github.com/amazechain/amc@v0.1.3/internal/vm/contracts.go (about) 1 // Copyright 2023 The AmazeChain Authors 2 // This file is part of the AmazeChain library. 3 // 4 // The AmazeChain library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The AmazeChain library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the AmazeChain library. If not, see <http://www.gnu.org/licenses/>. 16 package vm 17 18 import ( 19 "crypto/sha256" 20 "encoding/binary" 21 "errors" 22 "github.com/amazechain/amc/common/crypto/blake2b" 23 "github.com/amazechain/amc/common/crypto/bls12381" 24 "github.com/amazechain/amc/common/crypto/bn256" 25 "github.com/amazechain/amc/common/types" 26 "github.com/amazechain/amc/internal/avm/common" 27 "math/big" 28 29 "github.com/holiman/uint256" 30 31 "github.com/amazechain/amc/common/crypto" 32 "github.com/amazechain/amc/common/math" 33 34 //lint:ignore SA1019 Needed for precompile 35 "github.com/amazechain/amc/params" 36 "golang.org/x/crypto/ripemd160" 37 ) 38 39 // PrecompiledContract is the basic interface for native Go contracts. The implementation 40 // requires a deterministic gas count based on the input size of the Run method of the 41 // contract. 42 type PrecompiledContract interface { 43 RequiredGas(input []byte) uint64 // RequiredPrice calculates the contract gas use 44 Run(input []byte) ([]byte, error) // Run runs the precompiled contract 45 } 46 47 // PrecompiledContractsHomestead contains the default set of pre-compiled Ethereum 48 // contracts used in the Frontier and Homestead releases. 49 var PrecompiledContractsHomestead = map[types.Address]PrecompiledContract{ 50 types.BytesToAddress([]byte{1}): &ecrecover{}, 51 types.BytesToAddress([]byte{2}): &sha256hash{}, 52 types.BytesToAddress([]byte{3}): &ripemd160hash{}, 53 types.BytesToAddress([]byte{4}): &dataCopy{}, 54 } 55 56 // PrecompiledContractsByzantium contains the default set of pre-compiled Ethereum 57 // contracts used in the Byzantium release. 58 var PrecompiledContractsByzantium = map[types.Address]PrecompiledContract{ 59 types.BytesToAddress([]byte{1}): &ecrecover{}, 60 types.BytesToAddress([]byte{2}): &sha256hash{}, 61 types.BytesToAddress([]byte{3}): &ripemd160hash{}, 62 types.BytesToAddress([]byte{4}): &dataCopy{}, 63 types.BytesToAddress([]byte{5}): &bigModExp{eip2565: false}, 64 types.BytesToAddress([]byte{6}): &bn256AddByzantium{}, 65 types.BytesToAddress([]byte{7}): &bn256ScalarMulByzantium{}, 66 types.BytesToAddress([]byte{8}): &bn256PairingByzantium{}, 67 } 68 69 // PrecompiledContractsIstanbul contains the default set of pre-compiled Ethereum 70 // contracts used in the Istanbul release. 71 var PrecompiledContractsIstanbul = map[types.Address]PrecompiledContract{ 72 types.BytesToAddress([]byte{1}): &ecrecover{}, 73 types.BytesToAddress([]byte{2}): &sha256hash{}, 74 types.BytesToAddress([]byte{3}): &ripemd160hash{}, 75 types.BytesToAddress([]byte{4}): &dataCopy{}, 76 types.BytesToAddress([]byte{5}): &bigModExp{eip2565: false}, 77 types.BytesToAddress([]byte{6}): &bn256AddIstanbul{}, 78 types.BytesToAddress([]byte{7}): &bn256ScalarMulIstanbul{}, 79 types.BytesToAddress([]byte{8}): &bn256PairingIstanbul{}, 80 types.BytesToAddress([]byte{9}): &blake2F{}, 81 } 82 83 var PrecompiledContractsIstanbulForBSC = map[types.Address]PrecompiledContract{ 84 types.BytesToAddress([]byte{1}): &ecrecover{}, 85 types.BytesToAddress([]byte{2}): &sha256hash{}, 86 types.BytesToAddress([]byte{3}): &ripemd160hash{}, 87 types.BytesToAddress([]byte{4}): &dataCopy{}, 88 types.BytesToAddress([]byte{5}): &bigModExp{}, 89 types.BytesToAddress([]byte{6}): &bn256AddIstanbul{}, 90 types.BytesToAddress([]byte{7}): &bn256ScalarMulIstanbul{}, 91 types.BytesToAddress([]byte{8}): &bn256PairingIstanbul{}, 92 types.BytesToAddress([]byte{9}): &blake2F{}, 93 94 //types.BytesToAddress([]byte{100}): &tmHeaderValidate{}, 95 //types.BytesToAddress([]byte{101}): &iavlMerkleProofValidate{}, 96 } 97 98 var PrecompiledContractsNano = map[types.Address]PrecompiledContract{ 99 types.BytesToAddress([]byte{1}): &ecrecover{}, 100 types.BytesToAddress([]byte{2}): &sha256hash{}, 101 types.BytesToAddress([]byte{3}): &ripemd160hash{}, 102 types.BytesToAddress([]byte{4}): &dataCopy{}, 103 types.BytesToAddress([]byte{5}): &bigModExp{}, 104 types.BytesToAddress([]byte{6}): &bn256AddIstanbul{}, 105 types.BytesToAddress([]byte{7}): &bn256ScalarMulIstanbul{}, 106 types.BytesToAddress([]byte{8}): &bn256PairingIstanbul{}, 107 types.BytesToAddress([]byte{9}): &blake2F{}, 108 109 //types.BytesToAddress([]byte{100}): &tmHeaderValidateNano{}, 110 //types.BytesToAddress([]byte{101}): &iavlMerkleProofValidateNano{}, 111 } 112 113 var PrecompiledContractsIsMoran = map[types.Address]PrecompiledContract{ 114 types.BytesToAddress([]byte{1}): &ecrecover{}, 115 types.BytesToAddress([]byte{2}): &sha256hash{}, 116 types.BytesToAddress([]byte{3}): &ripemd160hash{}, 117 types.BytesToAddress([]byte{4}): &dataCopy{}, 118 types.BytesToAddress([]byte{5}): &bigModExp{}, 119 types.BytesToAddress([]byte{6}): &bn256AddIstanbul{}, 120 types.BytesToAddress([]byte{7}): &bn256ScalarMulIstanbul{}, 121 types.BytesToAddress([]byte{8}): &bn256PairingIstanbul{}, 122 types.BytesToAddress([]byte{9}): &blake2F{}, 123 124 //types.BytesToAddress([]byte{100}): &tmHeaderValidate{}, 125 //types.BytesToAddress([]byte{101}): &iavlMerkleProofValidateMoran{}, 126 } 127 128 // PrecompiledContractsBerlin contains the default set of pre-compiled Ethereum 129 // contracts used in the Berlin release. 