github.com/annchain/OG@v0.0.9/deprecated/ogcrypto/ecies/ecies.go (about)

     1  // Copyright (c) 2013 Kyle Isom <kyle@tyrfingr.is>
     2  // Copyright (c) 2012 The Go Authors. All rights reserved.
     3  //
     4  // Redistribution and use in source and binary forms, with or without
     5  // modification, are permitted provided that the following conditions are
     6  // met:
     7  //
     8  //    * Redistributions of source code must retain the above copyright
     9  // notice, this list of conditions and the following disclaimer.
    10  //    * Redistributions in binary form must reproduce the above
    11  // copyright notice, this list of conditions and the following disclaimer
    12  // in the documentation and/or other materials provided with the
    13  // distribution.
    14  //    * Neither the name of Google Inc. nor the names of its
    15  // contributors may be used to endorse or promote products derived from
    16  // this software without specific prior written permission.
    17  //
    18  // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
    19  // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
    20  // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
    21  // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
    22  // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
    23  // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
    24  // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    25  // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
    26  // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    27  // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
    28  // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
    29  
    30  package ecies
    31  
    32  import (
    33  	"crypto/cipher"
    34  	"crypto/ecdsa"
    35  	"crypto/elliptic"
    36  	"crypto/hmac"
    37  	"crypto/subtle"
    38  	"fmt"
    39  	"hash"
    40  	"io"
    41  	"math/big"
    42  )
    43  
    44  var (
    45  	ErrImport                     = fmt.Errorf("ecies: failed to import key")
    46  	ErrInvalidCurve               = fmt.Errorf("ecies: invalid elliptic curve")
    47  	ErrInvalidParams              = fmt.Errorf("ecies: invalid ECIES parameters")
    48  	ErrInvalidPublicKey           = fmt.Errorf("ecies: invalid public key")
    49  	ErrSharedKeyIsPointAtInfinity = fmt.Errorf("ecies: shared key is point at infinity")
    50  	ErrSharedKeyTooBig            = fmt.Errorf("ecies: shared key params are too big")
    51  )
    52  
    53  // PublicKey is a representation of an elliptic curve public key.
    54  type PublicKey struct {
    55  	X *big.Int
    56  	Y *big.Int
    57  	elliptic.Curve
    58  	Params *ECIESParams
    59  }
    60  
    61  // Export an ECIES public key as an ECDSA public key.
    62  func (pub *PublicKey) ExportECDSA() *ecdsa.PublicKey {
    63  	return &ecdsa.PublicKey{Curve: pub.Curve, X: pub.X, Y: pub.Y}
    64  }
    65  
    66  // Import an ECDSA public key as an ECIES public key.
    67  func ImportECDSAPublic(pub *ecdsa.PublicKey) *PublicKey {
    68  	return &PublicKey{
    69  		X:      pub.X,
    70  		Y:      pub.Y,
    71  		Curve:  pub.Curve,
    72  		Params: ParamsFromCurve(pub.Curve),
    73  	}
    74  }
    75  
    76  // PrivateKey is a representation of an elliptic curve private key.
    77  type PrivateKey struct {
    78  	PublicKey
    79  	D *big.Int
    80  }
    81  
    82  // Export an ECIES private key as an ECDSA private key.
    83  func (prv *PrivateKey) ExportECDSA() *ecdsa.PrivateKey {
    84  	pub := &prv.PublicKey
    85  	pubECDSA := pub.ExportECDSA()
    86  	return &ecdsa.PrivateKey{PublicKey: *pubECDSA, D: prv.D}
    87  }
    88  
    89  // Import an ECDSA private key as an ECIES private key.
    90  func ImportECDSA(prv *ecdsa.PrivateKey) *PrivateKey {
    91  	pub := ImportECDSAPublic(&prv.PublicKey)
    92  	return &PrivateKey{*pub, prv.D}
    93  }
    94  
    95  // Generate an elliptic curve public / private keypair. If params is nil,
    96  // the recommended default parameters for the key will be chosen.
    97  func GenerateKey(rand io.Reader, curve elliptic.Curve, params *ECIESParams) (prv *PrivateKey, err error) {
    98  	pb, x, y, err := elliptic.GenerateKey(curve, rand)
    99  	if err != nil {
   100  		return
   101  	}
   102  	prv = new(PrivateKey)
   103  	prv.PublicKey.X = x
   104  	prv.PublicKey.Y = y
   105  	prv.PublicKey.Curve = curve
   106  	prv.D = new(big.Int).SetBytes(pb)
   107  	if params == nil {
   108  		params = ParamsFromCurve(curve)
   109  	}
   110  	prv.PublicKey.Params = params
   111  	return
   112  }
   113  
   114  // MaxSharedKeyLength returns the maximum length of the shared key the
   115  // public key can produce.
