github.com/annchain/OG@v0.0.9/ogcrypto/bn256/google/bn256.go (about)

     1  // Copyright 2012 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package bn256 implements a particular bilinear group.
     6  //
     7  // Bilinear groups are the basis of many of the new cryptographic protocols
     8  // that have been proposed over the past decade. They consist of a triplet of
     9  // groups (G₁, G₂ and GT) such that there exists a function e(g₁ˣ,g₂ʸ)=gTˣʸ
    10  // (where gₓ is a generator of the respective group). That function is called
    11  // a pairing function.
    12  //
    13  // This package specifically implements the Optimal Ate pairing over a 256-bit
    14  // Barreto-Naehrig curve as described in
    15  // http://cryptojedi.org/papers/dclxvi-20100714.pdf. Its output is compatible
    16  // with the implementation described in that paper.
    17  //
    18  // (This package previously claimed to operate at a 128-bit security level.
    19  // However, recent improvements in attacks mean that is no longer true. See
    20  // https://moderncrypto.org/mail-archive/curves/2016/000740.html.)
    21  package bn256
    22  
    23  import (
    24  	"crypto/rand"
    25  	"errors"
    26  	"io"
    27  	"math/big"
    28  )
    29  
    30  // BUG(agl): this implementation is not constant time.
    31  // TODO(agl): keep GF(p²) elements in Mongomery form.
    32  
    33  // G1 is an abstract cyclic group. The zero value is suitable for use as the
    34  // output of an operation, but cannot be used as an input.
    35  type G1 struct {
    36  	p *curvePoint
    37  }
    38  
    39  // RandomG1 returns x and g₁ˣ where x is a random, non-zero number read from r.
    40  func RandomG1(r io.Reader) (*big.Int, *G1, error) {
    41  	var k *big.Int
    42  	var err error
    43  
    44  	for {
    45  		k, err = rand.Int(r, Order)
    46  		if err != nil {
    47  			return nil, nil, err
    48  		}
    49  		if k.Sign() > 0 {
    50  			break
    51  		}
    52  	}
    53  
    54  	return k, new(G1).ScalarBaseMult(k), nil
    55  }
    56  
    57  func (e *G1) String() string {
    58  	return "bn256.G1" + e.p.String()
    59  }
    60  
    61  // CurvePoints returns p's curve points in big integer
    62  func (e *G1) CurvePoints() (*big.Int, *big.Int, *big.Int, *big.Int) {
    63  	return e.p.x, e.p.y, e.p.z, e.p.t
    64  }
    65  
    66  // ScalarBaseMult sets e to g*k where g is the generator of the group and
    67  // then returns e.
    68  func (e *G1) ScalarBaseMult(k *big.Int) *G1 {
    69  	if e.p == nil {
    70  		e.p = newCurvePoint(nil)
    71  	}
    72  	e.p.Mul(curveGen, k, new(bnPool))
    73  	return e
    74  }
    75  
    76  // ScalarMult sets e to a*k and then returns e.
    77  func (e *G1) ScalarMult(a *G1, k *big.Int) *G1 {
    78  	if e.p == nil {
    79  		e.p = newCurvePoint(nil)
    80  	}
    81  	e.p.Mul(a.p, k, new(bnPool))
    82  	return e
    83  }
    84  
    85  // Add sets e to a+b and then returns e.
    86  // BUG(agl): this function is not complete: a==b fails.
    87  func (e *G1) Add(a, b *G1) *G1 {
    88  	if e.p == nil {
    89  		e.p = newCurvePoint(nil)
    90  	}
    91  	e.p.Add(a.p, b.p, new(bnPool))
    92  	return e
    93  }
    94  
    95  // Neg sets e to -a and then returns e.
    96  func (e *G1) Neg(a *G1) *G1 {
    97  	if e.p == nil {
    98  		e.p = newCurvePoint(nil)
    99  	}
   100  	e.p.Negative(a.p)
   101  	return e
   102  }
   103  
   104  // Marshal converts n to a byte slice.