130 var PrecompiledContractsBerlin = map[types.Address]PrecompiledContract{ 131 types.BytesToAddress([]byte{1}): &ecrecover{}, 132 types.BytesToAddress([]byte{2}): &sha256hash{}, 133 types.BytesToAddress([]byte{3}): &ripemd160hash{}, 134 types.BytesToAddress([]byte{4}): &dataCopy{}, 135 types.BytesToAddress([]byte{5}): &bigModExp{eip2565: true}, 136 types.BytesToAddress([]byte{6}): &bn256AddIstanbul{}, 137 types.BytesToAddress([]byte{7}): &bn256ScalarMulIstanbul{}, 138 types.BytesToAddress([]byte{8}): &bn256PairingIstanbul{}, 139 types.BytesToAddress([]byte{9}): &blake2F{}, 140 } 141 142 // PrecompiledContractsBLS contains the set of pre-compiled Ethereum 143 // contracts specified in EIP-2537. These are exported for testing purposes. 144 var PrecompiledContractsBLS = map[types.Address]PrecompiledContract{ 145 types.BytesToAddress([]byte{10}): &bls12381G1Add{}, 146 types.BytesToAddress([]byte{11}): &bls12381G1Mul{}, 147 types.BytesToAddress([]byte{12}): &bls12381G1MultiExp{}, 148 types.BytesToAddress([]byte{13}): &bls12381G2Add{}, 149 types.BytesToAddress([]byte{14}): &bls12381G2Mul{}, 150 types.BytesToAddress([]byte{15}): &bls12381G2MultiExp{}, 151 types.BytesToAddress([]byte{16}): &bls12381Pairing{}, 152 types.BytesToAddress([]byte{17}): &bls12381MapG1{}, 153 types.BytesToAddress([]byte{18}): &bls12381MapG2{}, 154 } 155 156 var ( 157 PrecompiledAddressesMoran []types.Address 158 PrecompiledAddressesNano []types.Address 159 PrecompiledAddressesBerlin []types.Address 160 PrecompiledAddressesIstanbul []types.Address 161 PrecompiledAddressesIstanbulForBSC []types.Address 162 PrecompiledAddressesByzantium []types.Address 163 PrecompiledAddressesHomestead []types.Address 164 ) 165 166 func init() { 167 for k := range PrecompiledContractsHomestead { 168 PrecompiledAddressesHomestead = append(PrecompiledAddressesHomestead, k) 169 } 170 for k := range PrecompiledContractsByzantium { 171 PrecompiledAddressesByzantium = append(PrecompiledAddressesByzantium, k) 172 } 173 for k := range PrecompiledContractsIstanbul { 174 PrecompiledAddressesIstanbul = append(PrecompiledAddressesIstanbul, k) 175 } 176 for k := range PrecompiledContractsIstanbulForBSC { 177 PrecompiledAddressesIstanbulForBSC = append(PrecompiledAddressesIstanbulForBSC, k) 178 } 179 for k := range PrecompiledContractsBerlin { 180 PrecompiledAddressesBerlin = append(PrecompiledAddressesBerlin, k) 181 } 182 for k := range PrecompiledContractsNano { 183 PrecompiledAddressesNano = append(PrecompiledAddressesNano, k) 184 } 185 for k := range PrecompiledContractsIsMoran { 186 PrecompiledAddressesMoran = append(PrecompiledAddressesMoran, k) 187 } 188 } 189 190 // ActivePrecompiles returns the precompiles enabled with the current configuration. 191 func ActivePrecompiles(rules *params.Rules) []types.Address { 192 switch { 193 case rules.IsMoran: 194 return PrecompiledAddressesMoran 195 case rules.IsNano: 196 return PrecompiledAddressesNano 197 case rules.IsBerlin: 198 return PrecompiledAddressesBerlin 199 case rules.IsIstanbul: 200 if rules.IsParlia { 201 return PrecompiledAddressesIstanbulForBSC 202 } 203 return PrecompiledAddressesIstanbul 204 case rules.IsByzantium: 205 return PrecompiledAddressesByzantium 206 default: 207 return PrecompiledAddressesHomestead 208 } 209 } 210 211 // RunPrecompiledContract runs and evaluates the output of a precompiled contract. 212 // It returns 213 // - the returned bytes, 214 // - the _remaining_ gas, 215 // - any error that occurred 216 func RunPrecompiledContract(p PrecompiledContract, input []byte, suppliedGas uint64) (ret []byte, remainingGas uint64, err error) { 217 gasCost := p.RequiredGas(input) 218 if suppliedGas < gasCost { 219 return nil, 0, ErrOutOfGas 220 } 221 suppliedGas -= gasCost 222 output, err := p.Run(input) 223 return output, suppliedGas, err 224 } 225 226 // ECRECOVER implemented as a native contract. 