github.com/annchain/OG@v0.0.9/vm/ovm/contracts.go (about) 1 // Copyright 2014 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 package ovm 18 19 import ( 20 "crypto/sha256" 21 "errors" 22 math2 "github.com/annchain/OG/arefactor/common/math" 23 ogTypes "github.com/annchain/OG/arefactor/og_interface" 24 "github.com/annchain/OG/deprecated/ogcrypto" 25 "math" 26 "math/big" 27 28 "github.com/annchain/OG/arefactor/ogcrypto/bn256" 29 "github.com/annchain/OG/vm/eth/common" 30 "github.com/annchain/OG/vm/eth/params" 31 vmtypes "github.com/annchain/OG/vm/types" 32 "golang.org/x/crypto/ripemd160" 33 ) 34 35 var ( 36 big1 = big.NewInt(1) 37 big4 = big.NewInt(4) 38 big8 = big.NewInt(8) 39 big16 = big.NewInt(16) 40 big32 = big.NewInt(32) 41 big64 = big.NewInt(64) 42 big96 = big.NewInt(96) 43 big480 = big.NewInt(480) 44 big1024 = big.NewInt(1024) 45 big3072 = big.NewInt(3072) 46 big199680 = big.NewInt(199680) 47 big2 = big.NewInt(2) 48 big3 = big.NewInt(3) 49 big0 = big.NewInt(0) 50 big256 = big.NewInt(256) 51 big257 = big.NewInt(257) 52 ) 53 54 // PrecompiledContract is the basic interface for native Go contracts. The implementation 55 // requires a deterministic gas count based on the input size of the Run method of the 56 // contract. 57 type PrecompiledContract interface { 58 RequiredGas(input []byte) uint64 // RequiredPrice calculates the contract gas use 59 Run(input []byte) ([]byte, error) // Run runs the precompiled contract 60 } 61 62 // PrecompiledContractsByzantium contains the default set of pre-compiled Ethereum 63 // contracts used in the Byzantium release. 64 var PrecompiledContractsByzantium = map[ogTypes.Address20]PrecompiledContract{ 65 *ogTypes.BytesToAddress20([]byte{1}): &ecrecover{}, 66 *ogTypes.BytesToAddress20([]byte{2}): &sha256hash{}, 67 *ogTypes.BytesToAddress20([]byte{3}): &ripemd160hash{}, 68 *ogTypes.BytesToAddress20([]byte{4}): &dataCopy{}, 69 *ogTypes.BytesToAddress20([]byte{5}): &bigModExp{}, 70 *ogTypes.BytesToAddress20([]byte{6}): &bn256Add{}, 71 *ogTypes.BytesToAddress20([]byte{7}): &bn256ScalarMul{}, 72 *ogTypes.BytesToAddress20([]byte{8}): &bn256Pairing{}, 73 } 74 75 // RunPrecompiledContract runs and evaluates the output of a precompiled contract. 76 func RunPrecompiledContract(p PrecompiledContract, input []byte, contract *vmtypes.Contract) (ret []byte, err error) { 77 gas := p.RequiredGas(input) 78 if contract.UseGas(gas) { 79 return p.Run(input) 80 } 81 return nil, vmtypes.ErrOutOfGas 82 } 83 84 // ECRECOVER implemented as a native contract. 85 type ecrecover struct{} 86 87 func (c *ecrecover) RequiredGas(input []byte) uint64 { 88 return params.EcrecoverGas 89 } 90 91 func (c *ecrecover) Run(input []byte) ([]byte, error) { 92 const ecRecoverInputLength = 128 93 94 input = common.RightPadBytes(input, ecRecoverInputLength) 95 // "input" is (hash, v, r, s), each 32 bytes 96 // but for ecrecover we want (r, s, v) 97 98 r := new(big.Int).SetBytes(input[64:96]) 99 s := new(big.Int).SetBytes(input[96:128]) 100 v := input[63] - 27 101 102 // tighter sig s values input homestead only apply to tx sigs 103 if !common.AllZero(input[32:63]) || !ogcrypto.ValidateSignatureValues(v, r, s, false) { 104 return nil, nil 105 } 106 // v needs to be at the end for libsecp256k1 107 pubKey, err := ogcrypto.Ecrecover(input[:32], append(input[64:128], v)) 108 // make sure the public key is a valid one 109 if err != nil { 110 return nil, nil 111 } 112 113 // the first byte of pubkey is bitcoin heritage 114 return common.LeftPadBytes(ogcrypto.Keccak256(pubKey[1:])[12:], 32), nil 115 } 116 117 // SHA256 implemented as a native contract. 118 type sha256hash struct{} 119 120 // RequiredGas returns the gas required to execute the pre-compiled contract. 