github.com/amazechain/amc@v0.1.3/internal/p2p/discover/v5_udp.go (about)

     1  // Copyright 2020 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package discover
    18  
    19  import (
    20  	"bytes"
    21  	"context"
    22  	"crypto/ecdsa"
    23  	crand "crypto/rand"
    24  	"errors"
    25  	"fmt"
    26  	"github.com/amazechain/amc/common/mclock"
    27  	"github.com/amazechain/amc/internal/p2p/discover/v5wire"
    28  	"github.com/amazechain/amc/internal/p2p/enode"
    29  	"github.com/amazechain/amc/internal/p2p/enr"
    30  	"github.com/amazechain/amc/internal/p2p/netutil"
    31  	"github.com/amazechain/amc/log"
    32  	"io"
    33  	"net"
    34  	"sync"
    35  	"time"
    36  )
    37  
    38  const (
    39  	lookupRequestLimit      = 3  // max requests against a single node during lookup
    40  	findnodeResultLimit     = 16 // applies in FINDNODE handler
    41  	totalNodesResponseLimit = 5  // applies in waitForNodes
    42  
    43  	respTimeoutV5 = 700 * time.Millisecond
    44  )
    45  
    46  // codecV5 is implemented by v5wire.Codec (and testCodec).
    47  //
    48  // The UDPv5 transport is split into two objects: the codec object deals with
    49  // encoding/decoding and with the handshake; the UDPv5 object handles higher-level concerns.
    50  type codecV5 interface {
    51  	// Encode encodes a packet.
    52  	Encode(enode.ID, string, v5wire.Packet, *v5wire.Whoareyou) ([]byte, v5wire.Nonce, error)
    53  
    54  	// Decode decodes a packet. It returns a *v5wire.Unknown packet if decryption fails.
    55  	// The *enode.Node return value is non-nil when the input contains a handshake response.
    56  	Decode([]byte, string) (enode.ID, *enode.Node, v5wire.Packet, error)
    57  }
    58  
    59  // UDPv5 is the implementation of protocol version 5.
    60  type UDPv5 struct {
    61  	// static fields
    62  	conn         UDPConn
    63  	tab          *Table
    64  	netrestrict  *netutil.Netlist
    65  	priv         *ecdsa.PrivateKey
    66  	localNode    *enode.LocalNode
    67  	db           *enode.DB
    68  	log          log.Logger
    69  	clock        mclock.Clock
    70  	validSchemes enr.IdentityScheme
    71  
    72  	// misc buffers used during message handling
    73  	logcontext []interface{}
    74  
    75  	// talkreq handler registry
    76  	talk *talkSystem
    77  
    78  	// channels into dispatch
    79  	packetInCh    chan ReadPacket
    80  	readNextCh    chan struct{}
    81  	callCh        chan *callV5
    82  	callDoneCh    chan *callV5
    83  	respTimeoutCh chan *callTimeout
    84  	sendCh        chan sendRequest
    85  	unhandled     chan<- ReadPacket
    86  
    87  	// state of dispatch
    88  	codec            codecV5
    89  	activeCallByNode map[enode.ID]*callV5
    90  	activeCallByAuth map[v5wire.Nonce]*callV5
    91  	callQueue        map[enode.ID][]*callV5
    92  
    93  	// shutdown stuff
    94  	closeOnce      sync.Once
    95  	closeCtx       context.Context
    96  	cancelCloseCtx context.CancelFunc
    97  	wg             sync.WaitGroup
    98  }
    99  
   100  type sendRequest struct {
   101  	destID   enode.ID
   102  	destAddr *net.UDPAddr
   103  	msg      v5wire.Packet
   104  }
   105  
   106  // callV5 represents a remote procedure call against another node.
   107  type callV5 struct {
   108  	id   enode.ID
   109  	addr *net.UDPAddr
   110  	node *enode.Node // This is required to perform handshakes.
   111  
   112  	packet       v5wire.Packet
   113  	responseType byte // expected packet type of response
   114  	reqid        []byte
   115  	ch           chan v5wire.Packet // responses sent here
   116  	err          chan error         // errors sent here
   117  
   118  	// Valid for active calls only:
   119  	nonce          v5wire.Nonce      // nonce of request packet
   120  	handshakeCount int               // # times we attempted handshake for this call
   121  	challenge      *v5wire.Whoareyou // last sent handshake challenge
   122  	timeout        mclock.Timer
   123  }
   124  
   125  // callTimeout is the response timeout event of a call.
   126  type callTimeout struct {
   127  	c     *callV5
   128  	timer mclock.Timer
   129  }
   130  
   131  // ListenV5 listens on the given connection.