   105  func (e *G1) Marshal() []byte {
   106  	// Each value is a 256-bit number.
   107  	const numBytes = 256 / 8
   108  
   109  	if e.p.IsInfinity() {
   110  		return make([]byte, numBytes*2)
   111  	}
   112  
   113  	e.p.MakeAffine(nil)
   114  
   115  	xBytes := new(big.Int).Mod(e.p.x, P).Bytes()
   116  	yBytes := new(big.Int).Mod(e.p.y, P).Bytes()
   117  
   118  	ret := make([]byte, numBytes*2)
   119  	copy(ret[1*numBytes-len(xBytes):], xBytes)
   120  	copy(ret[2*numBytes-len(yBytes):], yBytes)
   121  
   122  	return ret
   123  }
   124  
   125  // Unmarshal sets e to the result of converting the output of Marshal back into
   126  // a group element and then returns e.
   127  func (e *G1) Unmarshal(m []byte) ([]byte, error) {
   128  	// Each value is a 256-bit number.
   129  	const numBytes = 256 / 8
   130  	if len(m) != 2*numBytes {
   131  		return nil, errors.New("bn256: not enough data")
   132  	}
   133  	// Unmarshal the points and check their caps
   134  	if e.p == nil {
   135  		e.p = newCurvePoint(nil)
   136  	}
   137  	e.p.x.SetBytes(m[0*numBytes : 1*numBytes])
   138  	if e.p.x.Cmp(P) >= 0 {
   139  		return nil, errors.New("bn256: coordinate exceeds modulus")
   140  	}
   141  	e.p.y.SetBytes(m[1*numBytes : 2*numBytes])
   142  	if e.p.y.Cmp(P) >= 0 {
   143  		return nil, errors.New("bn256: coordinate exceeds modulus")
   144  	}
   145  	// Ensure the point is on the curve
   146  	if e.p.x.Sign() == 0 && e.p.y.Sign() == 0 {
   147  		// This is the point at infinity.
   148  		e.p.y.SetInt64(1)
   149  		e.p.z.SetInt64(0)
   150  		e.p.t.SetInt64(0)
   151  	} else {
   152  		e.p.z.SetInt64(1)
   153  		e.p.t.SetInt64(1)
   154  
   155  		if !e.p.IsOnCurve() {
   156  			return nil, errors.New("bn256: malformed point")
   157  		}
   158  	}
   159  	return m[2*numBytes:], nil
   160  }
   161  
   162  // G2 is an abstract cyclic group. The zero value is suitable for use as the
   163  // output of an operation, but cannot be used as an input.
   164  type G2 struct {
   165  	p *twistPoint
   166  }
   167  
   168  // RandomG1 returns x and g₂ˣ where x is a random, non-zero number read from r.
   169  func RandomG2(r io.Reader) (*big.Int, *G2, error) {
   170  	var k *big.Int
   171  	var err error
   172  
   173  	for {
   174  		k, err = rand.Int(r, Order)
   175  		if err != nil {
   176  			return nil, nil, err
   177  		}
   178  		if k.Sign() > 0 {
   179  			break
   180  		}
   181  	}
   182  
   183  	return k, new(G2).ScalarBaseMult(k), nil
   184  }
   185  
   186  func (e *G2) String() string {
   187  	return "bn256.G2" + e.p.String()
   188  }
   189  
   190  // CurvePoints returns the curve points of p which includes the real
   191  // and imaginary parts of the curve point.
   192  func (e *G2) CurvePoints() (*gfP2, *gfP2, *gfP2, *gfP2) {
   193  	return e.p.x, e.p.y, e.p.z, e.p.t
   194  }
   195  
   196  // ScalarBaseMult sets e to g*k where g is the generator of the group and
   197  // then returns out.
