"namedtype":     namedType[lang],
   278  		"capitalise":    capitalise,
   279  		"decapitalise":  decapitalise,
   280  	}
   281  	tmpl := template.Must(template.New("").Funcs(funcs).Parse(tmplSource[lang]))
   282  	if err := tmpl.Execute(buffer, data); err != nil {
   283  		return "", err
   284  	}
   285  	// For Go bindings pass the code through gofmt to clean it up
   286  	if lang == LangGo {
   287  		code, err := format.Source(buffer.Bytes())
   288  		if err != nil {
   289  			return "", fmt.Errorf("%v\n%s", err, buffer)
   290  		}
   291  		return string(code), nil
   292  	}
   293  	// For all others just return as is for now
   294  	return buffer.String(), nil
   295  }
   296  
   297  // bindType is a set of type binders that convert Solidity types to some supported
   298  // programming language types.
   299  var bindType = map[Lang]func(kind abi.Type, structs map[string]*tmplStruct) string{
   300  	LangGo:   bindTypeGo,
   301  	LangJava: bindTypeJava,
   302  }
   303  
   304  // bindBasicTypeGo converts basic solidity types(except array, slice and tuple) to Go ones.
   305  func bindBasicTypeGo(kind abi.Type) string {
   306  	switch kind.T {
   307  	case abi.AddressTy:
   308  		return "common.Address"
   309  	case abi.IntTy, abi.UintTy:
   310  		parts := regexp.MustCompile(`(u)?int([0-9]*)`).FindStringSubmatch(kind.String())
   311  		switch parts[2] {
   312  		case "8", "16", "32", "64":
   313  			return fmt.Sprintf("%sint%s", parts[1], parts[2])
   314  		}
   315  		return "*big.Int"
   316  	case abi.FixedBytesTy:
   317  		return fmt.Sprintf("[%d]byte", kind.Size)
   318  	case abi.BytesTy:
   319  		return "[]byte"
   320  	case abi.FunctionTy:
   321  		return "[24]byte"
   322  	default:
   323  		// string, bool types
   324  		return kind.String()
   325  	}
   326  }
   327  
   328  // bindTypeGo converts solidity types to Go ones. Since there is no clear mapping
   329  // from all Solidity types to Go ones (e.g. uint17), those that cannot be exactly
   330  // mapped will use an upscaled type (e.g. BigDecimal).
   331  func bindTypeGo(kind abi.Type, structs map[string]*tmplStruct) string {
   332  	switch kind.T {
   333  	case abi.TupleTy:
   334  		return structs[kind.TupleRawName+kind.String()].Name
   335  	case abi.ArrayTy:
   336  		return fmt.Sprintf("[%d]", kind.Size) + bindTypeGo(*kind.Elem, structs)
   337  	case abi.SliceTy:
   338  		return "[]" + bindTypeGo(*kind.Elem, structs)
   339  	default:
   340  		return bindBasicTypeGo(kind)
   341  	}
   342  }
   343  
   344  // bindBasicTypeJava converts basic solidity types(except array, slice and tuple) to Java ones.
   345  func bindBasicTypeJava(kind abi.Type) string {
   346  	switch kind.T {
   347  	case abi.AddressTy:
   348  		return "Address"
   349  	case abi.IntTy, abi.UintTy:
   350  		// Note that uint and int (without digits) are also matched,
   351  		// these are size 256, and will translate to BigInt (the default).
   352  		parts := regexp.MustCompile(`(u)?int([0-9]*)`).FindStringSubmatch(kind.String())
   353  		if len(parts) != 3 {
   354  			return kind.String()
   355  		}
   356  		// All unsigned integers should be translated to BigInt since gomobile doesn't
   357  		// support them.
