github.com/amazechain/amc@v0.1.3/common/crypto/crypto.go (about)

     1  // Copyright 2023 The AmazeChain Authors
     2  // This file is part of the AmazeChain library.
     3  //
     4  // The AmazeChain library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The AmazeChain library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the AmazeChain library. If not, see <http://www.gnu.org/licenses/>.
    16  package crypto
    17  
    18  import (
    19  	"bufio"
    20  	"crypto/ecdsa"
    21  	"crypto/elliptic"
    22  	"crypto/rand"
    23  	"encoding/hex"
    24  	"errors"
    25  	"fmt"
    26  	"github.com/amazechain/amc/common/types"
    27  	"github.com/amazechain/amc/common/u256"
    28  	"math/big"
    29  
    30  	"github.com/amazechain/amc/common/hexutil"
    31  	"github.com/amazechain/amc/common/math"
    32  	"github.com/amazechain/amc/internal/avm/rlp"
    33  	"hash"
    34  	"io"
    35  	"os"
    36  
    37  	"github.com/holiman/uint256"
    38  	"golang.org/x/crypto/sha3"
    39  )
    40  
    41  // SignatureLength indicates the byte length required to carry a signature with recovery id.
    42  const SignatureLength = 64 + 1 // 64 bytes ECDSA signature + 1 byte recovery id
    43  
    44  // RecoveryIDOffset points to the byte offset within the signature that contains the recovery id.
    45  const RecoveryIDOffset = 64
    46  
    47  // DigestLength sets the signature digest exact length
    48  const DigestLength = 32
    49  
    50  var (
    51  	secp256k1N     = new(uint256.Int).SetBytes(hexutil.MustDecode("0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141"))
    52  	secp256k1NBig  = secp256k1N.ToBig()
    53  	secp256k1halfN = new(uint256.Int).Div(secp256k1N, u256.Num2)
    54  	EmptyCodeHash  = Keccak256Hash(nil)
    55  )
    56  
    57  var errInvalidPubkey = errors.New("invalid secp256k1 public key")
    58  
    59  // KeccakState wraps sha3.state. In addition to the usual hash methods, it also supports
    60  // Read to get a variable amount of data from the hash state. Read is faster than Sum
    61  // because it doesn't copy the internal state, but also modifies the internal state.
    62  type KeccakState interface {
    63  	hash.Hash
    64  	Read([]byte) (int, error)
    65  }
    66  
    67  // NewKeccakState creates a new KeccakState
    68  func NewKeccakState() KeccakState {
    69  	return sha3.NewLegacyKeccak256().(KeccakState)
    70  }
    71  
    72  // HashData hashes the provided data using the KeccakState and returns a 32 byte hash
    73  func HashData(kh KeccakState, data []byte) (h types.Hash) {
    74  	kh.Reset()
    75  	//nolint:errcheck
    76  	kh.Write(data)
    77  	//nolint:errcheck
    78  	kh.Read(h[:])
    79  	return h
    80  }
    81  
    82  // Keccak256 calculates and returns the Keccak256 hash of the input data.
    83  func Keccak256(data ...[]byte) []byte {
    84  	b := make([]byte, 32)
    85  	d := NewKeccakState()
    86  	for _, b := range data {
    87  		d.Write(b)
    88  	}
    89  	d.Read(b) //nolint:errcheck
    90  	return b
    91  }
    92  
    93  // Keccak256Hash calculates and returns the Keccak256 hash of the input data,
    94  // converting it to an internal Hash data structure.
    95  func Keccak256Hash(data ...[]byte) (h types.Hash) {
    96  	d := NewKeccakState()
    97  	for _, b := range data {
    98  		d.Write(b)
    99  	}
   100  	d.Read(h[:]) //nolint:errcheck
   101  	return h
   102  }
   103  
   104  // Keccak512 calculates and returns the Keccak512 hash of the input data.
   105  func Keccak512(data ...[]byte) []byte {
   106  	d := sha3.NewLegacyKeccak512()
   107  	for _, b := range data {
   108  		d.Write(b)
   109  	}
   110  	return d.Sum(nil)
   111  }
   112  
   113  // CreateAddress creates an ethereum address given the bytes and the nonce
   114  // DESCRIBED: docs/programmers_guide/guide.md#address---identifier-of-an-account
   115  func CreateAddress(b types.Address, nonce uint64) types.Address {
   116  	data, _ := rlp.EncodeToBytes([]interface{}{b, nonce})
   117  	return types.BytesToAddress(Keccak256(data)[12:])
   118  }
   119  
   120  // CreateAddress2 creates an ethereum address given the address bytes, initial
   121  // contract code hash and a salt.
   122  // DESCRIBED: docs/programmers_guide/guide.md#address---identifier-of-an-account
   123  func CreateAddress2(b types.Address, salt [32]byte, inithash []byte) types.Address {
   124  	return types.BytesToAddress(Keccak256([]byte{0xff}, b.Bytes(), salt[:], inithash)[12:])
   125  }
   126  
   127  // ToECDSA creates a private key with the given D value.
