github.com/andybalholm/brotli@v1.0.6/cluster_command.go (about)

     1  package brotli
     2  
     3  /* Copyright 2013 Google Inc. All Rights Reserved.
     4  
     5     Distributed under MIT license.
     6     See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
     7  */
     8  
     9  /* Computes the bit cost reduction by combining out[idx1] and out[idx2] and if
    10     it is below a threshold, stores the pair (idx1, idx2) in the *pairs queue. */
    11  func compareAndPushToQueueCommand(out []histogramCommand, cluster_size []uint32, idx1 uint32, idx2 uint32, max_num_pairs uint, pairs []histogramPair, num_pairs *uint) {
    12  	var is_good_pair bool = false
    13  	var p histogramPair
    14  	p.idx2 = 0
    15  	p.idx1 = p.idx2
    16  	p.cost_combo = 0
    17  	p.cost_diff = p.cost_combo
    18  	if idx1 == idx2 {
    19  		return
    20  	}
    21  
    22  	if idx2 < idx1 {
    23  		var t uint32 = idx2
    24  		idx2 = idx1
    25  		idx1 = t
    26  	}
    27  
    28  	p.idx1 = idx1
    29  	p.idx2 = idx2
    30  	p.cost_diff = 0.5 * clusterCostDiff(uint(cluster_size[idx1]), uint(cluster_size[idx2]))
    31  	p.cost_diff -= out[idx1].bit_cost_
    32  	p.cost_diff -= out[idx2].bit_cost_
    33  
    34  	if out[idx1].total_count_ == 0 {
    35  		p.cost_combo = out[idx2].bit_cost_
    36  		is_good_pair = true
    37  	} else if out[idx2].total_count_ == 0 {
    38  		p.cost_combo = out[idx1].bit_cost_
    39  		is_good_pair = true
    40  	} else {
    41  		var threshold float64
    42  		if *num_pairs == 0 {
    43  			threshold = 1e99
    44  		} else {
    45  			threshold = brotli_max_double(0.0, pairs[0].cost_diff)
    46  		}
    47  		var combo histogramCommand = out[idx1]
    48  		var cost_combo float64
    49  		histogramAddHistogramCommand(&combo, &out[idx2])
    50  		cost_combo = populationCostCommand(&combo)
    51  		if cost_combo < threshold-p.cost_diff {
    52  			p.cost_combo = cost_combo
    53  			is_good_pair = true
    54  		}
    55  	}
    56  
    57  	if is_good_pair {
    58  		p.cost_diff += p.cost_combo
    59  		if *num_pairs > 0 && histogramPairIsLess(&pairs[0], &p) {
    60  			/* Replace the top of the queue if needed. */
    61  			if *num_pairs < max_num_pairs {
    62  				pairs[*num_pairs] = pairs[0]
    63  				(*num_pairs)++
    64  			}
    65  
    66  			pairs[0] = p
    67  		} else if *num_pairs < max_num_pairs {
    68  			pairs[*num_pairs] = p
    69  			(*num_pairs)++
    70  		}
    71  	}
    72  }
    73  
    74  func histogramCombineCommand(out []histogramCommand, cluster_size []uint32, symbols []uint32, clusters []uint32, pairs []histogramPair, num_clusters uint, symbols_size uint, max_clusters uint, max_num_pairs uint) uint {
    75  	var cost_diff_threshold float64 = 0.0
    76  	var min_cluster_size uint = 1
    77  	var num_pairs uint = 0
    78  	{
    79  		/* We maintain a vector of histogram pairs, with the property that the pair
    80  		   with the maximum bit cost reduction is the first. */
    81  		var idx1 uint
    82  		for idx1 = 0; idx1 < num_clusters; idx1++ {
    83  			var idx2 uint
    84  			for idx2 = idx1 + 1; idx2 < num_clusters; idx2++ {
    85  				compareAndPushToQueueCommand(out, cluster_size, clusters[idx1], clusters[idx2], max_num_pairs, pairs[0:], &num_pairs)
    86  			}
    87  		}
    88  	}
    89  
    90  	for num_clusters > min_cluster_size {
    91  		var best_idx1 uint32
    92  		var best_idx2 uint32
    93  		var i uint
    94  		if pairs[0].cost_diff >= cost_diff_threshold {
    95  			cost_diff_threshold = 1e99
    96  			min_cluster_size = max_clusters
    97  			continue
    98  		}
    99  
   100  		/* Take the best pair from the top of heap. */
   101  		best_idx1 = pairs[0].idx1
   102  
   103  		best_idx2 = pairs[0].idx2
   104  		histogramAddHistogramCommand(&out[best_idx1], &out[best_idx2])
   105  		out[best_idx1].bit_cost_ = pairs[0].cost_combo
   106  		cluster_size[best_idx1] += cluster_size[best_idx2]
   107  		for i = 0; i < symbols_size; i++ {
   108  			if symbols[i] == best_idx2 {
   109  				symbols[i] = best_idx1
   110  			}
   111  		}
   112  
   113  		for i = 0; i < num_clusters; i++ {
   114  			if clusters[i] == best_idx2 {
   115  				copy(clusters[i:], clusters[i+1:][:num_clusters-i-1])
   116  				break
   117  			}
   118  		}
   119  
   120  		num_clusters--
   121  		{
   122  			/* Remove pairs intersecting the just combined best pair. */
   123  			var copy_to_idx uint = 0
   124  			for i = 0; i < num_pairs; i++ {
   125  				var p *histogramPair = &pairs[i]
   126  				if p.idx1 == best_idx1 || p.idx2 == best_idx1 || p.idx1 == best_idx2 || p.idx2 == best_idx2 {
   127  					/* Remove invalid pair from the queue. */
   128  					continue
   129  				}
   130  
   131  				if histogramPairIsLess(&pairs[0], p) {
   132  					/* Replace the top of the queue if needed. */
   133  					var front histogramPair = pairs[0]
   134  					pairs[0] = *p
   135  					pairs[copy_to_idx] = front
   136  				} else {
   137  					pairs[copy_to_idx] = *p
   138  				}
   139  
   140  				copy_to_idx++
   141  			}
   142  
   143  			num_pairs = copy_to_idx
   144  		}
   145  
   146  		/* Push new pairs formed with the combined histogram to the heap. */
   147  		for i = 0; i < num_clusters; i++ {
   148  			compareAndPushToQueueCommand(out, cluster_size, best_idx1, clusters[i], max_num_pairs, pairs[0:], &num_pairs)
   149  		}
   150  	}
   151  
   152  	return num_clusters
   153  }
   154  
   155  /* What is the bit cost of moving histogram from cur_symbol to candidate. */
   156  func histogramBitCostDistanceCommand(histogram *histogramCommand, candidate *histogramCommand) float64 {
   157  	if histogram.total_count_ == 0 {
   158  		return 0.0
   159  	} else {
   160  		var tmp histogramCommand = *histogram
   161  		histogramAddHistogramCommand(&tmp, candidate)
   162  		return populationCostCommand(&tmp) - candidate.bit_cost_
   163  	}
   164  }