   132  func ListenV5(conn UDPConn, ln *enode.LocalNode, cfg Config) (*UDPv5, error) {
   133  	t, err := newUDPv5(conn, ln, cfg)
   134  	if err != nil {
   135  		return nil, err
   136  	}
   137  	go t.tab.loop()
   138  	t.wg.Add(2)
   139  	go t.readLoop()
   140  	go t.dispatch()
   141  	return t, nil
   142  }
   143  
   144  // newUDPv5 creates a UDPv5 transport, but doesn't start any goroutines.
   145  func newUDPv5(conn UDPConn, ln *enode.LocalNode, cfg Config) (*UDPv5, error) {
   146  	closeCtx, cancelCloseCtx := context.WithCancel(context.Background())
   147  	cfg = cfg.withDefaults()
   148  	t := &UDPv5{
   149  		// static fields
   150  		conn:         newMeteredConn(conn),
   151  		localNode:    ln,
   152  		db:           ln.Database(),
   153  		netrestrict:  cfg.NetRestrict,
   154  		priv:         cfg.PrivateKey,
   155  		log:          cfg.Log,
   156  		validSchemes: cfg.ValidSchemes,
   157  		clock:        cfg.Clock,
   158  		// channels into dispatch
   159  		packetInCh:    make(chan ReadPacket, 1),
   160  		readNextCh:    make(chan struct{}, 1),
   161  		callCh:        make(chan *callV5),
   162  		callDoneCh:    make(chan *callV5),
   163  		sendCh:        make(chan sendRequest),
   164  		respTimeoutCh: make(chan *callTimeout),
   165  		unhandled:     cfg.Unhandled,
   166  		// state of dispatch
   167  		codec:            v5wire.NewCodec(ln, cfg.PrivateKey, cfg.Clock, cfg.V5ProtocolID),
   168  		activeCallByNode: make(map[enode.ID]*callV5),
   169  		activeCallByAuth: make(map[v5wire.Nonce]*callV5),
   170  		callQueue:        make(map[enode.ID][]*callV5),
   171  		// shutdown
   172  		closeCtx:       closeCtx,
   173  		cancelCloseCtx: cancelCloseCtx,
   174  	}
   175  	t.talk = newTalkSystem(t)
   176  	tab, err := newTable(t, t.db, cfg.Bootnodes, cfg.Log)
   177  	if err != nil {
   178  		return nil, err
   179  	}
   180  	t.tab = tab
   181  	return t, nil
   182  }
   183  
   184  // Self returns the local node record.
   185  func (t *UDPv5) Self() *enode.Node {
   186  	return t.localNode.Node()
   187  }
   188  
   189  // Close shuts down packet processing.
   190  func (t *UDPv5) Close() {
   191  	t.closeOnce.Do(func() {
   192  		t.cancelCloseCtx()
   193  		t.conn.Close()
   194  		t.talk.wait()
   195  		t.wg.Wait()
   196  		t.tab.close()
   197  	})
   198  }
   199  
   200  // Ping sends a ping message to the given node.
   201  func (t *UDPv5) Ping(n *enode.Node) error {
   202  	_, err := t.ping(n)
   203  	return err
   204  }
   205  
   206  // Resolve searches for a specific node with the given ID and tries to get the most recent
   207  // version of the node record for it. It returns n if the node could not be resolved.
   208  func (t *UDPv5) Resolve(n *enode.Node) *enode.Node {
   209  	if intable := t.tab.getNode(n.ID()); intable != nil && intable.Seq() > n.Seq() {
   210  		n = intable
   211  	}
   212  	// Try asking directly. This works if the node is still responding on the endpoint we have.
   213  	if resp, err := t.RequestENR(n); err == nil {
   214  		return resp
   215  	}
   216  	// Otherwise do a network lookup.
   217  	result := t.Lookup(n.ID())
   218  	for _, rn := range result {
   219  		if rn.ID() == n.ID() && rn.Seq() > n.Seq() {
   220  			return rn
   221  		}
   222  	}
   223  	return n
   224  }
   225  
   226  // AllNodes returns all the nodes stored in the local table.
   227  func (t *UDPv5) AllNodes() []*enode.Node {
   228  	t.tab.mutex.Lock()
   229  	defer t.tab.mutex.Unlock()
   230  	nodes := make([]*enode.Node, 0)
   231  
   232  	for _, b := range &t.tab.buckets {
   233  		for _, n := range b.entries {
   234  			nodes = append(nodes, unwrapNode(n))
   235  		}
   236  	}
   237  	return nodes
   238  }
   239  
   240  // LocalNode returns the current local node running the
   241  // protocol.
   242  func (t *UDPv5) LocalNode() *enode.LocalNode {
   243  	return t.localNode
   244  }
   245  
   246  // RegisterTalkHandler adds a handler for 'talk requests'. The handler function is called
   247  // whenever a request for the given protocol is received and should return the response
   248  // data or nil.
   249  func (t *UDPv5) RegisterTalkHandler(protocol string, handler TalkRequestHandler) {
   250  	t.talk.register(protocol, handler)
   251  }
   252  
   253  // TalkRequest sends a talk request to a node and waits for a response.