   128  func ToECDSA(d []byte) (*ecdsa.PrivateKey, error) {
   129  	return toECDSA(d, true)
   130  }
   131  
   132  // ToECDSAUnsafe blindly converts a binary blob to a private key. It should almost
   133  // never be used unless you are sure the input is valid and want to avoid hitting
   134  // errors due to bad origin encoding (0 prefixes cut off).
   135  func ToECDSAUnsafe(d []byte) *ecdsa.PrivateKey {
   136  	priv, _ := toECDSA(d, false)
   137  	return priv
   138  }
   139  
   140  // toECDSA creates a private key with the given D value. The strict parameter
   141  // controls whether the key's length should be enforced at the curve size or
   142  // it can also accept legacy encodings (0 prefixes).
   143  func toECDSA(d []byte, strict bool) (*ecdsa.PrivateKey, error) {
   144  	priv := new(ecdsa.PrivateKey)
   145  	priv.PublicKey.Curve = S256()
   146  	if strict && 8*len(d) != priv.Params().BitSize {
   147  		return nil, fmt.Errorf("invalid length, need %d bits", priv.Params().BitSize)
   148  	}
   149  	priv.D = new(big.Int).SetBytes(d)
   150  
   151  	// The priv.D must < N
   152  	if priv.D.Cmp(secp256k1NBig) >= 0 {
   153  		return nil, fmt.Errorf("invalid private key, >=N")
   154  	}
   155  	// The priv.D must not be zero or negative.
   156  	if priv.D.Sign() <= 0 {
   157  		return nil, fmt.Errorf("invalid private key, zero or negative")
   158  	}
   159  
   160  	priv.PublicKey.X, priv.PublicKey.Y = priv.PublicKey.Curve.ScalarBaseMult(d)
   161  	if priv.PublicKey.X == nil {
   162  		return nil, errors.New("invalid private key")
   163  	}
   164  	return priv, nil
   165  }
   166  
   167  // FromECDSA exports a private key into a binary dump.
   168  func FromECDSA(priv *ecdsa.PrivateKey) []byte {
   169  	if priv == nil {
   170  		return nil
   171  	}
   172  	return math.PaddedBigBytes(priv.D, priv.Params().BitSize/8)
   173  }
   174  
   175  // UnmarshalPubkey converts bytes to a secp256k1 public key.
   176  func UnmarshalPubkey(pub []byte) (*ecdsa.PublicKey, error) {
   177  	x, y := elliptic.Unmarshal(S256(), pub)
   178  	if x == nil {
   179  		return nil, errInvalidPubkey
   180  	}
   181  	return &ecdsa.PublicKey{Curve: S256(), X: x, Y: y}, nil
   182  }
   183  
   184  func FromECDSAPub(pub *ecdsa.PublicKey) []byte {
   185  	if pub == nil || pub.X == nil || pub.Y == nil {
   186  		return nil
   187  	}
   188  	return elliptic.Marshal(S256(), pub.X, pub.Y)
   189  }
   190  
   191  // UnmarshalPubkeyStd parses a public key from the given bytes in the standard "uncompressed" format.
   192  // The input slice must be 65 bytes long and have this format: [4, X..., Y...]
   193  // See MarshalPubkeyStd.
   194  func UnmarshalPubkeyStd(pub []byte) (*ecdsa.PublicKey, error) {
   195  	x, y := elliptic.Unmarshal(S256(), pub)
   196  	if x == nil {
   197  		return nil, errInvalidPubkey
   198  	}
   199  	return &ecdsa.PublicKey{Curve: S256(), X: x, Y: y}, nil
   200  }
   201  
   202  // MarshalPubkeyStd converts a public key into the standard "uncompressed" format.
   203  // It returns a 65 bytes long slice that contains: [4, X..., Y...]
   204  // Returns nil if the given public key is not initialized.
   205  // See UnmarshalPubkeyStd.
   206  func MarshalPubkeyStd(pub *ecdsa.PublicKey) []byte {
   207  	if pub == nil || pub.X == nil || pub.Y == nil {
   208  		return nil
   209  	}
   210  	return elliptic.Marshal(S256(), pub.X, pub.Y)
   211  }
   212  
   213  // UnmarshalPubkey parses a public key from the given bytes in the 64 bytes "uncompressed" format.
   214  // The input slice must be 64 bytes long and have this format: [X..., Y...]
   215  // See MarshalPubkey.
   216  //func UnmarshalPubkey(keyBytes []byte) (*ecdsa.PublicKey, error) {
   217  //	keyBytes = append([]byte{0x4}, keyBytes...)
   218  //	return UnmarshalPubkeyStd(keyBytes)
   219  //}
   220  
   221  // MarshalPubkey converts a public key into a 64 bytes "uncompressed" format.
   222  // It returns a 64 bytes long slice that contains: [X..., Y...]