   198  func (e *G2) ScalarBaseMult(k *big.Int) *G2 {
   199  	if e.p == nil {
   200  		e.p = newTwistPoint(nil)
   201  	}
   202  	e.p.Mul(twistGen, k, new(bnPool))
   203  	return e
   204  }
   205  
   206  // ScalarMult sets e to a*k and then returns e.
   207  func (e *G2) ScalarMult(a *G2, k *big.Int) *G2 {
   208  	if e.p == nil {
   209  		e.p = newTwistPoint(nil)
   210  	}
   211  	e.p.Mul(a.p, k, new(bnPool))
   212  	return e
   213  }
   214  
   215  // Add sets e to a+b and then returns e.
   216  // BUG(agl): this function is not complete: a==b fails.
   217  func (e *G2) Add(a, b *G2) *G2 {
   218  	if e.p == nil {
   219  		e.p = newTwistPoint(nil)
   220  	}
   221  	e.p.Add(a.p, b.p, new(bnPool))
   222  	return e
   223  }
   224  
   225  // Marshal converts n into a byte slice.
   226  func (n *G2) Marshal() []byte {
   227  	// Each value is a 256-bit number.
   228  	const numBytes = 256 / 8
   229  
   230  	if n.p.IsInfinity() {
   231  		return make([]byte, numBytes*4)
   232  	}
   233  
   234  	n.p.MakeAffine(nil)
   235  
   236  	xxBytes := new(big.Int).Mod(n.p.x.x, P).Bytes()
   237  	xyBytes := new(big.Int).Mod(n.p.x.y, P).Bytes()
   238  	yxBytes := new(big.Int).Mod(n.p.y.x, P).Bytes()
   239  	yyBytes := new(big.Int).Mod(n.p.y.y, P).Bytes()
   240  
   241  	ret := make([]byte, numBytes*4)
   242  	copy(ret[1*numBytes-len(xxBytes):], xxBytes)
   243  	copy(ret[2*numBytes-len(xyBytes):], xyBytes)
   244  	copy(ret[3*numBytes-len(yxBytes):], yxBytes)
   245  	copy(ret[4*numBytes-len(yyBytes):], yyBytes)
   246  
   247  	return ret
   248  }
   249  
   250  // Unmarshal sets e to the result of converting the output of Marshal back into
   251  // a group element and then returns e.
   252  func (e *G2) Unmarshal(m []byte) ([]byte, error) {
   253  	// Each value is a 256-bit number.
   254  	const numBytes = 256 / 8
   255  	if len(m) != 4*numBytes {
   256  		return nil, errors.New("bn256: not enough data")
   257  	}
   258  	// Unmarshal the points and check their caps
   259  	if e.p == nil {
   260  		e.p = newTwistPoint(nil)
   261  	}
   262  	e.p.x.x.SetBytes(m[0*numBytes : 1*numBytes])
   263  	if e.p.x.x.Cmp(P) >= 0 {
   264  		return nil, errors.New("bn256: coordinate exceeds modulus")
   265  	}
   266  	e.p.x.y.SetBytes(m[1*numBytes : 2*numBytes])
   267  	if e.p.x.y.Cmp(P) >= 0 {
   268  		return nil, errors.New("bn256: coordinate exceeds modulus")
   269  	}
   270  	e.p.y.x.SetBytes(m[2*numBytes : 3*numBytes])
   271  	if e.p.y.x.Cmp(P) >= 0 {
   272  		return nil, errors.New("bn256: coordinate exceeds modulus")
   273  	}
   274  	e.p.y.y.SetBytes(m[3*numBytes : 4*numBytes])
   275  	if e.p.y.y.Cmp(P) >= 0 {
   276  		return nil, errors.New("bn256: coordinate exceeds modulus")
   277  	}
   278  	// Ensure the point is on the curve
   279  	if e.p.x.x.Sign() == 0 &&
   280  		e.p.x.y.Sign() == 0 &&
   281  		e.p.y.x.Sign() == 0 &&
   282  		e.p.y.y.Sign() == 0 {
   283  		// This is the point at infinity.