227 type ecrecover struct{} 228 229 func (c *ecrecover) RequiredGas(input []byte) uint64 { 230 return params.EcrecoverGas 231 } 232 233 func (c *ecrecover) Run(input []byte) ([]byte, error) { 234 const ecRecoverInputLength = 128 235 236 input = types.RightPadBytes(input, ecRecoverInputLength) 237 // "input" is (hash, v, r, s), each 32 bytes 238 // but for ecrecover we want (r, s, v) 239 240 r := new(uint256.Int).SetBytes(input[64:96]) 241 s := new(uint256.Int).SetBytes(input[96:128]) 242 v := input[63] - 27 243 244 // tighter sig s values input homestead only apply to tx sigs 245 if !allZero(input[32:63]) || !crypto.ValidateSignatureValues(v, r, s, false) { 246 return nil, nil 247 } 248 // We must make sure not to modify the 'input', so placing the 'v' along with 249 // the signature needs to be done on a new allocation 250 sig := make([]byte, 65) 251 copy(sig, input[64:128]) 252 sig[64] = v 253 // v needs to be at the end for libsecp256k1 254 pubKey, err := crypto.Ecrecover(input[:32], sig) 255 // make sure the public key is a valid one 256 if err != nil { 257 return nil, nil 258 } 259 260 // the first byte of pubkey is bitcoin heritage 261 return types.LeftPadBytes(crypto.Keccak256(pubKey[1:])[12:], 32), nil 262 } 263 264 // SHA256 implemented as a native contract. 265 type sha256hash struct{} 266 267 // RequiredGas returns the gas required to execute the pre-compiled contract. 268 // 269 // This method does not require any overflow checking as the input size gas costs 270 // required for anything significant is so high it's impossible to pay for. 271 func (c *sha256hash) RequiredGas(input []byte) uint64 { 272 return uint64(len(input)+31)/32*params.Sha256PerWordGas + params.Sha256BaseGas 273 } 274 func (c *sha256hash) Run(input []byte) ([]byte, error) { 275 h := sha256.Sum256(input) 276 return h[:], nil 277 } 278 279 // RIPEMD160 implemented as a native contract. 280 type ripemd160hash struct{} 281 282 // RequiredGas returns the gas required to execute the pre-compiled contract. 283 // 284 // This method does not require any overflow checking as the input size gas costs 285 // required for anything significant is so high it's impossible to pay for. 286 func (c *ripemd160hash) RequiredGas(input []byte) uint64 { 287 return uint64(len(input)+31)/32*params.Ripemd160PerWordGas + params.Ripemd160BaseGas 288 } 289 func (c *ripemd160hash) Run(input []byte) ([]byte, error) { 290 ripemd := ripemd160.New() 291 ripemd.Write(input) 292 return types.LeftPadBytes(ripemd.Sum(nil), 32), nil 293 } 294 295 // data copy implemented as a native contract. 296 type dataCopy struct{} 297 298 // RequiredGas returns the gas required to execute the pre-compiled contract. 299 // 300 // This method does not require any overflow checking as the input size gas costs 301 // required for anything significant is so high it's impossible to pay for. 302 func (c *dataCopy) RequiredGas(input []byte) uint64 { 303 return uint64(len(input)+31)/32*params.IdentityPerWordGas + params.IdentityBaseGas 304 } 305 func (c *dataCopy) Run(in []byte) ([]byte, error) { 306 return in, nil 307 } 308 309 // bigModExp implements a native big integer exponential modular operation. 310 type bigModExp struct { 311 eip2565 bool 312 } 313 314 var ( 315 big1 = big.NewInt(1) 316 big3 = big.NewInt(3) 317 big4 = big.NewInt(4) 318 big7 = big.NewInt(7) 319 big8 = big.NewInt(8) 320 big16 = big.NewInt(16) 321 big20 = big.NewInt(20) 322 big32 = big.NewInt(32) 323 big64 = big.NewInt(64) 324 big96 = big.NewInt(96) 325 big480 = big.NewInt(480) 326 big1024 = big.NewInt(1024) 327 big3072 = big.NewInt(3072) 328 big199680 = big.NewInt(199680) 329 ) 330 331 // modexpMultComplexity implements bigModexp multComplexity formula, as defined in EIP-198 332 // 333 // def mult_complexity(x): 334 // 335 // if x <= 64: return x ** 2 336 // elif x <= 1024: return x ** 2 // 4 + 96 * x - 3072 337 // else: return x ** 2 // 16 + 480 * x - 199680 338 // 339 // where is x is max(length_of_MODULUS, length_of_BASE) 340 func modexpMultComplexity(x *big.Int) *big.Int { 341 switch { 342 case x.Cmp(big64) <= 0: 343 x.Mul(x, x) // x ** 2 344 case x.Cmp(big1024) <= 0: 345 // (x ** 2 // 4 ) + ( 96 * x - 3072) 346 x = new(big.Int).Add( 347 new(big.Int).Div(new(big.Int).Mul(x, x), big4), 348 new(big.Int).Sub(new(big.Int).Mul(big96, x), big3072), 349 ) 350 default: 351 // (x ** 2 // 16) + (480 * x - 199680) 352 x = new(big.Int).Add( 353 new(big.Int).Div(new(big.Int).Mul(x, x), big16), 354 new(big.Int).Sub(new(big.Int).Mul(big480, x), big199680), 355 ) 356 } 357 return x 358 } 359 360 // RequiredGas returns the gas required to execute the pre-compiled contract. 361 func (c *bigModExp) RequiredGas(input []byte) uint64 { 362 var ( 363 baseLen = new(big.Int).SetBytes(getData(input, 0, 32)) 364 expLen = new(big.Int).SetBytes(getData(input, 32, 32)) 365 modLen = new(big.Int).SetBytes(getData(input, 64, 32)) 366 ) 367 if len(input) > 96 { 368 input = input[96:] 369 } else { 370 input = input[:0] 371 } 372 // Retrieve the head 32 bytes of exp for the adjusted exponent length 373 var expHead *big.Int 374 if big.NewInt(int64(len(input))).Cmp(baseLen) <= 0 { 375 expHead = new(big.Int) 376 } else { 377 if expLen.Cmp(big32) > 0 { 378 expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), 32)) 379 } else { 380 expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), expLen.Uint64())) 381 } 382 } 383 // Calculate the adjusted exponent length 384 var msb int 385 if bitlen := expHead.BitLen(); bitlen > 0 { 386 msb = bitlen - 1 387 } 388 adjExpLen := new(big.Int) 389 if expLen.Cmp(big32) > 0 { 390 adjExpLen.Sub(expLen, big32) 391 adjExpLen.Mul(big8, adjExpLen) 392 } 393 adjExpLen.Add(adjExpLen, big.NewInt(int64(msb))) 394 // Calculate the gas cost of the operation 395 gas := new(big.Int).Set(math.BigMax(modLen, baseLen)) 396 if c.eip2565 { 397 // EIP-2565 has three changes 398 // 1. Different multComplexity (inlined here) 399 // in EIP-2565 (https://eips.ethereum.org/EIPS/eip-2565): 400 // 401 // def mult_complexity(x): 402 // ceiling(x/8)^2 403 // 404 //where is x is max(length_of_MODULUS, length_of_BASE) 405 gas = gas.Add(gas, big7) 406 gas = gas.Div(gas, big8) 407 gas.Mul(gas, gas) 408 409 gas.Mul(gas, math.BigMax(adjExpLen, big1)) 410 // 2. Different divisor (`GQUADDIVISOR`) (3) 411 gas.Div(gas, big3) 412 if gas.BitLen() > 64 { 413 return math.MaxUint64 414 } 415 // 3. Minimum price of 200 gas 416 if gas.Uint64() < 200 { 417 return 200 418 } 419 return gas.Uint64() 420 } 421 gas = modexpMultComplexity(gas) 422 gas.Mul(gas, math.BigMax(adjExpLen, big1)) 423 gas.Div(gas, big20) 424 425 if gas.BitLen() > 64 { 426 return math.MaxUint64 427 } 428 return gas.Uint64() 429 } 430 431 func (c *bigModExp) Run(input []byte) ([]byte, error) { 432 var ( 433 baseLen = new(big.Int).SetBytes(getData(input, 0, 32)).Uint64() 434 expLen = new(big.Int).SetBytes(getData(input, 32, 32)).Uint64() 435 modLen = new(big.Int).SetBytes(getData(input, 64, 32)).Uint64() 436 ) 437 if len(input) > 96 { 438 input = input[96:] 439 } else { 440 input = input[:0] 441 } 442 // Handle a special case when both the base and mod length is zero 443 if baseLen == 0 && modLen == 0 { 444 return []byte{}, nil 445 } 446 // Retrieve the operands and execute the exponentiation 447 var ( 448 base = new(big.Int).SetBytes(getData(input, 0, baseLen)) 449 exp = new(big.Int).SetBytes(getData(input, baseLen, expLen)) 450 mod = new(big.Int).SetBytes(getData(input, baseLen+expLen, modLen)) 451 v []byte 452 ) 453 switch { 454 case mod.BitLen() == 0: 455 // Modulo 0 is undefined, return zero 456 return common.LeftPadBytes([]byte{}, int(modLen)), nil 457 case base.Cmp(common.Big1) == 0: 458 //If base == 1, then we can just return base % mod (if mod >= 1, which it is) 459 v = base.Mod(base, mod).Bytes() 460 //case mod.Bit(0) == 0: 461 // // Modulo is even 462 // v = math.FastExp(base, exp, mod).Bytes() 463 default: 464 // Modulo is odd 465 v = base.Exp(base, exp, mod).Bytes() 466 } 467 return common.LeftPadBytes(v, int(modLen)), nil 468 } 469 470 // newCurvePoint unmarshals a binary blob into a bn256 elliptic curve point, 471 // returning it, or an error if the point is invalid. 472 func newCurvePoint(blob []byte) (*bn256.G1, error) { 473 p := new(bn256.G1) 474 if _, err := p.Unmarshal(blob); err != nil { 475 return nil, err 476 } 477 return p, nil 478 } 479 480 // newTwistPoint unmarshals a binary blob into a bn256 elliptic curve point, 481 // returning it, or an error if the point is invalid. 482 func newTwistPoint(blob []byte) (*bn256.G2, error) { 483 p := new(bn256.G2) 484 if _, err := p.Unmarshal(blob); err != nil { 485 return nil, err 486 } 487 return p, nil 488 } 489 490 // runBn256Add implements the Bn256Add precompile, referenced by both 491 // Byzantium and Istanbul operations. 492 func runBn256Add(input []byte) ([]byte, error) { 493 x, err := newCurvePoint(getData(input, 0, 64)) 494 if err != nil { 495 return nil, err 496 } 497 y, err := newCurvePoint(getData(input, 64, 64)) 498 if err != nil { 499 return nil, err 500 } 501 res := new(bn256.G1) 502 res.Add(x, y) 503 return res.Marshal(), nil 504 } 505 506 // bn256Add implements a native elliptic curve point addition conforming to 507 // Istanbul consensus rules. 508 type bn256AddIstanbul struct{} 509 510 // RequiredGas returns the gas required to execute the pre-compiled contract. 511 func (c *bn256AddIstanbul) RequiredGas(input []byte) uint64 { 512 return params.Bn256AddGasIstanbul 513 } 514 515 func (c *bn256AddIstanbul) Run(input []byte) ([]byte, error) { 516 return runBn256Add(input) 517 } 518 519 // bn256AddByzantium implements a native elliptic curve point addition 520 // conforming to Byzantium consensus rules. 521 type bn256AddByzantium struct{} 522 523 // RequiredGas returns the gas required to execute the pre-compiled contract. 524 func (c *bn256AddByzantium) RequiredGas(input []byte) uint64 { 525 return params.Bn256AddGasByzantium 526 } 527 528 func (c *bn256AddByzantium) Run(input []byte) ([]byte, error) { 529 return runBn256Add(input) 530 } 531 532 // runBn256ScalarMul implements the Bn256ScalarMul precompile, referenced by 533 // both Byzantium and Istanbul operations. 534 func runBn256ScalarMul(input []byte) ([]byte, error) { 535 p, err := newCurvePoint(getData(input, 0, 64)) 536 if err != nil { 537 return nil, err 538 } 539 res := new(bn256.G1) 540 res.ScalarMult(p, new(big.Int).SetBytes(getData(input, 64, 32))) 541 return res.Marshal(), nil 542 } 543 544 // bn256ScalarMulIstanbul implements a native elliptic curve scalar 545 // multiplication conforming to Istanbul consensus rules. 