   223  // In the standard 65 bytes format the first byte is always constant (equal to 4),
   224  // so it can be cut off and trivially recovered later.
   225  // Returns nil if the given public key is not initialized.
   226  // See UnmarshalPubkey.
   227  func MarshalPubkey(pubkey *ecdsa.PublicKey) []byte {
   228  	keyBytes := MarshalPubkeyStd(pubkey)
   229  	if keyBytes == nil {
   230  		return nil
   231  	}
   232  	return keyBytes[1:]
   233  }
   234  
   235  // HexToECDSA parses a secp256k1 private key.
   236  func HexToECDSA(hexkey string) (*ecdsa.PrivateKey, error) {
   237  	b, err := hex.DecodeString(hexkey)
   238  	if byteErr, ok := err.(hex.InvalidByteError); ok {
   239  		return nil, fmt.Errorf("invalid hex character %q in private key", byte(byteErr))
   240  	} else if err != nil {
   241  		return nil, errors.New("invalid hex data for private key")
   242  	}
   243  	return ToECDSA(b)
   244  }
   245  
   246  // LoadECDSA loads a secp256k1 private key from the given file.
   247  func LoadECDSA(file string) (*ecdsa.PrivateKey, error) {
   248  	fd, err := os.Open(file)
   249  	if err != nil {
   250  		return nil, err
   251  	}
   252  	defer fd.Close()
   253  
   254  	r := bufio.NewReader(fd)
   255  	buf := make([]byte, 64)
   256  	n, err := readASCII(buf, r)
   257  	if err != nil {
   258  		return nil, err
   259  	} else if n != len(buf) {
   260  		return nil, fmt.Errorf("key file too short, want 64 hex characters")
   261  	}
   262  	if err := checkKeyFileEnd(r); err != nil {
   263  		return nil, err
   264  	}
   265  
   266  	return HexToECDSA(string(buf))
   267  }
   268  
   269  // readASCII reads into 'buf', stopping when the buffer is full or
   270  // when a non-printable control character is encountered.
   271  func readASCII(buf []byte, r *bufio.Reader) (n int, err error) {
   272  	for ; n < len(buf); n++ {
   273  		buf[n], err = r.ReadByte()
   274  		switch {
   275  		case errors.Is(err, io.EOF) || buf[n] < '!':
   276  			return n, nil
   277  		case err != nil:
   278  			return n, err
   279  		}
   280  	}
   281  	return n, nil
   282  }
   283  
   284  // checkKeyFileEnd skips over additional newlines at the end of a key file.
   285  func checkKeyFileEnd(r *bufio.Reader) error {
   286  	for i := 0; ; i++ {
   287  		b, err := r.ReadByte()
   288  		switch {
   289  		case errors.Is(err, io.EOF):
   290  			return nil
   291  		case err != nil:
   292  			return err
   293  		case b != '\n' && b != '\r':
   294  			return fmt.Errorf("invalid character %q at end of key file", b)
   295  		case i >= 2:
   296  			return errors.New("key file too long, want 64 hex characters")
   297  		}
   298  	}
   299  }
   300  
   301  // SaveECDSA saves a secp256k1 private key to the given file with
   302  // restrictive permissions. The key data is saved hex-encoded.
   303  func SaveECDSA(file string, key *ecdsa.PrivateKey) error {
   304  	k := hex.EncodeToString(FromECDSA(key))
   305  	return os.WriteFile(file, []byte(k), 0600)
   306  }
   307  
   308  // GenerateKey generates a new private key.
   309  func GenerateKey() (*ecdsa.PrivateKey, error) {
   310  	return ecdsa.GenerateKey(S256(), rand.Reader)
   311  }
   312  
   313  // ValidateSignatureValues verifies whether the signature values are valid with
   314  // the given chain rules. The v value is assumed to be either 0 or 1.
   315  func ValidateSignatureValues(v byte, r, s *uint256.Int, homestead bool) bool {
   316  	if r.IsZero() || s.IsZero() {
   317  		return false
   318  	}
   319  	// reject upper range of s values (ECDSA malleability)
   320  	// see discussion in secp256k1/libsecp256k1/include/secp256k1.h
   321  	if homestead && s.Gt(secp256k1halfN) {
   322  		return false
   323  	}
   324  	// Frontier: allow s to be in full N range
   325  	return r.Lt(secp256k1N) && s.Lt(secp256k1N) && (v == 0 || v == 1)
   326  }
   327  
   328  // DESCRIBED: docs/programmers_guide/guide.md#address---identifier-of-an-account
   329  func PubkeyToAddress(p ecdsa.PublicKey) types.Address {
   330  	pubBytes := MarshalPubkey(&p)
   331  	return types.BytesToAddress(Keccak256(pubBytes)[12:])
   332  }
   333  
   334  func zeroBytes(bytes []byte) {
   335  	for i := range bytes {
   336  		bytes[i] = 0
   337  	}
   338  }