github.com/amazechain/amc@v0.1.3/common/crypto/bn256/cloudflare/curve.go (about) 1 // Copyright 2023 The AmazeChain Authors 2 // This file is part of the AmazeChain library. 3 // 4 // The AmazeChain library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The AmazeChain library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the AmazeChain library. If not, see <http://www.gnu.org/licenses/>. 16 17 package bn256 18 19 import ( 20 "math/big" 21 ) 22 23 // curvePoint implements the elliptic curve y²=x³+3. Points are kept in Jacobian 24 // form and t=z² when valid. G₁ is the set of points of this curve on GF(p). 25 type curvePoint struct { 26 x, y, z, t gfP 27 } 28 29 var curveB = newGFp(3) 30 31 // curveGen is the generator of G₁. 32 var curveGen = &curvePoint{ 33 x: *newGFp(1), 34 y: *newGFp(2), 35 z: *newGFp(1), 36 t: *newGFp(1), 37 } 38 39 func (c *curvePoint) String() string { 40 c.MakeAffine() 41 x, y := &gfP{}, &gfP{} 42 montDecode(x, &c.x) 43 montDecode(y, &c.y) 44 return "(" + x.String() + ", " + y.String() + ")" 45 } 46 47 func (c *curvePoint) Set(a *curvePoint) { 48 c.x.Set(&a.x) 49 c.y.Set(&a.y) 50 c.z.Set(&a.z) 51 c.t.Set(&a.t) 52 } 53 54 // IsOnCurve returns true iff c is on the curve. 55 func (c *curvePoint) IsOnCurve() bool { 56 c.MakeAffine() 57 if c.IsInfinity() { 58 return true 59 } 60 61 y2, x3 := &gfP{}, &gfP{} 62 gfpMul(y2, &c.y, &c.y) 63 gfpMul(x3, &c.x, &c.x) 64 gfpMul(x3, x3, &c.x) 65 gfpAdd(x3, x3, curveB) 66 67 return *y2 == *x3 68 } 69 70 func (c *curvePoint) SetInfinity() { 71 c.x = gfP{0} 72 c.y = *newGFp(1) 73 c.z = gfP{0} 74 c.t = gfP{0} 75 } 76 77 func (c *curvePoint) IsInfinity() bool { 78 return c.z == gfP{0} 79 } 80 81 func (c *curvePoint) Add(a, b *curvePoint) { 82 if a.IsInfinity() { 83 c.Set(b) 84 return 85 } 86 if b.IsInfinity() { 87 c.Set(a) 88 return 89 } 90 91 // See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3 92 93 // Normalize the points by replacing a = [x1:y1:z1] and b = [x2:y2:z2] 94 // by [u1:s1:z1·z2] and [u2:s2:z1·z2] 95 // where u1 = x1·z2², s1 = y1·z2³ and u1 = x2·z1², s2 = y2·z1³ 96 z12, z22 := &gfP{}, &gfP{} 97 gfpMul(z12, &a.z, &a.z) 98 gfpMul(z22, &b.z, &b.z) 99 100 u1, u2 := &gfP{}, &gfP{} 101 gfpMul(u1, &a.x, z22) 102 gfpMul(u2, &b.x, z12) 103 104 t, s1 := &gfP{}, &gfP{} 105 gfpMul(t, &b.z, z22) 106 gfpMul(s1, &a.y, t) 107 108 s2 := &gfP{} 109 gfpMul(t, &a.z, z12) 110 gfpMul(s2, &b.y, t) 111 112 // Compute x = (2h)²(s²-u1-u2) 113 // where s = (s2-s1)/(u2-u1) is the slope of the line through 114 // (u1,s1) and (u2,s2). The extra factor 2h = 2(u2-u1) comes from the value of z below. 115 // This is also: 116 // 4(s2-s1)² - 4h²(u1+u2) = 4(s2-s1)² - 4h³ - 4h²(2u1) 117 // = r² - j - 2v 118 // with the notations below. 