   358  		if parts[1] == "u" {
   359  			return "BigInt"
   360  		}
   361  
   362  		namedSize := map[string]string{
   363  			"8":  "byte",
   364  			"16": "short",
   365  			"32": "int",
   366  			"64": "long",
   367  		}[parts[2]]
   368  
   369  		// default to BigInt
   370  		if namedSize == "" {
   371  			namedSize = "BigInt"
   372  		}
   373  		return namedSize
   374  	case abi.FixedBytesTy, abi.BytesTy:
   375  		return "byte[]"
   376  	case abi.BoolTy:
   377  		return "boolean"
   378  	case abi.StringTy:
   379  		return "String"
   380  	case abi.FunctionTy:
   381  		return "byte[24]"
   382  	default:
   383  		return kind.String()
   384  	}
   385  }
   386  
   387  // pluralizeJavaType explicitly converts multidimensional types to predefined
   388  // types in go side.
   389  func pluralizeJavaType(typ string) string {
   390  	switch typ {
   391  	case "boolean":
   392  		return "Bools"
   393  	case "String":
   394  		return "Strings"
   395  	case "Address":
   396  		return "Addresses"
   397  	case "byte[]":
   398  		return "Binaries"
   399  	case "BigInt":
   400  		return "BigInts"
   401  	}
   402  	return typ + "[]"
   403  }
   404  
   405  // bindTypeJava converts a Solidity type to a Java one. Since there is no clear mapping
   406  // from all Solidity types to Java ones (e.g. uint17), those that cannot be exactly
   407  // mapped will use an upscaled type (e.g. BigDecimal).
   408  func bindTypeJava(kind abi.Type, structs map[string]*tmplStruct) string {
   409  	switch kind.T {
   410  	case abi.TupleTy:
   411  		return structs[kind.TupleRawName+kind.String()].Name
   412  	case abi.ArrayTy, abi.SliceTy:
   413  		return pluralizeJavaType(bindTypeJava(*kind.Elem, structs))
   414  	default:
   415  		return bindBasicTypeJava(kind)
   416  	}
   417  }
   418  
   419  // bindTopicType is a set of type binders that convert Solidity types to some
   420  // supported programming language topic types.
   421  var bindTopicType = map[Lang]func(kind abi.Type, structs map[string]*tmplStruct) string{
   422  	LangGo:   bindTopicTypeGo,
   423  	LangJava: bindTopicTypeJava,
   424  }
   425  
   426  // bindTopicTypeGo converts a Solidity topic type to a Go one. It is almost the same
   427  // functionality as for simple types, but dynamic types get converted to hashes.
   428  func bindTopicTypeGo(kind abi.Type, structs map[string]*tmplStruct) string {
   429  	bound := bindTypeGo(kind, structs)
   430  
   431  	// todo(rjl493456442) according solidity documentation, indexed event
   432  	// parameters that are not value types i.e. arrays and structs are not
   433  	// stored directly but instead a keccak256-hash of an encoding is stored.
   434  	//
   435  	// We only convert stringS and bytes to hash, still need to deal with
   436  	// array(both fixed-size and dynamic-size) and struct.
   437  	if bound == "string" || bound == "[]byte" {
   438  		bound = "common.Hash"
   439  	}
   440  	return bound
   441  }
   442  
   443  // bindTopicTypeJava converts a Solidity topic type to a Java one. It is almost the same
   444  // functionality as for simple types, but dynamic types get converted to hashes.
   445  func bindTopicTypeJava(kind abi.Type, structs map[string]*tmplStruct) string {
   446  	bound := bindTypeJava(kind, structs)
   447  
   448  	// todo(rjl493456442) according solidity documentation, indexed event
   449  	// parameters that are not value types i.e. arrays and structs are not
   450  	// stored directly but instead a keccak256-hash of an encoding is stored.
   451  	//
   452  	// We only convert strings and bytes to hash, still need to deal with
   453  	// array(both fixed-size and dynamic-size) and struct.
   454  	if bound == "String" || bound == "byte[]" {
   455  		bound = "Hash"
   456  	}
   457  	return bound
   458  }
   459  
   460  // bindStructType is a set of type binders that convert Solidity tuple types to some supported
   461  // programming language struct definition.
