github.com/amazechain/amc@v0.1.3/common/crypto/bn256/cloudflare/gfp12.go (about) 1 // Copyright 2023 The AmazeChain Authors 2 // This file is part of the AmazeChain library. 3 // 4 // The AmazeChain library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The AmazeChain library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the AmazeChain library. If not, see <http://www.gnu.org/licenses/>. 16 17 package bn256 18 19 // For details of the algorithms used, see "Multiplication and Squaring on 20 // Pairing-Friendly Fields, Devegili et al. 21 // http://eprint.iacr.org/2006/471.pdf. 22 23 import ( 24 "math/big" 25 ) 26 27 // gfP12 implements the field of size p¹² as a quadratic extension of gfP6 28 // where ω²=τ. 29 type gfP12 struct { 30 x, y gfP6 // value is xω + y 31 } 32 33 func (e *gfP12) String() string { 34 return "(" + e.x.String() + "," + e.y.String() + ")" 35 } 36 37 func (e *gfP12) Set(a *gfP12) *gfP12 { 38 e.x.Set(&a.x) 39 e.y.Set(&a.y) 40 return e 41 } 42 43 func (e *gfP12) SetZero() *gfP12 { 44 e.x.SetZero() 45 e.y.SetZero() 46 return e 47 } 48 49 func (e *gfP12) SetOne() *gfP12 { 50 e.x.SetZero() 51 e.y.SetOne() 52 return e 53 } 54 55 func (e *gfP12) IsZero() bool { 56 return e.x.IsZero() && e.y.IsZero() 57 } 58 59 func (e *gfP12) IsOne() bool { 60 return e.x.IsZero() && e.y.IsOne() 61 } 62 63 func (e *gfP12) Conjugate(a *gfP12) *gfP12 { 64 e.x.Neg(&a.x) 65 e.y.Set(&a.y) 66 return e 67 } 68 69 func (e *gfP12) Neg(a *gfP12) *gfP12 { 70 e.x.Neg(&a.x) 71 e.y.Neg(&a.y) 72 return e 73 } 74 75 // Frobenius computes (xω+y)^p = x^p ω·ξ^((p-1)/6) + y^p 76 func (e *gfP12) Frobenius(a *gfP12) *gfP12 { 77 e.x.Frobenius(&a.x) 78 e.y.Frobenius(&a.y) 79 e.x.MulScalar(&e.x, xiToPMinus1Over6) 80 return e 81 } 82 83 // FrobeniusP2 computes (xω+y)^p² = x^p² ω·ξ^((p²-1)/6) + y^p² 84 func (e *gfP12) FrobeniusP2(a *gfP12) *gfP12 { 85 e.x.FrobeniusP2(&a.x) 86 e.x.MulGFP(&e.x, xiToPSquaredMinus1Over6) 87 e.y.FrobeniusP2(&a.y) 88 return e 89 } 90 91 func (e *gfP12) FrobeniusP4(a *gfP12) *gfP12 { 92 e.x.FrobeniusP4(&a.x) 93 e.x.MulGFP(&e.x, xiToPSquaredMinus1Over3) 94 e.y.FrobeniusP4(&a.y) 95 return e 96 } 97 98 func (e *gfP12) Add(a, b *gfP12) *gfP12 { 99 e.x.Add(&a.x, &b.x) 100 e.y.Add(&a.y, &b.y) 101 return e 102 } 103 104 func (e *gfP12) Sub(a, b *gfP12) *gfP12 { 105 e.x.Sub(&a.x, &b.x) 106 e.y.Sub(&a.y, &b.y) 107 return e 108 } 109 110 func (e *gfP12) Mul(a, b *gfP12) *gfP12 { 111 tx := (&gfP6{}).Mul(&a.x, &b.y) 112 t := (&gfP6{}).Mul(&b.x, &a.y) 113 tx.Add(tx, t) 114 115 ty := (&gfP6{}).Mul(&a.y, &b.y) 116 t.Mul(&a.x, &b.x).MulTau(t) 117 118 e.x.Set(tx) 119 e.y.Add(ty, t) 120 return e 121 } 122 123 func (e *gfP12) MulScalar(a *gfP12, b *gfP6) *gfP12 { 124 e.x.Mul(&e.x, b) 125 e.y.Mul(&e.y, b) 126 return e 127 } 128 129 func (c *gfP12) Exp(a *gfP12, power *big.Int) *gfP12 { 130 sum := (&gfP12{}).SetOne() 131 t := &gfP12{} 132 133 for i := power.BitLen() - 1; i >= 0; i-- { 134 t.Square(sum) 135 if power.Bit(i) != 0 { 136 sum.Mul(t, a) 137 } else { 138 sum.Set(t) 139 } 140 } 141 142 c.Set(sum) 143 return c 144 } 145 146 func (e *gfP12) Square(a *gfP12) *gfP12 { 147 // Complex squaring algorithm 148 v0 := (&gfP6{}).Mul(&a.x, &a.y) 149 150 t := (&gfP6{}).MulTau(&a.x) 151 t.Add(&a.y, t) 152 ty := (&gfP6{}).Add(&a.x, &a.y) 153 ty.Mul(ty, t).Sub(ty, v0) 154 t.MulTau(v0) 155 ty.Sub(ty, t) 156 157 e.x.Add(v0, v0) 158 e.y.Set(ty) 159 return e 160 } 161 162 func (e *gfP12) Invert(a *gfP12) *gfP12 { 163 // See "Implementing cryptographic pairings", M. Scott, section 3.2. 164 // ftp://136.206.11.249/pub/crypto/pairings.pdf 165 t1, t2 := &gfP6{}, &gfP6{} 166 167 t1.Square(&a.x) 168 t2.Square(&a.y) 169 t1.MulTau(t1).Sub(t2, t1) 170 t2.Invert(t1) 171 172 e.x.Neg(&a.x) 173 e.y.Set(&a.y) 174 e.MulScalar(e, t2) 175 return e 176 }