   284  		e.p.y.SetOne()
   285  		e.p.z.SetZero()
   286  		e.p.t.SetZero()
   287  	} else {
   288  		e.p.z.SetOne()
   289  		e.p.t.SetOne()
   290  
   291  		if !e.p.IsOnCurve() {
   292  			return nil, errors.New("bn256: malformed point")
   293  		}
   294  	}
   295  	return m[4*numBytes:], nil
   296  }
   297  
   298  // GT is an abstract cyclic group. The zero value is suitable for use as the
   299  // output of an operation, but cannot be used as an input.
   300  type GT struct {
   301  	p *gfP12
   302  }
   303  
   304  func (g *GT) String() string {
   305  	return "bn256.GT" + g.p.String()
   306  }
   307  
   308  // ScalarMult sets e to a*k and then returns e.
   309  func (e *GT) ScalarMult(a *GT, k *big.Int) *GT {
   310  	if e.p == nil {
   311  		e.p = newGFp12(nil)
   312  	}
   313  	e.p.Exp(a.p, k, new(bnPool))
   314  	return e
   315  }
   316  
   317  // Add sets e to a+b and then returns e.
   318  func (e *GT) Add(a, b *GT) *GT {
   319  	if e.p == nil {
   320  		e.p = newGFp12(nil)
   321  	}
   322  	e.p.Mul(a.p, b.p, new(bnPool))
   323  	return e
   324  }
   325  
   326  // Neg sets e to -a and then returns e.
   327  func (e *GT) Neg(a *GT) *GT {
   328  	if e.p == nil {
   329  		e.p = newGFp12(nil)
   330  	}
   331  	e.p.Invert(a.p, new(bnPool))
   332  	return e
   333  }
   334  
   335  // Marshal converts n into a byte slice.
   336  func (n *GT) Marshal() []byte {
   337  	n.p.Minimal()
   338  
   339  	xxxBytes := n.p.x.x.x.Bytes()
   340  	xxyBytes := n.p.x.x.y.Bytes()
   341  	xyxBytes := n.p.x.y.x.Bytes()
   342  	xyyBytes := n.p.x.y.y.Bytes()
   343  	xzxBytes := n.p.x.z.x.Bytes()
   344  	xzyBytes := n.p.x.z.y.Bytes()
   345  	yxxBytes := n.p.y.x.x.Bytes()
   346  	yxyBytes := n.p.y.x.y.Bytes()
   347  	yyxBytes := n.p.y.y.x.Bytes()
   348  	yyyBytes := n.p.y.y.y.Bytes()
   349  	yzxBytes := n.p.y.z.x.Bytes()
   350  	yzyBytes := n.p.y.z.y.Bytes()
   351  
   352  	// Each value is a 256-bit number.
   353  	const numBytes = 256 / 8
   354  
   355  	ret := make([]byte, numBytes*12)
   356  	copy(ret[1*numBytes-len(xxxBytes):], xxxBytes)
   357  	copy(ret[2*numBytes-len(xxyBytes):], xxyBytes)
   358  	copy(ret[3*numBytes-len(xyxBytes):], xyxBytes)
   359  	copy(ret[4*numBytes-len(xyyBytes):], xyyBytes)
   360  	copy(ret[5*numBytes-len(xzxBytes):], xzxBytes)
   361  	copy(ret[6*numBytes-len(xzyBytes):], xzyBytes)
   362  	copy(ret[7*numBytes-len(yxxBytes):], yxxBytes)
   363  	copy(ret[8*numBytes-len(yxyBytes):], yxyBytes)
   364  	copy(ret[9*numBytes-len(yyxBytes):], yyxBytes)
   365  	copy(ret[10*numBytes-len(yyyBytes):], yyyBytes)
   366  	copy(ret[11*numBytes-len(yzxBytes):], yzxBytes)
   367  	copy(ret[12*numBytes-len(yzyBytes):], yzyBytes)
   368  
   369  	return ret
   370  }
   371  
   372  // Unmarshal sets e to the result of converting the output of Marshal back into
   373  // a group element and then returns e.