   462  var bindStructType = map[Lang]func(kind abi.Type, structs map[string]*tmplStruct) string{
   463  	LangGo:   bindStructTypeGo,
   464  	LangJava: bindStructTypeJava,
   465  }
   466  
   467  // bindStructTypeGo converts a Solidity tuple type to a Go one and records the mapping
   468  // in the given map.
   469  // Notably, this function will resolve and record nested struct recursively.
   470  func bindStructTypeGo(kind abi.Type, structs map[string]*tmplStruct) string {
   471  	switch kind.T {
   472  	case abi.TupleTy:
   473  		// We compose a raw struct name and a canonical parameter expression
   474  		// together here. The reason is before solidity v0.5.11, kind.TupleRawName
   475  		// is empty, so we use canonical parameter expression to distinguish
   476  		// different struct definition. From the consideration of backward
   477  		// compatibility, we concat these two together so that if kind.TupleRawName
   478  		// is not empty, it can have unique id.
   479  		id := kind.TupleRawName + kind.String()
   480  		if s, exist := structs[id]; exist {
   481  			return s.Name
   482  		}
   483  		var (
   484  			names  = make(map[string]bool)
   485  			fields []*tmplField
   486  		)
   487  		for i, elem := range kind.TupleElems {
   488  			name := capitalise(kind.TupleRawNames[i])
   489  			name = abi.ResolveNameConflict(name, func(s string) bool { return names[s] })
   490  			names[name] = true
   491  			fields = append(fields, &tmplField{Type: bindStructTypeGo(*elem, structs), Name: name, SolKind: *elem})
   492  		}
   493  		name := kind.TupleRawName
   494  		if name == "" {
   495  			name = fmt.Sprintf("Struct%d", len(structs))
   496  		}
   497  		name = capitalise(name)
   498  
   499  		structs[id] = &tmplStruct{
   500  			Name:   name,
   501  			Fields: fields,
   502  		}
   503  		return name
   504  	case abi.ArrayTy:
   505  		return fmt.Sprintf("[%d]", kind.Size) + bindStructTypeGo(*kind.Elem, structs)
   506  	case abi.SliceTy:
   507  		return "[]" + bindStructTypeGo(*kind.Elem, structs)
   508  	default:
   509  		return bindBasicTypeGo(kind)
   510  	}
   511  }
   512  
   513  // bindStructTypeJava converts a Solidity tuple type to a Java one and records the mapping
   514  // in the given map.
   515  // Notably, this function will resolve and record nested struct recursively.
   516  func bindStructTypeJava(kind abi.Type, structs map[string]*tmplStruct) string {
   517  	switch kind.T {
   518  	case abi.TupleTy:
   519  		// We compose a raw struct name and a canonical parameter expression
   520  		// together here. The reason is before solidity v0.5.11, kind.TupleRawName
   521  		// is empty, so we use canonical parameter expression to distinguish
   522  		// different struct definition. From the consideration of backward
   523  		// compatibility, we concat these two together so that if kind.TupleRawName
   524  		// is not empty, it can have unique id.
   525  		id := kind.TupleRawName + kind.String()
   526  		if s, exist := structs[id]; exist {
   527  			return s.Name
   528  		}
   529  		var fields []*tmplField
   530  		for i, elem := range kind.TupleElems {
   531  			field := bindStructTypeJava(*elem, structs)
   532  			fields = append(fields, &tmplField{Type: field, Name: decapitalise(kind.TupleRawNames[i]), SolKind: *elem})
   533  		}
   534  		name := kind.TupleRawName
   535  		if name == "" {
   536  			name = fmt.Sprintf("Class%d", len(structs))
   537  		}
   538  		structs[id] = &tmplStruct{
   539  			Name:   name,
   540  			Fields: fields,
   541  		}
   542  		return name
   543  	case abi.ArrayTy, abi.SliceTy:
   544  		return pluralizeJavaType(bindStructTypeJava(*kind.Elem, structs))
   545  	default:
   546  		return bindBasicTypeJava(kind)
   547  	}
   548  }
   549  
   550  // namedType is a set of functions that transform language specific types to
   551  // named versions that may be used inside method names.