   254  func (t *UDPv5) TalkRequest(n *enode.Node, protocol string, request []byte) ([]byte, error) {
   255  	req := &v5wire.TalkRequest{Protocol: protocol, Message: request}
   256  	resp := t.callToNode(n, v5wire.TalkResponseMsg, req)
   257  	defer t.callDone(resp)
   258  	select {
   259  	case respMsg := <-resp.ch:
   260  		return respMsg.(*v5wire.TalkResponse).Message, nil
   261  	case err := <-resp.err:
   262  		return nil, err
   263  	}
   264  }
   265  
   266  // TalkRequestToID sends a talk request to a node and waits for a response.
   267  func (t *UDPv5) TalkRequestToID(id enode.ID, addr *net.UDPAddr, protocol string, request []byte) ([]byte, error) {
   268  	req := &v5wire.TalkRequest{Protocol: protocol, Message: request}
   269  	resp := t.callToID(id, addr, v5wire.TalkResponseMsg, req)
   270  	defer t.callDone(resp)
   271  	select {
   272  	case respMsg := <-resp.ch:
   273  		return respMsg.(*v5wire.TalkResponse).Message, nil
   274  	case err := <-resp.err:
   275  		return nil, err
   276  	}
   277  }
   278  
   279  // RandomNodes returns an iterator that finds random nodes in the DHT.
   280  func (t *UDPv5) RandomNodes() enode.Iterator {
   281  	if t.tab.len() == 0 {
   282  		// All nodes were dropped, refresh. The very first query will hit this
   283  		// case and run the bootstrapping logic.
   284  		<-t.tab.refresh()
   285  	}
   286  
   287  	return newLookupIterator(t.closeCtx, t.newRandomLookup)
   288  }
   289  
   290  // Lookup performs a recursive lookup for the given target.
   291  // It returns the closest nodes to target.
   292  func (t *UDPv5) Lookup(target enode.ID) []*enode.Node {
   293  	return t.newLookup(t.closeCtx, target).run()
   294  }
   295  
   296  // lookupRandom looks up a random target.
   297  // This is needed to satisfy the transport interface.
   298  func (t *UDPv5) lookupRandom() []*enode.Node {
   299  	return t.newRandomLookup(t.closeCtx).run()
   300  }
   301  
   302  // lookupSelf looks up our own node ID.
   303  // This is needed to satisfy the transport interface.
   304  func (t *UDPv5) lookupSelf() []*enode.Node {
   305  	return t.newLookup(t.closeCtx, t.Self().ID()).run()
   306  }
   307  
   308  func (t *UDPv5) newRandomLookup(ctx context.Context) *lookup {
   309  	var target enode.ID
   310  	crand.Read(target[:])
   311  	return t.newLookup(ctx, target)
   312  }
   313  
   314  func (t *UDPv5) newLookup(ctx context.Context, target enode.ID) *lookup {
   315  	return newLookup(ctx, t.tab, target, func(n *node) ([]*node, error) {
   316  		return t.lookupWorker(n, target)
   317  	})
   318  }
   319  
   320  // lookupWorker performs FINDNODE calls against a single node during lookup.
   321  func (t *UDPv5) lookupWorker(destNode *node, target enode.ID) ([]*node, error) {
   322  	var (
   323  		dists = lookupDistances(target, destNode.ID())
   324  		nodes = nodesByDistance{target: target}
   325  		err   error
   326  	)
   327  	var r []*enode.Node
   328  	r, err = t.findnode(unwrapNode(destNode), dists)
   329  	if errors.Is(err, errClosed) {
   330  		return nil, err
   331  	}
   332  	for _, n := range r {
   333  		if n.ID() != t.Self().ID() {
   334  			nodes.push(wrapNode(n), findnodeResultLimit)
   335  		}
   336  	}
   337  	return nodes.entries, err
   338  }
   339  
   340  // lookupDistances computes the distance parameter for FINDNODE calls to dest.
   341  // It chooses distances adjacent to logdist(target, dest), e.g. for a target
   342  // with logdist(target, dest) = 255 the result is [255, 256, 254].
   343  func lookupDistances(target, dest enode.ID) (dists []uint) {
   344  	td := enode.LogDist(target, dest)
   345  	dists = append(dists, uint(td))
   346  	for i := 1; len(dists) < lookupRequestLimit; i++ {
   347  		if td+i <= 256 {
   348  			dists = append(dists, uint(td+i))
   349  		}
   350  		if td-i > 0 {
   351  			dists = append(dists, uint(td-i))
   352  		}
   353  	}
   354  	return dists
   355  }
   356  
   357  // ping calls PING on a node and waits for a PONG response.