546 type bn256ScalarMulIstanbul struct{} 547 548 // RequiredGas returns the gas required to execute the pre-compiled contract. 549 func (c *bn256ScalarMulIstanbul) RequiredGas(input []byte) uint64 { 550 return params.Bn256ScalarMulGasIstanbul 551 } 552 553 func (c *bn256ScalarMulIstanbul) Run(input []byte) ([]byte, error) { 554 return runBn256ScalarMul(input) 555 } 556 557 // bn256ScalarMulByzantium implements a native elliptic curve scalar 558 // multiplication conforming to Byzantium consensus rules. 559 type bn256ScalarMulByzantium struct{} 560 561 // RequiredGas returns the gas required to execute the pre-compiled contract. 562 func (c *bn256ScalarMulByzantium) RequiredGas(input []byte) uint64 { 563 return params.Bn256ScalarMulGasByzantium 564 } 565 566 func (c *bn256ScalarMulByzantium) Run(input []byte) ([]byte, error) { 567 return runBn256ScalarMul(input) 568 } 569 570 var ( 571 // true32Byte is returned if the bn256 pairing check succeeds. 572 true32Byte = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1} 573 574 // false32Byte is returned if the bn256 pairing check fails. 575 false32Byte = make([]byte, 32) 576 577 // errBadPairingInput is returned if the bn256 pairing input is invalid. 578 errBadPairingInput = errors.New("bad elliptic curve pairing size") 579 ) 580 581 // runBn256Pairing implements the Bn256Pairing precompile, referenced by both 582 // Byzantium and Istanbul operations. 583 func runBn256Pairing(input []byte) ([]byte, error) { 584 // Handle some corner cases cheaply 585 if len(input)%192 > 0 { 586 return nil, errBadPairingInput 587 } 588 // Convert the input into a set of coordinates 589 var ( 590 cs []*bn256.G1 591 ts []*bn256.G2 592 ) 593 for i := 0; i < len(input); i += 192 { 594 c, err := newCurvePoint(input[i : i+64]) 595 if err != nil { 596 return nil, err 597 } 598 t, err := newTwistPoint(input[i+64 : i+192]) 599 if err != nil { 600 return nil, err 601 } 602 cs = append(cs, c) 603 ts = append(ts, t) 604 } 605 // Execute the pairing checks and return the results 606 if bn256.PairingCheck(cs, ts) { 607 return true32Byte, nil 608 } 609 return false32Byte, nil 610 } 611 612 // bn256PairingIstanbul implements a pairing pre-compile for the bn256 curve 613 // conforming to Istanbul consensus rules. 614 type bn256PairingIstanbul struct{} 615 616 // RequiredGas returns the gas required to execute the pre-compiled contract. 617 func (c *bn256PairingIstanbul) RequiredGas(input []byte) uint64 { 618 return params.Bn256PairingBaseGasIstanbul + uint64(len(input)/192)*params.Bn256PairingPerPointGasIstanbul 619 } 620 621 func (c *bn256PairingIstanbul) Run(input []byte) ([]byte, error) { 622 return runBn256Pairing(input) 623 } 624 625 // bn256PairingByzantium implements a pairing pre-compile for the bn256 curve 626 // conforming to Byzantium consensus rules. 627 type bn256PairingByzantium struct{} 628 629 // RequiredGas returns the gas required to execute the pre-compiled contract. 630 func (c *bn256PairingByzantium) RequiredGas(input []byte) uint64 { 631 return params.Bn256PairingBaseGasByzantium + uint64(len(input)/192)*params.Bn256PairingPerPointGasByzantium 632 } 633 634 func (c *bn256PairingByzantium) Run(input []byte) ([]byte, error) { 635 return runBn256Pairing(input) 636 } 637 638 type blake2F struct{} 639 640 func (c *blake2F) RequiredGas(input []byte) uint64 { 641 // If the input is malformed, we can't calculate the gas, return 0 and let the 642 // actual call choke and fault. 643 if len(input) != blake2FInputLength { 644 return 0 645 } 646 return uint64(binary.BigEndian.Uint32(input[0:4])) 647 } 648 649 const ( 650 blake2FInputLength = 213 651 blake2FFinalBlockBytes = byte(1) 652 blake2FNonFinalBlockBytes = byte(0) 653 ) 654 655 var ( 656 errBlake2FInvalidInputLength = errors.New("invalid input length") 657 errBlake2FInvalidFinalFlag = errors.New("invalid final flag") 658 ) 659 660 func (c *blake2F) Run(input []byte) ([]byte, error) { 661 // Make sure the input is valid (correct length and final flag) 662 if len(input) != blake2FInputLength { 663 return nil, errBlake2FInvalidInputLength 664 } 665 if input[212] != blake2FNonFinalBlockBytes && input[212] != blake2FFinalBlockBytes { 666 return nil, errBlake2FInvalidFinalFlag 667 } 668 // Parse the input into the Blake2b call parameters 669 var ( 670 rounds = binary.BigEndian.Uint32(input[0:4]) 671 final = input[212] == blake2FFinalBlockBytes 672 673 h [8]uint64 674 m [16]uint64 675 t [2]uint64 676 ) 677 for i := 0; i < 8; i++ { 678 offset := 4 + i*8 679 h[i] = binary.LittleEndian.Uint64(input[offset : offset+8]) 680 } 681 for i := 0; i < 16; i++ { 682 offset := 68 + i*8 683 m[i] = binary.LittleEndian.Uint64(input[offset : offset+8]) 684 } 685 t[0] = binary.LittleEndian.Uint64(input[196:204]) 686 t[1] = binary.LittleEndian.Uint64(input[204:212]) 687 688 // Execute the compression function, extract and return the result 689 blake2b.F(&h, m, t, final, rounds) 690 691 output := make([]byte, 64) 692 for i := 0; i < 8; i++ { 693 offset := i * 8 694 binary.LittleEndian.PutUint64(output[offset:offset+8], h[i]) 695 } 696 return output, nil 697 } 698 699 var ( 700 errBLS12381InvalidInputLength = errors.New("invalid input length") 701 errBLS12381InvalidFieldElementTopBytes = errors.New("invalid field element top bytes") 702 errBLS12381G1PointSubgroup = errors.New("g1 point is not on correct subgroup") 703 errBLS12381G2PointSubgroup = errors.New("g2 point is not on correct subgroup") 704 ) 705 706 // bls12381G1Add implements EIP-2537 G1Add precompile. 