   116  func MaxSharedKeyLength(pub *PublicKey) int {
   117  	return (pub.Curve.Params().BitSize + 7) / 8
   118  }
   119  
   120  // ECDH key agreement method used to establish secret keys for encryption.
   121  func (prv *PrivateKey) GenerateShared(pub *PublicKey, skLen, macLen int) (sk []byte, err error) {
   122  	if prv.PublicKey.Curve != pub.Curve {
   123  		return nil, ErrInvalidCurve
   124  	}
   125  	if skLen+macLen > MaxSharedKeyLength(pub) {
   126  		return nil, ErrSharedKeyTooBig
   127  	}
   128  
   129  	x, _ := pub.Curve.ScalarMult(pub.X, pub.Y, prv.D.Bytes())
   130  	if x == nil {
   131  		return nil, ErrSharedKeyIsPointAtInfinity
   132  	}
   133  
   134  	sk = make([]byte, skLen+macLen)
   135  	skBytes := x.Bytes()
   136  	copy(sk[len(sk)-len(skBytes):], skBytes)
   137  	return sk, nil
   138  }
   139  
   140  var (
   141  	ErrKeyDataTooLong = fmt.Errorf("ecies: can't supply requested key data")
   142  	ErrSharedTooLong  = fmt.Errorf("ecies: shared secret is too long")
   143  	ErrInvalidMessage = fmt.Errorf("ecies: invalid message")
   144  )
   145  
   146  var (
   147  	big2To32   = new(big.Int).Exp(big.NewInt(2), big.NewInt(32), nil)
   148  	big2To32M1 = new(big.Int).Sub(big2To32, big.NewInt(1))
   149  )
   150  
   151  func incCounter(ctr []byte) {
   152  	if ctr[3]++; ctr[3] != 0 {
   153  		return
   154  	}
   155  	if ctr[2]++; ctr[2] != 0 {
   156  		return
   157  	}
   158  	if ctr[1]++; ctr[1] != 0 {
   159  		return
   160  	}
   161  	if ctr[0]++; ctr[0] != 0 {
   162  		return
   163  	}
   164  }
   165  
   166  // NIST SP 800-56 Concatenation Key Derivation Function (see section 5.8.1).
   167  func concatKDF(hash hash.Hash, z, s1 []byte, kdLen int) (k []byte, err error) {
   168  	if s1 == nil {
   169  		s1 = make([]byte, 0)
   170  	}
   171  
   172  	reps := ((kdLen + 7) * 8) / (hash.BlockSize() * 8)
   173  	if big.NewInt(int64(reps)).Cmp(big2To32M1) > 0 {
   174  		fmt.Println(big2To32M1)
   175  		return nil, ErrKeyDataTooLong
   176  	}
   177  
   178  	counter := []byte{0, 0, 0, 1}
   179  	k = make([]byte, 0)
   180  
   181  	for i := 0; i <= reps; i++ {
   182  		hash.Write(counter)
   183  		hash.Write(z)
   184  		hash.Write(s1)
   185  		k = append(k, hash.Sum(nil)...)
   186  		hash.Reset()
   187  		incCounter(counter)
   188  	}
   189  
   190  	k = k[:kdLen]
   191  	return
   192  }
   193  
   194  // messageTag computes the MAC of a message (called the tag) as per
   195  // SEC 1, 3.5.
   196  func messageTag(hash func() hash.Hash, km, msg, shared []byte) []byte {
   197  	mac := hmac.New(hash, km)
   198  	mac.Write(msg)
   199  	mac.Write(shared)
   200  	tag := mac.Sum(nil)
   201  	return tag
   202  }
   203  
   204  // Generate an initialisation vector for CTR mode.
   205  func generateIV(params *ECIESParams, rand io.Reader) (iv []byte, err error) {
   206  	iv = make([]byte, params.BlockSize)
   207  	_, err = io.ReadFull(rand, iv)
   208  	return
   209  }
   210  
   211  // symEncrypt carries out CTR encryption using the block cipher specified in the
   212  // parameters.
   213  func symEncrypt(rand io.Reader, params *ECIESParams, key, m []byte) (ct []byte, err error) {
   214  	c, err := params.Cipher(key)
   215  	if err != nil {
   216  		return
   217  	}
   218  
   219  	iv, err := generateIV(params, rand)
   220  	if err != nil {
   221  		return
   222  	}
   223  	ctr := cipher.NewCTR(c, iv)
   224  
   225  	ct = make([]byte, len(m)+params.BlockSize)
   226  	copy(ct, iv)
   227  	ctr.XORKeyStream(ct[params.BlockSize:], m)
   228  	return
   229  }
   230  
   231  // symDecrypt carries out CTR decryption using the block cipher specified in
   232  // the parameters
   233  func symDecrypt(params *ECIESParams, key, ct []byte) (m []byte, err error) {
   234  	c, err := params.Cipher(key)
   235  	if err != nil {
   236  		return
   237  	}
   238  
   239  	ctr := cipher.NewCTR(c, ct[:params.BlockSize])
   240  
   241  	m = make([]byte, len(ct)-params.BlockSize)
   242  	ctr.XORKeyStream(m, ct[params.BlockSize:])
   243  	return
   244  }
   245  
   246  // Encrypt encrypts a message using ECIES as specified in SEC 1, 5.1.