   358  func (t *UDPv5) ping(n *enode.Node) (uint64, error) {
   359  	req := &v5wire.Ping{ENRSeq: t.localNode.Node().Seq()}
   360  	resp := t.callToNode(n, v5wire.PongMsg, req)
   361  	defer t.callDone(resp)
   362  
   363  	select {
   364  	case pong := <-resp.ch:
   365  		return pong.(*v5wire.Pong).ENRSeq, nil
   366  	case err := <-resp.err:
   367  		return 0, err
   368  	}
   369  }
   370  
   371  // RequestENR requests n's record.
   372  func (t *UDPv5) RequestENR(n *enode.Node) (*enode.Node, error) {
   373  	nodes, err := t.findnode(n, []uint{0})
   374  	if err != nil {
   375  		return nil, err
   376  	}
   377  	if len(nodes) != 1 {
   378  		return nil, fmt.Errorf("%d nodes in response for distance zero", len(nodes))
   379  	}
   380  	return nodes[0], nil
   381  }
   382  
   383  // findnode calls FINDNODE on a node and waits for responses.
   384  func (t *UDPv5) findnode(n *enode.Node, distances []uint) ([]*enode.Node, error) {
   385  	resp := t.callToNode(n, v5wire.NodesMsg, &v5wire.Findnode{Distances: distances})
   386  	return t.waitForNodes(resp, distances)
   387  }
   388  
   389  // waitForNodes waits for NODES responses to the given call.
   390  func (t *UDPv5) waitForNodes(c *callV5, distances []uint) ([]*enode.Node, error) {
   391  	defer t.callDone(c)
   392  
   393  	var (
   394  		nodes           []*enode.Node
   395  		seen            = make(map[enode.ID]struct{})
   396  		received, total = 0, -1
   397  	)
   398  	for {
   399  		select {
   400  		case responseP := <-c.ch:
   401  			response := responseP.(*v5wire.Nodes)
   402  			for _, record := range response.Nodes {
   403  				node, err := t.verifyResponseNode(c, record, distances, seen)
   404  				if err != nil {
   405  					t.log.Debug("Invalid record in "+response.Name(), "id", c.node.ID(), "err", err)
   406  					continue
   407  				}
   408  				nodes = append(nodes, node)
   409  			}
   410  			if total == -1 {
   411  				total = min(int(response.RespCount), totalNodesResponseLimit)
   412  			}
   413  			if received++; received == total {
   414  				return nodes, nil
   415  			}
   416  		case err := <-c.err:
   417  			return nodes, err
   418  		}
   419  	}
   420  }
   421  
   422  // verifyResponseNode checks validity of a record in a NODES response.
   423  func (t *UDPv5) verifyResponseNode(c *callV5, r *enr.Record, distances []uint, seen map[enode.ID]struct{}) (*enode.Node, error) {
   424  	node, err := enode.New(t.validSchemes, r)
   425  	if err != nil {
   426  		return nil, err
   427  	}
   428  	if err := netutil.CheckRelayIP(c.addr.IP, node.IP()); err != nil {
   429  		return nil, err
   430  	}
   431  	if t.netrestrict != nil && !t.netrestrict.Contains(node.IP()) {
   432  		return nil, errors.New("not contained in netrestrict list")
   433  	}
   434  	if node.UDP() <= 1024 {
   435  		return nil, errLowPort
   436  	}
   437  	if distances != nil {
   438  		nd := enode.LogDist(c.id, node.ID())
   439  		if !containsUint(uint(nd), distances) {
   440  			return nil, errors.New("does not match any requested distance")
   441  		}
   442  	}
   443  	if _, ok := seen[node.ID()]; ok {
   444  		return nil, fmt.Errorf("duplicate record")
   445  	}
   446  	seen[node.ID()] = struct{}{}
   447  	return node, nil
   448  }
   449  
   450  func containsUint(x uint, xs []uint) bool {
   451  	for _, v := range xs {
   452  		if x == v {
   453  			return true
   454  		}
   455  	}
   456  	return false
   457  }
   458  
   459  // callToNode sends the given call and sets up a handler for response packets (of message
   460  // type responseType). Responses are dispatched to the call's response channel.
   461  func (t *UDPv5) callToNode(n *enode.Node, responseType byte, req v5wire.Packet) *callV5 {
   462  	addr := &net.UDPAddr{IP: n.IP(), Port: n.UDP()}
   463  	c := &callV5{id: n.ID(), addr: addr, node: n}
   464  	t.initCall(c, responseType, req)
   465  	return c
   466  }
   467  
   468  // callToID is like callToNode, but for cases where the node record is not available.
   469  func (t *UDPv5) callToID(id enode.ID, addr *net.UDPAddr, responseType byte, req v5wire.Packet) *callV5 {
   470  	c := &callV5{id: id, addr: addr}
   471  	t.initCall(c, responseType, req)
   472  	return c
   473  }
   474  
   475  func (t *UDPv5) initCall(c *callV5, responseType byte, packet v5wire.Packet) {
   476  	c.packet = packet
   477  	c.responseType = responseType
   478  	c.reqid = make([]byte, 8)
   479  	c.ch = make(chan v5wire.Packet, 1)
   480  	c.err = make(chan error, 1)
   481  	// Assign request ID.