707 type bls12381G1Add struct{} 708 709 // RequiredGas returns the gas required to execute the pre-compiled contract. 710 func (c *bls12381G1Add) RequiredGas(input []byte) uint64 { 711 return params.Bls12381G1AddGas 712 } 713 714 func (c *bls12381G1Add) Run(input []byte) ([]byte, error) { 715 // Implements EIP-2537 G1Add precompile. 716 // > G1 addition call expects `256` bytes as an input that is interpreted as byte concatenation of two G1 points (`128` bytes each). 717 // > Output is an encoding of addition operation result - single G1 point (`128` bytes). 718 if len(input) != 256 { 719 return nil, errBLS12381InvalidInputLength 720 } 721 var err error 722 var p0, p1 *bls12381.PointG1 723 724 // Initialize G1 725 g := bls12381.NewG1() 726 727 // Decode G1 point p_0 728 if p0, err = g.DecodePoint(input[:128]); err != nil { 729 return nil, err 730 } 731 // Decode G1 point p_1 732 if p1, err = g.DecodePoint(input[128:]); err != nil { 733 return nil, err 734 } 735 736 // Compute r = p_0 + p_1 737 r := g.New() 738 g.Add(r, p0, p1) 739 740 // Encode the G1 point result into 128 bytes 741 return g.EncodePoint(r), nil 742 } 743 744 // bls12381G1Mul implements EIP-2537 G1Mul precompile. 745 type bls12381G1Mul struct{} 746 747 // RequiredGas returns the gas required to execute the pre-compiled contract. 748 func (c *bls12381G1Mul) RequiredGas(input []byte) uint64 { 749 return params.Bls12381G1MulGas 750 } 751 752 func (c *bls12381G1Mul) Run(input []byte) ([]byte, error) { 753 // Implements EIP-2537 G1Mul precompile. 754 // > G1 multiplication call expects `160` bytes as an input that is interpreted as byte concatenation of encoding of G1 point (`128` bytes) and encoding of a scalar value (`32` bytes). 755 // > Output is an encoding of multiplication operation result - single G1 point (`128` bytes). 756 if len(input) != 160 { 757 return nil, errBLS12381InvalidInputLength 758 } 759 var err error 760 var p0 *bls12381.PointG1 761 762 // Initialize G1 763 g := bls12381.NewG1() 764 765 // Decode G1 point 766 if p0, err = g.DecodePoint(input[:128]); err != nil { 767 return nil, err 768 } 769 // Decode scalar value 770 e := new(big.Int).SetBytes(input[128:]) 771 772 // Compute r = e * p_0 773 r := g.New() 774 g.MulScalar(r, p0, e) 775 776 // Encode the G1 point into 128 bytes 777 return g.EncodePoint(r), nil 778 } 779 780 // bls12381G1MultiExp implements EIP-2537 G1MultiExp precompile. 781 type bls12381G1MultiExp struct{} 782 783 // RequiredGas returns the gas required to execute the pre-compiled contract. 784 func (c *bls12381G1MultiExp) RequiredGas(input []byte) uint64 { 785 // Calculate G1 point, scalar value pair length 786 k := len(input) / 160 787 if k == 0 { 788 // Return 0 gas for small input length 789 return 0 790 } 791 // Lookup discount value for G1 point, scalar value pair length 792 var discount uint64 793 if dLen := len(params.Bls12381MultiExpDiscountTable); k < dLen { 794 discount = params.Bls12381MultiExpDiscountTable[k-1] 795 } else { 796 discount = params.Bls12381MultiExpDiscountTable[dLen-1] 797 } 798 // Calculate gas and return the result 799 return (uint64(k) * params.Bls12381G1MulGas * discount) / 1000 800 } 801 802 func (c *bls12381G1MultiExp) Run(input []byte) ([]byte, error) { 803 // Implements EIP-2537 G1MultiExp precompile. 804 // G1 multiplication call expects `160*k` bytes as an input that is interpreted as byte concatenation of `k` slices each of them being a byte concatenation of encoding of G1 point (`128` bytes) and encoding of a scalar value (`32` bytes). 805 // Output is an encoding of multiexponentiation operation result - single G1 point (`128` bytes). 806 k := len(input) / 160 807 if len(input) == 0 || len(input)%160 != 0 { 808 return nil, errBLS12381InvalidInputLength 809 } 810 var err error 811 points := make([]*bls12381.PointG1, k) 812 scalars := make([]*big.Int, k) 813 814 // Initialize G1 815 g := bls12381.NewG1() 816 817 // Decode point scalar pairs 818 for i := 0; i < k; i++ { 819 off := 160 * i 820 t0, t1, t2 := off, off+128, off+160 821 // Decode G1 point 822 if points[i], err = g.DecodePoint(input[t0:t1]); err != nil { 823 return nil, err 824 } 825 // Decode scalar value 826 scalars[i] = new(big.Int).SetBytes(input[t1:t2]) 827 } 828 829 // Compute r = e_0 * p_0 + e_1 * p_1 + ... + e_(k-1) * p_(k-1) 830 r := g.New() 831 if _, err = g.MultiExp(r, points, scalars); err != nil { 832 return nil, err 833 } 834 835 // Encode the G1 point to 128 bytes 836 return g.EncodePoint(r), nil 837 } 838 839 // bls12381G2Add implements EIP-2537 G2Add precompile. 