   552  var namedType = map[Lang]func(string, abi.Type) string{
   553  	LangGo:   func(string, abi.Type) string { panic("this shouldn't be needed") },
   554  	LangJava: namedTypeJava,
   555  }
   556  
   557  // namedTypeJava converts some primitive data types to named variants that can
   558  // be used as parts of method names.
   559  func namedTypeJava(javaKind string, solKind abi.Type) string {
   560  	switch javaKind {
   561  	case "byte[]":
   562  		return "Binary"
   563  	case "boolean":
   564  		return "Bool"
   565  	default:
   566  		parts := regexp.MustCompile(`(u)?int([0-9]*)(\[[0-9]*\])?`).FindStringSubmatch(solKind.String())
   567  		if len(parts) != 4 {
   568  			return javaKind
   569  		}
   570  		switch parts[2] {
   571  		case "8", "16", "32", "64":
   572  			if parts[3] == "" {
   573  				return capitalise(fmt.Sprintf("%sint%s", parts[1], parts[2]))
   574  			}
   575  			return capitalise(fmt.Sprintf("%sint%ss", parts[1], parts[2]))
   576  
   577  		default:
   578  			return javaKind
   579  		}
   580  	}
   581  }
   582  
   583  // alias returns an alias of the given string based on the aliasing rules
   584  // or returns itself if no rule is matched.
   585  func alias(aliases map[string]string, n string) string {
   586  	if alias, exist := aliases[n]; exist {
   587  		return alias
   588  	}
   589  	return n
   590  }
   591  
   592  // methodNormalizer is a name transformer that modifies Solidity method names to
   593  // conform to target language naming conventions.
   594  var methodNormalizer = map[Lang]func(string) string{
   595  	LangGo:   abi.ToCamelCase,
   596  	LangJava: decapitalise,
   597  }
   598  
   599  // capitalise makes a camel-case string which starts with an upper case character.
   600  var capitalise = abi.ToCamelCase
   601  
   602  // decapitalise makes a camel-case string which starts with a lower case character.
   603  func decapitalise(input string) string {
   604  	if len(input) == 0 {
   605  		return input
   606  	}
   607  
   608  	goForm := abi.ToCamelCase(input)
   609  	return strings.ToLower(goForm[:1]) + goForm[1:]
   610  }
   611  
   612  // structured checks whether a list of ABI data types has enough information to
   613  // operate through a proper Go struct or if flat returns are needed.
   614  func structured(args abi.Arguments) bool {
   615  	if len(args) < 2 {
   616  		return false
   617  	}
   618  	exists := make(map[string]bool)
   619  	for _, out := range args {
   620  		// If the name is anonymous, we can't organize into a struct
   621  		if out.Name == "" {
   622  			return false
   623  		}
   624  		// If the field name is empty when normalized or collides (var, Var, _var, _Var),
   625  		// we can't organize into a struct
   626  		field := capitalise(out.Name)
   627  		if field == "" || exists[field] {
   628  			return false
   629  		}
   630  		exists[field] = true
   631  	}
   632  	return true
   633  }
   634  
   635  // hasStruct returns an indicator whether the given type is struct, struct slice
   636  // or struct array.
   637  func hasStruct(t abi.Type) bool {
   638  	switch t.T {
   639  	case abi.SliceTy:
   640  		return hasStruct(*t.Elem)
   641  	case abi.ArrayTy:
   642  		return hasStruct(*t.Elem)
   643  	case abi.TupleTy:
   644  		return true
   645  	default:
   646  		return false
   647  	}
   648  }