   482  	crand.Read(c.reqid)
   483  	packet.SetRequestID(c.reqid)
   484  	// Send call to dispatch.
   485  	select {
   486  	case t.callCh <- c:
   487  	case <-t.closeCtx.Done():
   488  		c.err <- errClosed
   489  	}
   490  }
   491  
   492  // callDone tells dispatch that the active call is done.
   493  func (t *UDPv5) callDone(c *callV5) {
   494  	// This needs a loop because further responses may be incoming until the
   495  	// send to callDoneCh has completed. Such responses need to be discarded
   496  	// in order to avoid blocking the dispatch loop.
   497  	for {
   498  		select {
   499  		case <-c.ch:
   500  			// late response, discard.
   501  		case <-c.err:
   502  			// late error, discard.
   503  		case t.callDoneCh <- c:
   504  			return
   505  		case <-t.closeCtx.Done():
   506  			return
   507  		}
   508  	}
   509  }
   510  
   511  // dispatch runs in its own goroutine, handles incoming packets and deals with calls.
   512  //
   513  // For any destination node there is at most one 'active call', stored in the t.activeCall*
   514  // maps. A call is made active when it is sent. The active call can be answered by a
   515  // matching response, in which case c.ch receives the response; or by timing out, in which case
   516  // c.err receives the error. When the function that created the call signals the active
   517  // call is done through callDone, the next call from the call queue is started.
   518  //
   519  // Calls may also be answered by a WHOAREYOU packet referencing the call packet's authTag.
   520  // When that happens the call is simply re-sent to complete the handshake. We allow one
   521  // handshake attempt per call.
   522  func (t *UDPv5) dispatch() {
   523  	defer t.wg.Done()
   524  
   525  	// Arm first read.
   526  	t.readNextCh <- struct{}{}
   527  
   528  	for {
   529  		select {
   530  		case c := <-t.callCh:
   531  			t.callQueue[c.id] = append(t.callQueue[c.id], c)
   532  			t.sendNextCall(c.id)
   533  
   534  		case ct := <-t.respTimeoutCh:
   535  			active := t.activeCallByNode[ct.c.id]
   536  			if ct.c == active && ct.timer == active.timeout {
   537  				ct.c.err <- errTimeout
   538  			}
   539  
   540  		case c := <-t.callDoneCh:
   541  			active := t.activeCallByNode[c.id]
   542  			if active != c {
   543  				panic("BUG: callDone for inactive call")
   544  			}
   545  			c.timeout.Stop()
   546  			delete(t.activeCallByAuth, c.nonce)
   547  			delete(t.activeCallByNode, c.id)
   548  			t.sendNextCall(c.id)
   549  
   550  		case r := <-t.sendCh:
   551  			t.send(r.destID, r.destAddr, r.msg, nil)
   552  
   553  		case p := <-t.packetInCh:
   554  			t.handlePacket(p.Data, p.Addr)
   555  			// Arm next read.
   556  			t.readNextCh <- struct{}{}
   557  
   558  		case <-t.closeCtx.Done():
   559  			close(t.readNextCh)
   560  			for id, queue := range t.callQueue {
   561  				for _, c := range queue {
   562  					c.err <- errClosed
   563  				}
   564  				delete(t.callQueue, id)
   565  			}
   566  			for id, c := range t.activeCallByNode {
   567  				c.err <- errClosed
   568  				delete(t.activeCallByNode, id)
   569  				delete(t.activeCallByAuth, c.nonce)
   570  			}
   571  			return
   572  		}
   573  	}
   574  }
   575  
   576  // startResponseTimeout sets the response timer for a call.
   577  func (t *UDPv5) startResponseTimeout(c *callV5) {
   578  	if c.timeout != nil {
   579  		c.timeout.Stop()
   580  	}
   581  	var (
   582  		timer mclock.Timer
   583  		done  = make(chan struct{})
   584  	)
   585  	timer = t.clock.AfterFunc(respTimeoutV5, func() {
   586  		<-done
   587  		select {
   588  		case t.respTimeoutCh <- &callTimeout{c, timer}:
   589  		case <-t.closeCtx.Done():
   590  		}
   591  	})
   592  	c.timeout = timer
   593  	close(done)
   594  }
   595  
   596  // sendNextCall sends the next call in the call queue if there is no active call.
   597  func (t *UDPv5) sendNextCall(id enode.ID) {
   598  	queue := t.callQueue[id]
   599  	if len(queue) == 0 || t.activeCallByNode[id] != nil {
   600  		return
   601  	}
   602  	t.activeCallByNode[id] = queue[0]
   603  	t.sendCall(t.activeCallByNode[id])
   604  	if len(queue) == 1 {
   605  		delete(t.callQueue, id)
   606  	} else {
   607  		copy(queue, queue[1:])
   608  		t.callQueue[id] = queue[:len(queue)-1]
   609  	}
   610  }
   611  
   612  // sendCall encodes and sends a request packet to the call's recipient node.