   374  func (e *GT) Unmarshal(m []byte) (*GT, bool) {
   375  	// Each value is a 256-bit number.
   376  	const numBytes = 256 / 8
   377  
   378  	if len(m) != 12*numBytes {
   379  		return nil, false
   380  	}
   381  
   382  	if e.p == nil {
   383  		e.p = newGFp12(nil)
   384  	}
   385  
   386  	e.p.x.x.x.SetBytes(m[0*numBytes : 1*numBytes])
   387  	e.p.x.x.y.SetBytes(m[1*numBytes : 2*numBytes])
   388  	e.p.x.y.x.SetBytes(m[2*numBytes : 3*numBytes])
   389  	e.p.x.y.y.SetBytes(m[3*numBytes : 4*numBytes])
   390  	e.p.x.z.x.SetBytes(m[4*numBytes : 5*numBytes])
   391  	e.p.x.z.y.SetBytes(m[5*numBytes : 6*numBytes])
   392  	e.p.y.x.x.SetBytes(m[6*numBytes : 7*numBytes])
   393  	e.p.y.x.y.SetBytes(m[7*numBytes : 8*numBytes])
   394  	e.p.y.y.x.SetBytes(m[8*numBytes : 9*numBytes])
   395  	e.p.y.y.y.SetBytes(m[9*numBytes : 10*numBytes])
   396  	e.p.y.z.x.SetBytes(m[10*numBytes : 11*numBytes])
   397  	e.p.y.z.y.SetBytes(m[11*numBytes : 12*numBytes])
   398  
   399  	return e, true
   400  }
   401  
   402  // Pair calculates an Optimal Ate pairing.
   403  func Pair(g1 *G1, g2 *G2) *GT {
   404  	return &GT{optimalAte(g2.p, g1.p, new(bnPool))}
   405  }
   406  
   407  // PairingCheck calculates the Optimal Ate pairing for a set of points.
   408  func PairingCheck(a []*G1, b []*G2) bool {
   409  	pool := new(bnPool)
   410  
   411  	acc := newGFp12(pool)
   412  	acc.SetOne()
   413  
   414  	for i := 0; i < len(a); i++ {
   415  		if a[i].p.IsInfinity() || b[i].p.IsInfinity() {
   416  			continue
   417  		}
   418  		acc.Mul(acc, miller(b[i].p, a[i].p, pool), pool)
   419  	}
   420  	ret := finalExponentiation(acc, pool)
   421  	acc.Put(pool)
   422  
   423  	return ret.IsOne()
   424  }
   425  
   426  // bnPool implements a tiny cache of *big.Int objects that's used to reduce the
   427  // number of allocations made during processing.
   428  type bnPool struct {
   429  	bns   []*big.Int
   430  	count int
   431  }
   432  
   433  func (pool *bnPool) Get() *big.Int {
   434  	if pool == nil {
   435  		return new(big.Int)
   436  	}
   437  
   438  	pool.count++
   439  	l := len(pool.bns)
   440  	if l == 0 {
   441  		return new(big.Int)
   442  	}
   443  
   444  	bn := pool.bns[l-1]
   445  	pool.bns = pool.bns[:l-1]
   446  	return bn
   447  }
   448  
   449  func (pool *bnPool) Put(bn *big.Int) {
   450  	if pool == nil {
   451  		return
   452  	}
   453  	pool.bns = append(pool.bns, bn)
   454  	pool.count--
   455  }
   456  
   457  func (pool *bnPool) Count() int {
   458  	return pool.count
   459  }