   247  //
   248  // s1 and s2 contain shared information that is not part of the resulting
   249  // ciphertext. s1 is fed into key derivation, s2 is fed into the MAC. If the
   250  // shared information parameters aren't being used, they should be nil.
   251  func Encrypt(rand io.Reader, pub *PublicKey, m, s1, s2 []byte) (ct []byte, err error) {
   252  	params := pub.Params
   253  	if params == nil {
   254  		if params = ParamsFromCurve(pub.Curve); params == nil {
   255  			err = ErrUnsupportedECIESParameters
   256  			return
   257  		}
   258  	}
   259  	R, err := GenerateKey(rand, pub.Curve, params)
   260  	if err != nil {
   261  		return
   262  	}
   263  
   264  	hash := params.Hash()
   265  	z, err := R.GenerateShared(pub, params.KeyLen, params.KeyLen)
   266  	if err != nil {
   267  		return
   268  	}
   269  	K, err := concatKDF(hash, z, s1, params.KeyLen+params.KeyLen)
   270  	if err != nil {
   271  		return
   272  	}
   273  	Ke := K[:params.KeyLen]
   274  	Km := K[params.KeyLen:]
   275  	hash.Write(Km)
   276  	Km = hash.Sum(nil)
   277  	hash.Reset()
   278  
   279  	em, err := symEncrypt(rand, params, Ke, m)
   280  	if err != nil || len(em) <= params.BlockSize {
   281  		return
   282  	}
   283  
   284  	d := messageTag(params.Hash, Km, em, s2)
   285  
   286  	Rb := elliptic.Marshal(pub.Curve, R.PublicKey.X, R.PublicKey.Y)
   287  	ct = make([]byte, len(Rb)+len(em)+len(d))
   288  	copy(ct, Rb)
   289  	copy(ct[len(Rb):], em)
   290  	copy(ct[len(Rb)+len(em):], d)
   291  	return
   292  }
   293  
   294  // Decrypt decrypts an ECIES ciphertext.
   295  func (prv *PrivateKey) Decrypt(c, s1, s2 []byte) (m []byte, err error) {
   296  	if len(c) == 0 {
   297  		return nil, ErrInvalidMessage
   298  	}
   299  	params := prv.PublicKey.Params
   300  	if params == nil {
   301  		if params = ParamsFromCurve(prv.PublicKey.Curve); params == nil {
   302  			err = ErrUnsupportedECIESParameters
   303  			return
   304  		}
   305  	}
   306  	hash := params.Hash()
   307  
   308  	var (
   309  		rLen   int
   310  		hLen   int = hash.Size()
   311  		mStart int
   312  		mEnd   int
   313  	)
   314  
   315  	switch c[0] {
   316  	case 2, 3, 4:
   317  		rLen = (prv.PublicKey.Curve.Params().BitSize + 7) / 4
   318  		if len(c) < (rLen + hLen + 1) {
   319  			err = ErrInvalidMessage
   320  			return
   321  		}
   322  	default:
   323  		err = ErrInvalidPublicKey
   324  		return
   325  	}
   326  
   327  	mStart = rLen
   328  	mEnd = len(c) - hLen
   329  
   330  	R := new(PublicKey)
   331  	R.Curve = prv.PublicKey.Curve
   332  	R.X, R.Y = elliptic.Unmarshal(R.Curve, c[:rLen])
   333  	if R.X == nil {
   334  		err = ErrInvalidPublicKey
   335  		return
   336  	}
   337  	if !R.Curve.IsOnCurve(R.X, R.Y) {
   338  		err = ErrInvalidCurve
   339  		return
   340  	}
   341  
   342  	z, err := prv.GenerateShared(R, params.KeyLen, params.KeyLen)
   343  	if err != nil {
   344  		return
   345  	}
   346  
   347  	K, err := concatKDF(hash, z, s1, params.KeyLen+params.KeyLen)
   348  	if err != nil {
   349  		return
   350  	}
   351  
   352  	Ke := K[:params.KeyLen]
   353  	Km := K[params.KeyLen:]
   354  	hash.Write(Km)
   355  	Km = hash.Sum(nil)
   356  	hash.Reset()
   357  
   358  	d := messageTag(params.Hash, Km, c[mStart:mEnd], s2)
   359  	if subtle.ConstantTimeCompare(c[mEnd:], d) != 1 {
   360  		err = ErrInvalidMessage
   361  		return
   362  	}
   363  
   364  	m, err = symDecrypt(params, Ke, c[mStart:mEnd])
   365  	return
   366  }