   613  // This performs a handshake if needed.
   614  func (t *UDPv5) sendCall(c *callV5) {
   615  	// The call might have a nonce from a previous handshake attempt. Remove the entry for
   616  	// the old nonce because we're about to generate a new nonce for this call.
   617  	if c.nonce != (v5wire.Nonce{}) {
   618  		delete(t.activeCallByAuth, c.nonce)
   619  	}
   620  
   621  	newNonce, _ := t.send(c.id, c.addr, c.packet, c.challenge)
   622  	c.nonce = newNonce
   623  	t.activeCallByAuth[newNonce] = c
   624  	t.startResponseTimeout(c)
   625  }
   626  
   627  // sendResponse sends a response packet to the given node.
   628  // This doesn't trigger a handshake even if no keys are available.
   629  func (t *UDPv5) sendResponse(toID enode.ID, toAddr *net.UDPAddr, packet v5wire.Packet) error {
   630  	_, err := t.send(toID, toAddr, packet, nil)
   631  	return err
   632  }
   633  
   634  func (t *UDPv5) sendFromAnotherThread(toID enode.ID, toAddr *net.UDPAddr, packet v5wire.Packet) {
   635  	select {
   636  	case t.sendCh <- sendRequest{toID, toAddr, packet}:
   637  	case <-t.closeCtx.Done():
   638  	}
   639  }
   640  
   641  // send sends a packet to the given node.
   642  func (t *UDPv5) send(toID enode.ID, toAddr *net.UDPAddr, packet v5wire.Packet, c *v5wire.Whoareyou) (v5wire.Nonce, error) {
   643  	addr := toAddr.String()
   644  	t.logcontext = append(t.logcontext[:0], "id", toID, "addr", addr)
   645  	t.logcontext = packet.AppendLogInfo(t.logcontext)
   646  
   647  	enc, nonce, err := t.codec.Encode(toID, addr, packet, c)
   648  	if err != nil {
   649  		t.logcontext = append(t.logcontext, "err", err)
   650  		t.log.Warn(">> "+packet.Name(), t.logcontext...)
   651  		return nonce, err
   652  	}
   653  
   654  	_, err = t.conn.WriteToUDP(enc, toAddr)
   655  	t.log.Trace(">> "+packet.Name(), t.logcontext...)
   656  	return nonce, err
   657  }
   658  
   659  // readLoop runs in its own goroutine and reads packets from the network.
   660  func (t *UDPv5) readLoop() {
   661  	defer t.wg.Done()
   662  
   663  	buf := make([]byte, maxPacketSize)
   664  	for range t.readNextCh {
   665  		nbytes, from, err := t.conn.ReadFromUDP(buf)
   666  		if netutil.IsTemporaryError(err) {
   667  			// Ignore temporary read errors.
   668  			t.log.Debug("Temporary UDP read error", "err", err)
   669  			continue
   670  		} else if err != nil {
   671  			// Shut down the loop for permanent errors.
   672  			if !errors.Is(err, io.EOF) {
   673  				t.log.Debug("UDP read error", "err", err)
   674  			}
   675  			return
   676  		}
   677  		t.dispatchReadPacket(from, buf[:nbytes])
   678  	}
   679  }
   680  
   681  // dispatchReadPacket sends a packet into the dispatch loop.
   682  func (t *UDPv5) dispatchReadPacket(from *net.UDPAddr, content []byte) bool {
   683  	select {
   684  	case t.packetInCh <- ReadPacket{content, from}:
   685  		return true
   686  	case <-t.closeCtx.Done():
   687  		return false
   688  	}
   689  }
   690  
   691  // handlePacket decodes and processes an incoming packet from the network.
   692  func (t *UDPv5) handlePacket(rawpacket []byte, fromAddr *net.UDPAddr) error {
   693  	addr := fromAddr.String()
   694  	fromID, fromNode, packet, err := t.codec.Decode(rawpacket, addr)
   695  	if err != nil {
   696  		if t.unhandled != nil && v5wire.IsInvalidHeader(err) {
   697  			// The packet seems unrelated to discv5, send it to the next protocol.
   698  			// t.log.Trace("Unhandled discv5 packet", "id", fromID, "addr", addr, "err", err)
   699  			up := ReadPacket{Data: make([]byte, len(rawpacket)), Addr: fromAddr}
   700  			copy(up.Data, rawpacket)
   701  			t.unhandled <- up
   702  			return nil
   703  		}
   704  		t.log.Debug("Bad discv5 packet", "id", fromID, "addr", addr, "err", err)
   705  		return err
   706  	}
   707  	if fromNode != nil {
   708  		// Handshake succeeded, add to table.