840 type bls12381G2Add struct{} 841 842 // RequiredGas returns the gas required to execute the pre-compiled contract. 843 func (c *bls12381G2Add) RequiredGas(input []byte) uint64 { 844 return params.Bls12381G2AddGas 845 } 846 847 func (c *bls12381G2Add) Run(input []byte) ([]byte, error) { 848 // Implements EIP-2537 G2Add precompile. 849 // > G2 addition call expects `512` bytes as an input that is interpreted as byte concatenation of two G2 points (`256` bytes each). 850 // > Output is an encoding of addition operation result - single G2 point (`256` bytes). 851 if len(input) != 512 { 852 return nil, errBLS12381InvalidInputLength 853 } 854 var err error 855 var p0, p1 *bls12381.PointG2 856 857 // Initialize G2 858 g := bls12381.NewG2() 859 r := g.New() 860 861 // Decode G2 point p_0 862 if p0, err = g.DecodePoint(input[:256]); err != nil { 863 return nil, err 864 } 865 // Decode G2 point p_1 866 if p1, err = g.DecodePoint(input[256:]); err != nil { 867 return nil, err 868 } 869 870 // Compute r = p_0 + p_1 871 g.Add(r, p0, p1) 872 873 // Encode the G2 point into 256 bytes 874 return g.EncodePoint(r), nil 875 } 876 877 // bls12381G2Mul implements EIP-2537 G2Mul precompile. 878 type bls12381G2Mul struct{} 879 880 // RequiredGas returns the gas required to execute the pre-compiled contract. 881 func (c *bls12381G2Mul) RequiredGas(input []byte) uint64 { 882 return params.Bls12381G2MulGas 883 } 884 885 func (c *bls12381G2Mul) Run(input []byte) ([]byte, error) { 886 // Implements EIP-2537 G2MUL precompile logic. 887 // > G2 multiplication call expects `288` bytes as an input that is interpreted as byte concatenation of encoding of G2 point (`256` bytes) and encoding of a scalar value (`32` bytes). 888 // > Output is an encoding of multiplication operation result - single G2 point (`256` bytes). 889 if len(input) != 288 { 890 return nil, errBLS12381InvalidInputLength 891 } 892 var err error 893 var p0 *bls12381.PointG2 894 895 // Initialize G2 896 g := bls12381.NewG2() 897 898 // Decode G2 point 899 if p0, err = g.DecodePoint(input[:256]); err != nil { 900 return nil, err 901 } 902 // Decode scalar value 903 e := new(big.Int).SetBytes(input[256:]) 904 905 // Compute r = e * p_0 906 r := g.New() 907 g.MulScalar(r, p0, e) 908 909 // Encode the G2 point into 256 bytes 910 return g.EncodePoint(r), nil 911 } 912 913 // bls12381G2MultiExp implements EIP-2537 G2MultiExp precompile. 914 type bls12381G2MultiExp struct{} 915 916 // RequiredGas returns the gas required to execute the pre-compiled contract. 917 func (c *bls12381G2MultiExp) RequiredGas(input []byte) uint64 { 918 // Calculate G2 point, scalar value pair length 919 k := len(input) / 288 920 if k == 0 { 921 // Return 0 gas for small input length 922 return 0 923 } 924 // Lookup discount value for G2 point, scalar value pair length 925 var discount uint64 926 if dLen := len(params.Bls12381MultiExpDiscountTable); k < dLen { 927 discount = params.Bls12381MultiExpDiscountTable[k-1] 928 } else { 929 discount = params.Bls12381MultiExpDiscountTable[dLen-1] 930 } 931 // Calculate gas and return the result 932 return (uint64(k) * params.Bls12381G2MulGas * discount) / 1000 933 } 934 935 func (c *bls12381G2MultiExp) Run(input []byte) ([]byte, error) { 936 // Implements EIP-2537 G2MultiExp precompile logic 937 // > G2 multiplication call expects `288*k` bytes as an input that is interpreted as byte concatenation of `k` slices each of them being a byte concatenation of encoding of G2 point (`256` bytes) and encoding of a scalar value (`32` bytes). 938 // > Output is an encoding of multiexponentiation operation result - single G2 point (`256` bytes). 939 k := len(input) / 288 940 if len(input) == 0 || len(input)%288 != 0 { 941 return nil, errBLS12381InvalidInputLength 942 } 943 var err error 944 points := make([]*bls12381.PointG2, k) 945 scalars := make([]*big.Int, k) 946 947 // Initialize G2 948 g := bls12381.NewG2() 949 950 // Decode point scalar pairs 951 for i := 0; i < k; i++ { 952 off := 288 * i 953 t0, t1, t2 := off, off+256, off+288 954 // Decode G1 point 955 if points[i], err = g.DecodePoint(input[t0:t1]); err != nil { 956 return nil, err 957 } 958 // Decode scalar value 959 scalars[i] = new(big.Int).SetBytes(input[t1:t2]) 960 } 961 962 // Compute r = e_0 * p_0 + e_1 * p_1 + ... + e_(k-1) * p_(k-1) 963 r := g.New() 964 if _, err := g.MultiExp(r, points, scalars); err != nil { 965 return nil, err 966 } 967 968 // Encode the G2 point to 256 bytes. 969 return g.EncodePoint(r), nil 970 } 971 972 // bls12381Pairing implements EIP-2537 Pairing precompile. 