121 // 122 // This method does not require any overflow checking as the input size gas costs 123 // required for anything significant is so high it's impossible to pay for. 124 func (c *sha256hash) RequiredGas(input []byte) uint64 { 125 return uint64(len(input)+31)/32*params.Sha256PerWordGas + params.Sha256BaseGas 126 } 127 func (c *sha256hash) Run(input []byte) ([]byte, error) { 128 h := sha256.Sum256(input) 129 return h[:], nil 130 } 131 132 // RIPEMD160 implemented as a native contract. 133 type ripemd160hash struct{} 134 135 // RequiredGas returns the gas required to execute the pre-compiled contract. 136 // 137 // This method does not require any overflow checking as the input size gas costs 138 // required for anything significant is so high it's impossible to pay for. 139 func (c *ripemd160hash) RequiredGas(input []byte) uint64 { 140 return uint64(len(input)+31)/32*params.Ripemd160PerWordGas + params.Ripemd160BaseGas 141 } 142 func (c *ripemd160hash) Run(input []byte) ([]byte, error) { 143 ripemd := ripemd160.New() 144 ripemd.Write(input) 145 return common.LeftPadBytes(ripemd.Sum(nil), 32), nil 146 } 147 148 // data copy implemented as a native contract. 149 type dataCopy struct{} 150 151 // RequiredGas returns the gas required to execute the pre-compiled contract. 152 // 153 // This method does not require any overflow checking as the input size gas costs 154 // required for anything significant is so high it's impossible to pay for. 155 func (c *dataCopy) RequiredGas(input []byte) uint64 { 156 return uint64(len(input)+31)/32*params.IdentityPerWordGas + params.IdentityBaseGas 157 } 158 func (c *dataCopy) Run(in []byte) ([]byte, error) { 159 return in, nil 160 } 161 162 // bigModExp implements a native big integer exponential modular operation. 163 type bigModExp struct{} 164 165 // RequiredGas returns the gas required to execute the pre-compiled contract. 166 func (c *bigModExp) RequiredGas(input []byte) uint64 { 167 var ( 168 baseLen = new(big.Int).SetBytes(common.GetData(input, 0, 32)) 169 expLen = new(big.Int).SetBytes(common.GetData(input, 32, 32)) 170 modLen = new(big.Int).SetBytes(common.GetData(input, 64, 32)) 171 ) 172 if len(input) > 96 { 173 input = input[96:] 174 } else { 175 input = input[:0] 176 } 177 // Retrieve the head 32 bytes of exp for the adjusted exponent length 178 var expHead *big.Int 179 if big.NewInt(int64(len(input))).Cmp(baseLen) <= 0 { 180 expHead = new(big.Int) 181 } else { 182 if expLen.Cmp(big32) > 0 { 183 expHead = new(big.Int).SetBytes(common.GetData(input, baseLen.Uint64(), 32)) 184 } else { 185 expHead = new(big.Int).SetBytes(common.GetData(input, baseLen.Uint64(), expLen.Uint64())) 186 } 187 } 188 // Calculate the adjusted exponent length 189 var msb int 190 if bitlen := expHead.BitLen(); bitlen > 0 { 191 msb = bitlen - 1 192 } 193 adjExpLen := new(big.Int) 194 if expLen.Cmp(big32) > 0 { 195 adjExpLen.Sub(expLen, big32) 196 adjExpLen.Mul(big8, adjExpLen) 197 } 198 adjExpLen.Add(adjExpLen, big.NewInt(int64(msb))) 199 200 // Calculate the gas cost of the operation 201 gas := new(big.Int).Set(math2.BigMax(modLen, baseLen)) 202 switch { 203 case gas.Cmp(big64) <= 0: 204 gas.Mul(gas, gas) 205 case gas.Cmp(big1024) <= 0: 206 gas = new(big.Int).Add( 207 new(big.Int).Div(new(big.Int).Mul(gas, gas), big4), 208 new(big.Int).Sub(new(big.Int).Mul(big96, gas), big3072), 209 ) 210 default: 211 gas = new(big.Int).Add( 212 new(big.Int).Div(new(big.Int).Mul(gas, gas), big16), 213 new(big.Int).Sub(new(big.Int).Mul(big480, gas), big199680), 214 ) 215 } 216 gas.Mul(gas, math2.BigMax(adjExpLen, big1)) 217 gas.Div(gas, new(big.Int).SetUint64(params.ModExpQuadCoeffDiv)) 218 219 if gas.BitLen() > 64 { 220 return math.MaxUint64 221 } 222 return gas.Uint64() 223 } 224 225 func (c *bigModExp) Run(input []byte) ([]byte, error) { 