   709  		t.tab.addSeenNode(wrapNode(fromNode))
   710  	}
   711  	if packet.Kind() != v5wire.WhoareyouPacket {
   712  		// WHOAREYOU logged separately to report errors.
   713  		t.logcontext = append(t.logcontext[:0], "id", fromID, "addr", addr)
   714  		t.logcontext = packet.AppendLogInfo(t.logcontext)
   715  		t.log.Trace("<< "+packet.Name(), t.logcontext...)
   716  	}
   717  	t.handle(packet, fromID, fromAddr)
   718  	return nil
   719  }
   720  
   721  // handleCallResponse dispatches a response packet to the call waiting for it.
   722  func (t *UDPv5) handleCallResponse(fromID enode.ID, fromAddr *net.UDPAddr, p v5wire.Packet) bool {
   723  	ac := t.activeCallByNode[fromID]
   724  	if ac == nil || !bytes.Equal(p.RequestID(), ac.reqid) {
   725  		t.log.Debug(fmt.Sprintf("Unsolicited/late %s response", p.Name()), "id", fromID, "addr", fromAddr)
   726  		return false
   727  	}
   728  	if !fromAddr.IP.Equal(ac.addr.IP) || fromAddr.Port != ac.addr.Port {
   729  		t.log.Debug(fmt.Sprintf("%s from wrong endpoint", p.Name()), "id", fromID, "addr", fromAddr)
   730  		return false
   731  	}
   732  	if p.Kind() != ac.responseType {
   733  		t.log.Debug(fmt.Sprintf("Wrong discv5 response type %s", p.Name()), "id", fromID, "addr", fromAddr)
   734  		return false
   735  	}
   736  	t.startResponseTimeout(ac)
   737  	ac.ch <- p
   738  	return true
   739  }
   740  
   741  // getNode looks for a node record in table and database.
   742  func (t *UDPv5) getNode(id enode.ID) *enode.Node {
   743  	if n := t.tab.getNode(id); n != nil {
   744  		return n
   745  	}
   746  	if n := t.localNode.Database().Node(id); n != nil {
   747  		return n
   748  	}
   749  	return nil
   750  }
   751  
   752  // handle processes incoming packets according to their message type.
   753  func (t *UDPv5) handle(p v5wire.Packet, fromID enode.ID, fromAddr *net.UDPAddr) {
   754  	switch p := p.(type) {
   755  	case *v5wire.Unknown:
   756  		t.handleUnknown(p, fromID, fromAddr)
   757  	case *v5wire.Whoareyou:
   758  		t.handleWhoareyou(p, fromID, fromAddr)
   759  	case *v5wire.Ping:
   760  		t.handlePing(p, fromID, fromAddr)
   761  	case *v5wire.Pong:
   762  		if t.handleCallResponse(fromID, fromAddr, p) {
   763  			t.localNode.UDPEndpointStatement(fromAddr, &net.UDPAddr{IP: p.ToIP, Port: int(p.ToPort)})
   764  		}
   765  	case *v5wire.Findnode:
   766  		t.handleFindnode(p, fromID, fromAddr)
   767  	case *v5wire.Nodes:
   768  		t.handleCallResponse(fromID, fromAddr, p)
   769  	case *v5wire.TalkRequest:
   770  		t.talk.handleRequest(fromID, fromAddr, p)
   771  	case *v5wire.TalkResponse:
   772  		t.handleCallResponse(fromID, fromAddr, p)
   773  	}
   774  }
   775  
   776  // handleUnknown initiates a handshake by responding with WHOAREYOU.
   777  func (t *UDPv5) handleUnknown(p *v5wire.Unknown, fromID enode.ID, fromAddr *net.UDPAddr) {
   778  	challenge := &v5wire.Whoareyou{Nonce: p.Nonce}
   779  	crand.Read(challenge.IDNonce[:])
   780  	if n := t.getNode(fromID); n != nil {
   781  		challenge.Node = n
   782  		challenge.RecordSeq = n.Seq()
   783  	}
   784  	t.sendResponse(fromID, fromAddr, challenge)
   785  }
   786  
   787  var (
   788  	errChallengeNoCall = errors.New("no matching call")
   789  	errChallengeTwice  = errors.New("second handshake")
   790  )
   791  
   792  // handleWhoareyou resends the active call as a handshake packet.
   793  func (t *UDPv5) handleWhoareyou(p *v5wire.Whoareyou, fromID enode.ID, fromAddr *net.UDPAddr) {
   794  	c, err := t.matchWithCall(fromID, p.Nonce)
   795  	if err != nil {
   796  		t.log.Debug("Invalid "+p.Name(), "addr", fromAddr, "err", err)
   797  		return
   798  	}
   799  
   800  	if c.node == nil {
   801  		// Can't perform handshake because we don't have the ENR.
   802  		t.log.Debug("Can't handle "+p.Name(), "addr", fromAddr, "err", "call has no ENR")
   803  		c.err <- errors.New("remote wants handshake, but call has no ENR")
   804  		return
   805  	}
   806  	// Resend the call that was answered by WHOAREYOU.