973 type bls12381Pairing struct{} 974 975 // RequiredGas returns the gas required to execute the pre-compiled contract. 976 func (c *bls12381Pairing) RequiredGas(input []byte) uint64 { 977 return params.Bls12381PairingBaseGas + uint64(len(input)/384)*params.Bls12381PairingPerPairGas 978 } 979 980 func (c *bls12381Pairing) Run(input []byte) ([]byte, error) { 981 // Implements EIP-2537 Pairing precompile logic. 982 // > Pairing call expects `384*k` bytes as an inputs that is interpreted as byte concatenation of `k` slices. Each slice has the following structure: 983 // > - `128` bytes of G1 point encoding 984 // > - `256` bytes of G2 point encoding 985 // > Output is a `32` bytes where last single byte is `0x01` if pairing result is equal to multiplicative identity in a pairing target field and `0x00` otherwise 986 // > (which is equivalent of Big Endian encoding of Solidity values `uint256(1)` and `uin256(0)` respectively). 987 k := len(input) / 384 988 if len(input) == 0 || len(input)%384 != 0 { 989 return nil, errBLS12381InvalidInputLength 990 } 991 992 // Initialize BLS12-381 pairing engine 993 e := bls12381.NewPairingEngine() 994 g1, g2 := e.G1, e.G2 995 996 // Decode pairs 997 for i := 0; i < k; i++ { 998 off := 384 * i 999 t0, t1, t2 := off, off+128, off+384 1000 1001 // Decode G1 point 1002 p1, err := g1.DecodePoint(input[t0:t1]) 1003 if err != nil { 1004 return nil, err 1005 } 1006 // Decode G2 point 1007 p2, err := g2.DecodePoint(input[t1:t2]) 1008 if err != nil { 1009 return nil, err 1010 } 1011 1012 // 'point is on curve' check already done, 1013 // Here we need to apply subgroup checks. 1014 if !g1.InCorrectSubgroup(p1) { 1015 return nil, errBLS12381G1PointSubgroup 1016 } 1017 if !g2.InCorrectSubgroup(p2) { 1018 return nil, errBLS12381G2PointSubgroup 1019 } 1020 1021 // Update pairing engine with G1 and G2 ponits 1022 e.AddPair(p1, p2) 1023 } 1024 // Prepare 32 byte output 1025 out := make([]byte, 32) 1026 1027 // Compute pairing and set the result 1028 if e.Check() { 1029 out[31] = 1 1030 } 1031 return out, nil 1032 } 1033 1034 // decodeBLS12381FieldElement decodes BLS12-381 elliptic curve field element. 1035 // Removes top 16 bytes of 64 byte input. 1036 func decodeBLS12381FieldElement(in []byte) ([]byte, error) { 1037 if len(in) != 64 { 1038 return nil, errors.New("invalid field element length") 1039 } 1040 // check top bytes 1041 for i := 0; i < 16; i++ { 1042 if in[i] != byte(0x00) { 1043 return nil, errBLS12381InvalidFieldElementTopBytes 1044 } 1045 } 1046 out := make([]byte, 48) 1047 copy(out, in[16:]) 1048 return out, nil 1049 } 1050 1051 // bls12381MapG1 implements EIP-2537 MapG1 precompile. 1052 type bls12381MapG1 struct{} 1053 1054 // RequiredGas returns the gas required to execute the pre-compiled contract. 1055 func (c *bls12381MapG1) RequiredGas(input []byte) uint64 { 1056 return params.Bls12381MapG1Gas 1057 } 1058 1059 func (c *bls12381MapG1) Run(input []byte) ([]byte, error) { 1060 // Implements EIP-2537 Map_To_G1 precompile. 1061 // > Field-to-curve call expects `64` bytes an an input that is interpreted as a an element of the base field. 1062 // > Output of this call is `128` bytes and is G1 point following respective encoding rules. 1063 if len(input) != 64 { 1064 return nil, errBLS12381InvalidInputLength 1065 } 1066 1067 // Decode input field element 1068 fe, err := decodeBLS12381FieldElement(input) 1069 if err != nil { 1070 return nil, err 1071 } 1072 1073 // Initialize G1 1074 g := bls12381.NewG1() 1075 1076 // Compute mapping 1077 r, err := g.MapToCurve(fe) 1078 if err != nil { 1079 return nil, err 1080 } 1081 1082 // Encode the G1 point to 128 bytes 1083 return g.EncodePoint(r), nil 1084 } 1085 1086 // bls12381MapG2 implements EIP-2537 MapG2 precompile. 1087 type bls12381MapG2 struct{} 1088 1089 // RequiredGas returns the gas required to execute the pre-compiled contract. 1090 func (c *bls12381MapG2) RequiredGas(input []byte) uint64 { 1091 return params.Bls12381MapG2Gas 1092 } 1093 1094 func (c *bls12381MapG2) Run(input []byte) ([]byte, error) { 1095 // Implements EIP-2537 Map_FP2_TO_G2 precompile logic. 1096 // > Field-to-curve call expects `128` bytes an an input that is interpreted as a an element of the quadratic extension field. 1097 // > Output of this call is `256` bytes and is G2 point following respective encoding rules. 1098 if len(input) != 128 { 1099 return nil, errBLS12381InvalidInputLength 1100 } 1101 1102 // Decode input field element 1103 fe := make([]byte, 96) 1104 c0, err := decodeBLS12381FieldElement(input[:64]) 1105 if err != nil { 1106 return nil, err 1107 } 1108 copy(fe[48:], c0) 1109 c1, err := decodeBLS12381FieldElement(input[64:]) 1110 if err != nil { 1111 return nil, err 1112 } 1113 copy(fe[:48], c1) 1114 1115 // Initialize G2 1116 g := bls12381.NewG2() 1117 1118 // Compute mapping 1119 r, err := g.MapToCurve(fe) 1120 if err != nil { 1121 return nil, err 1122 } 1123 1124 // Encode the G2 point to 256 bytes 1125 return g.EncodePoint(r), nil 1126 }