github.com/andeya/ameda@v1.5.3/itoa62.go (about) 1 package ameda 2 3 import "math/bits" 4 5 // FormatUint returns the string representation of i in the given base, 6 // for 2 <= base <= 62. 7 // NOTE: 8 // 9 // Compatible with standard package strconv. 10 func FormatUint(i uint64, base int) string { 11 if fastSmalls && i < nSmalls && base == 10 { 12 return small(int(i)) 13 } 14 _, s := formatBits(nil, i, base, false, false) 15 return s 16 } 17 18 // FormatInt returns the string representation of i in the given base, 19 // for 2 <= base <= 62. 20 // NOTE: 21 // 22 // Compatible with standard package strconv. 23 func FormatInt(i int64, base int) string { 24 if fastSmalls && 0 <= i && i < nSmalls && base == 10 { 25 return small(int(i)) 26 } 27 _, s := formatBits(nil, uint64(i), base, i < 0, false) 28 return s 29 } 30 31 // Itoa is equivalent to FormatInt(int64(i), 10). 32 // NOTE: 33 // 34 // Compatible with standard package strconv. 35 func Itoa(i int) string { 36 return FormatInt(int64(i), 10) 37 } 38 39 // AppendInt appends the string form of the integer i, 40 // as generated by FormatInt, to dst and returns the extended buffer. 41 // NOTE: 42 // 43 // Compatible with standard package strconv. 44 func AppendInt(dst []byte, i int64, base int) []byte { 45 if fastSmalls && 0 <= i && i < nSmalls && base == 10 { 46 return append(dst, small(int(i))...) 47 } 48 dst, _ = formatBits(dst, uint64(i), base, i < 0, true) 49 return dst 50 } 51 52 // AppendUint appends the string form of the unsigned integer i, 53 // as generated by FormatUint, to dst and returns the extended buffer. 54 // NOTE: 55 // 56 // Compatible with standard package strconv. 57 func AppendUint(dst []byte, i uint64, base int) []byte { 58 if fastSmalls && i < nSmalls && base == 10 { 59 return append(dst, small(int(i))...) 60 } 61 dst, _ = formatBits(dst, i, base, false, true) 62 return dst 63 } 64 65 const ( 66 digits = "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ" 67 ) 68 69 const ( 70 fastSmalls = true // enable fast path for small integers 71 nSmalls = 100 72 smallsString = "00010203040506070809" + 73 "10111213141516171819" + 74 "20212223242526272829" + 75 "30313233343536373839" + 76 "40414243444546474849" + 77 "50515253545556575859" + 78 "60616263646566676869" + 79 "70717273747576777879" + 80 "80818283848586878889" + 81 "90919293949596979899" 82 ) 83 84 // small returns the string for an i with 0 <= i < nSmalls. 85 func small(i int) string { 86 if i < 10 { 87 return digits[i : i+1] 88 } 89 return smallsString[i*2 : i*2+2] 90 } 91 92 // formatBits computes the string representation of u in the given base. 93 // If neg is set, u is treated as negative int64 value. If append_ is 94 // set, the string is appended to dst and the resulting byte slice is 95 // returned as the first result value; otherwise the string is returned 96 // as the second result value. 97 func formatBits(dst []byte, u uint64, base int, neg, append_ bool) (d []byte, s string) { 98 if base < 2 || base > len(digits) { 99 panic("ameda(strconv): illegal AppendInt/FormatInt base") 100 } 101 // 2 <= base && base <= len(digits) 102 103 var a [64 + 1]byte // +1 for sign of 64bit value in base 2 104 i := len(a) 105 106 if neg { 107 u = -u 108 } 109 110 // convert bits 111 // We use uint values where we can because those will 112 // fit into a single register even on a 32bit machine. 113 if base == 10 { 114 // common case: use constants for / because 115 // the compiler can optimize it into a multiply+shift 116 117 if Host32bit { 118 // convert the lower digits using 32bit operations 119 for u >= 1e9 { 120 // Avoid using r = a%b in addition to q = a/b 121 // since 64bit division and modulo operations 122 // are calculated by runtime functions on 32bit machines. 123 q := u / 1e9 124 us := uint(u - q*1e9) // u % 1e9 fits into a uint 125 for j := 4; j > 0; j-- { 126 is := us % 100 * 2 127 us /= 100 128 i -= 2 129 a[i+1] = smallsString[is+1] 130 a[i+0] = smallsString[is+0] 131 } 132 133 // us < 10, since it contains the last digit 134 // from the initial 9-digit us. 135 i-- 136 a[i] = smallsString[us*2+1] 137 138 u = q 139 } 140 // u < 1e9 141 } 142 143 // u guaranteed to fit into a uint 144 us := uint(u) 145 for us >= 100 { 146 is := us % 100 * 2 147 us /= 100 148 i -= 2 149 a[i+1] = smallsString[is+1] 150 a[i+0] = smallsString[is+0] 151 } 152 153 // us < 100 154 is := us * 2 155 i-- 156 a[i] = smallsString[is+1] 157 if us >= 10 { 158 i-- 159 a[i] = smallsString[is] 160 } 161 162 } else if isPowerOfTwo(base) { 163 // Use shifts and masks instead of / and %. 164 // Base is a power of 2 and 2 <= base <= len(digits) where len(digits) is 62. 165 // The largest power of 2 below or equal to 62 is 32, which is 1 << 5; 166 // i.e., the largest possible shift count is 5. By &-ind that value with 167 // the constant 7 we tell the compiler that the shift count is always 168 // less than 8 which is smaller than any register width. This allows 169 // the compiler to generate better code for the shift operation. 170 shift := uint(bits.TrailingZeros(uint(base))) & 7 171 b := uint64(base) 172 m := uint(base) - 1 // == 1<<shift - 1 173 for u >= b { 174 i-- 175 a[i] = digits[uint(u)&m] 176 u >>= shift 177 } 178 // u < base 179 i-- 180 a[i] = digits[uint(u)] 181 } else { 182 // general case 183 b := uint64(base) 184 for u >= b { 185 i-- 186 // Avoid using r = a%b in addition to q = a/b 187 // since 64bit division and modulo operations 188 // are calculated by runtime functions on 32bit machines. 189 q := u / b 190 a[i] = digits[uint(u-q*b)] 191 u = q 192 } 193 // u < base 194 i-- 195 a[i] = digits[uint(u)] 196 } 197 198 // add sign, if any 199 if neg { 200 i-- 201 a[i] = '-' 202 } 203 204 if append_ { 205 d = append(dst, a[i:]...) 206 return 207 } 208 s = string(a[i:]) 209 return 210 } 211 212 func isPowerOfTwo(x int) bool { 213 return x&(x-1) == 0 214 }