   807  	t.log.Trace("<< "+p.Name(), "id", c.node.ID(), "addr", fromAddr)
   808  	c.handshakeCount++
   809  	c.challenge = p
   810  	p.Node = c.node
   811  	t.sendCall(c)
   812  }
   813  
   814  // matchWithCall checks whether a handshake attempt matches the active call.
   815  func (t *UDPv5) matchWithCall(fromID enode.ID, nonce v5wire.Nonce) (*callV5, error) {
   816  	c := t.activeCallByAuth[nonce]
   817  	if c == nil {
   818  		return nil, errChallengeNoCall
   819  	}
   820  	if c.handshakeCount > 0 {
   821  		return nil, errChallengeTwice
   822  	}
   823  	return c, nil
   824  }
   825  
   826  // handlePing sends a PONG response.
   827  func (t *UDPv5) handlePing(p *v5wire.Ping, fromID enode.ID, fromAddr *net.UDPAddr) {
   828  	remoteIP := fromAddr.IP
   829  	// Handle IPv4 mapped IPv6 addresses in the
   830  	// event the local node is binded to an
   831  	// ipv6 interface.
   832  	if remoteIP.To4() != nil {
   833  		remoteIP = remoteIP.To4()
   834  	}
   835  	t.sendResponse(fromID, fromAddr, &v5wire.Pong{
   836  		ReqID:  p.ReqID,
   837  		ToIP:   remoteIP,
   838  		ToPort: uint16(fromAddr.Port),
   839  		ENRSeq: t.localNode.Node().Seq(),
   840  	})
   841  }
   842  
   843  // handleFindnode returns nodes to the requester.
   844  func (t *UDPv5) handleFindnode(p *v5wire.Findnode, fromID enode.ID, fromAddr *net.UDPAddr) {
   845  	nodes := t.collectTableNodes(fromAddr.IP, p.Distances, findnodeResultLimit)
   846  	for _, resp := range packNodes(p.ReqID, nodes) {
   847  		t.sendResponse(fromID, fromAddr, resp)
   848  	}
   849  }
   850  
   851  // collectTableNodes creates a FINDNODE result set for the given distances.
   852  func (t *UDPv5) collectTableNodes(rip net.IP, distances []uint, limit int) []*enode.Node {
   853  	var nodes []*enode.Node
   854  	var processed = make(map[uint]struct{})
   855  	for _, dist := range distances {
   856  		// Reject duplicate / invalid distances.
   857  		_, seen := processed[dist]
   858  		if seen || dist > 256 {
   859  			continue
   860  		}
   861  
   862  		// Get the nodes.
   863  		var bn []*enode.Node
   864  		if dist == 0 {
   865  			bn = []*enode.Node{t.Self()}
   866  		} else if dist <= 256 {
   867  			t.tab.mutex.Lock()
   868  			bn = unwrapNodes(t.tab.bucketAtDistance(int(dist)).entries)
   869  			t.tab.mutex.Unlock()
   870  		}
   871  		processed[dist] = struct{}{}
   872  
   873  		// Apply some pre-checks to avoid sending invalid nodes.
   874  		for _, n := range bn {
   875  			// TODO livenessChecks > 1
   876  			if netutil.CheckRelayIP(rip, n.IP()) != nil {
   877  				continue
   878  			}
   879  			nodes = append(nodes, n)
   880  			if len(nodes) >= limit {
   881  				return nodes
   882  			}
   883  		}
   884  	}
   885  	return nodes
   886  }
   887  
   888  // packNodes creates NODES response packets for the given node list.
   889  func packNodes(reqid []byte, nodes []*enode.Node) []*v5wire.Nodes {
   890  	if len(nodes) == 0 {
   891  		return []*v5wire.Nodes{{ReqID: reqid, RespCount: 1}}
   892  	}
   893  
   894  	// This limit represents the available space for nodes in output packets. Maximum
   895  	// packet size is 1280, and out of this ~80 bytes will be taken up by the packet
   896  	// frame. So limiting to 1000 bytes here leaves 200 bytes for other fields of the
   897  	// NODES message, which is a lot.
   898  	const sizeLimit = 1000
   899  
   900  	var resp []*v5wire.Nodes
   901  	for len(nodes) > 0 {
   902  		p := &v5wire.Nodes{ReqID: reqid}
   903  		size := uint64(0)
   904  		for len(nodes) > 0 {
   905  			r := nodes[0].Record()
   906  			if size += r.Size(); size > sizeLimit {
   907  				break
   908  			}
   909  			p.Nodes = append(p.Nodes, r)
   910  			nodes = nodes[1:]
   911  		}
   912  		resp = append(resp, p)
   913  	}
   914  	for _, msg := range resp {
   915  		msg.RespCount = uint8(len(resp))
   916  	}
   917  	return resp
   918  }