119 h := &gfP{} 120 gfpSub(h, u2, u1) 121 xEqual := *h == gfP{0} 122 123 gfpAdd(t, h, h) 124 // i = 4h² 125 i := &gfP{} 126 gfpMul(i, t, t) 127 // j = 4h³ 128 j := &gfP{} 129 gfpMul(j, h, i) 130 131 gfpSub(t, s2, s1) 132 yEqual := *t == gfP{0} 133 if xEqual && yEqual { 134 c.Double(a) 135 return 136 } 137 r := &gfP{} 138 gfpAdd(r, t, t) 139 140 v := &gfP{} 141 gfpMul(v, u1, i) 142 143 // t4 = 4(s2-s1)² 144 t4, t6 := &gfP{}, &gfP{} 145 gfpMul(t4, r, r) 146 gfpAdd(t, v, v) 147 gfpSub(t6, t4, j) 148 149 gfpSub(&c.x, t6, t) 150 151 // Set y = -(2h)³(s1 + s*(x/4h²-u1)) 152 // This is also 153 // y = - 2·s1·j - (s2-s1)(2x - 2i·u1) = r(v-x) - 2·s1·j 154 gfpSub(t, v, &c.x) // t7 155 gfpMul(t4, s1, j) // t8 156 gfpAdd(t6, t4, t4) // t9 157 gfpMul(t4, r, t) // t10 158 gfpSub(&c.y, t4, t6) 159 160 // Set z = 2(u2-u1)·z1·z2 = 2h·z1·z2 161 gfpAdd(t, &a.z, &b.z) // t11 162 gfpMul(t4, t, t) // t12 163 gfpSub(t, t4, z12) // t13 164 gfpSub(t4, t, z22) // t14 165 gfpMul(&c.z, t4, h) 166 } 167 168 func (c *curvePoint) Double(a *curvePoint) { 169 // See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3 170 A, B, C := &gfP{}, &gfP{}, &gfP{} 171 gfpMul(A, &a.x, &a.x) 172 gfpMul(B, &a.y, &a.y) 173 gfpMul(C, B, B) 174 175 t, t2 := &gfP{}, &gfP{} 176 gfpAdd(t, &a.x, B) 177 gfpMul(t2, t, t) 178 gfpSub(t, t2, A) 179 gfpSub(t2, t, C) 180 181 d, e, f := &gfP{}, &gfP{}, &gfP{} 182 gfpAdd(d, t2, t2) 183 gfpAdd(t, A, A) 184 gfpAdd(e, t, A) 185 gfpMul(f, e, e) 186 187 gfpAdd(t, d, d) 188 gfpSub(&c.x, f, t) 189 190 gfpAdd(t, C, C) 191 gfpAdd(t2, t, t) 192 gfpAdd(t, t2, t2) 193 gfpSub(&c.y, d, &c.x) 194 gfpMul(t2, e, &c.y) 195 gfpSub(&c.y, t2, t) 196 197 gfpMul(t, &a.y, &a.z) 198 gfpAdd(&c.z, t, t) 199 } 200 201 func (c *curvePoint) Mul(a *curvePoint, scalar *big.Int) { 202 precomp := [1 << 2]*curvePoint{nil, {}, {}, {}} 203 precomp[1].Set(a) 204 precomp[2].Set(a) 205 gfpMul(&precomp[2].x, &precomp[2].x, xiTo2PSquaredMinus2Over3) 206 precomp[3].Add(precomp[1], precomp[2]) 207 208 multiScalar := curveLattice.Multi(scalar) 209 210 sum := &curvePoint{} 211 sum.SetInfinity() 212 t := &curvePoint{} 213 214 for i := len(multiScalar) - 1; i >= 0; i-- { 215 t.Double(sum) 216 if multiScalar[i] == 0 { 217 sum.Set(t) 218 } else { 219 sum.Add(t, precomp[multiScalar[i]]) 220 } 221 } 222 c.Set(sum) 223 } 224 225 func (c *curvePoint) MakeAffine() { 226 if c.z == *newGFp(1) { 227 return 228 } else if c.z == *newGFp(0) { 229 c.x = gfP{0} 230 c.y = *newGFp(1) 231 c.t = gfP{0} 232 return 233 } 234 235 zInv := &gfP{} 236 zInv.Invert(&c.z) 237 238 t, zInv2 := &gfP{}, &gfP{} 239 gfpMul(t, &c.y, zInv) 240 gfpMul(zInv2, zInv, zInv) 241 242 gfpMul(&c.x, &c.x, zInv2) 243 gfpMul(&c.y, t, zInv2) 244 245 c.z = *newGFp(1) 246 c.t = *newGFp(1) 247 } 248 249 func (c *curvePoint) Neg(a *curvePoint) { 250 c.x.Set(&a.x) 251 gfpNeg(&c.y, &a.y) 252 c.z.Set(&a.z) 253 c.t = gfP{0} 254 }