226 var ( 227 baseLen = new(big.Int).SetBytes(common.GetData(input, 0, 32)).Uint64() 228 expLen = new(big.Int).SetBytes(common.GetData(input, 32, 32)).Uint64() 229 modLen = new(big.Int).SetBytes(common.GetData(input, 64, 32)).Uint64() 230 ) 231 if len(input) > 96 { 232 input = input[96:] 233 } else { 234 input = input[:0] 235 } 236 // Handle a special case when both the base and mod length is zero 237 if baseLen == 0 && modLen == 0 { 238 return []byte{}, nil 239 } 240 // Retrieve the operands and execute the exponentiation 241 var ( 242 base = new(big.Int).SetBytes(common.GetData(input, 0, baseLen)) 243 exp = new(big.Int).SetBytes(common.GetData(input, baseLen, expLen)) 244 mod = new(big.Int).SetBytes(common.GetData(input, baseLen+expLen, modLen)) 245 ) 246 if mod.BitLen() == 0 { 247 // Modulo 0 is undefined, return zero 248 return common.LeftPadBytes([]byte{}, int(modLen)), nil 249 } 250 return common.LeftPadBytes(base.Exp(base, exp, mod).Bytes(), int(modLen)), nil 251 } 252 253 // newCurvePoint unmarshals a binary blob into a bn256 elliptic curve point, 254 // returning it, or an error if the point is invalid. 255 func newCurvePoint(blob []byte) (*bn256.G1, error) { 256 p := new(bn256.G1) 257 if _, err := p.Unmarshal(blob); err != nil { 258 return nil, err 259 } 260 return p, nil 261 } 262 263 // newTwistPoint unmarshals a binary blob into a bn256 elliptic curve point, 264 // returning it, or an error if the point is invalid. 265 func newTwistPoint(blob []byte) (*bn256.G2, error) { 266 p := new(bn256.G2) 267 if _, err := p.Unmarshal(blob); err != nil { 268 return nil, err 269 } 270 return p, nil 271 } 272 273 // bn256Add implements a native elliptic curve point addition. 274 type bn256Add struct{} 275 276 // RequiredGas returns the gas required to execute the pre-compiled contract. 277 func (c *bn256Add) RequiredGas(input []byte) uint64 { 278 return params.Bn256AddGas 279 } 280 281 func (c *bn256Add) Run(input []byte) ([]byte, error) { 282 x, err := newCurvePoint(common.GetData(input, 0, 64)) 283 if err != nil { 284 return nil, err 285 } 286 y, err := newCurvePoint(common.GetData(input, 64, 64)) 287 if err != nil { 288 return nil, err 289 } 290 res := new(bn256.G1) 291 res.Add(x, y) 292 return res.Marshal(), nil 293 } 294 295 // bn256ScalarMul implements a native elliptic curve scalar multiplication. 296 type bn256ScalarMul struct{} 297 298 // RequiredGas returns the gas required to execute the pre-compiled contract. 299 func (c *bn256ScalarMul) RequiredGas(input []byte) uint64 { 300 return params.Bn256ScalarMulGas 301 } 302 303 func (c *bn256ScalarMul) Run(input []byte) ([]byte, error) { 304 p, err := newCurvePoint(common.GetData(input, 0, 64)) 305 if err != nil { 306 return nil, err 307 } 308 res := new(bn256.G1) 309 res.ScalarMult(p, new(big.Int).SetBytes(common.GetData(input, 64, 32))) 310 return res.Marshal(), nil 311 } 312 313 var ( 314 // true32Byte is returned if the bn256 pairing check succeeds. 315 true32Byte = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1} 316 317 // false32Byte is returned if the bn256 pairing check fails. 318 false32Byte = make([]byte, 32) 319 320 // errBadPairingInput is returned if the bn256 pairing input is invalid. 321 errBadPairingInput = errors.New("bad elliptic curve pairing size") 322 ) 323 324 // bn256Pairing implements a pairing pre-compile for the bn256 curve 325 type bn256Pairing struct{} 326 327 // RequiredGas returns the gas required to execute the pre-compiled contract. 328 func (c *bn256Pairing) RequiredGas(input []byte) uint64 { 329 return params.Bn256PairingBaseGas + uint64(len(input)/192)*params.Bn256PairingPerPointGas 330 } 331 332 func (c *bn256Pairing) Run(input []byte) ([]byte, error) { 333 // Handle some corner cases cheaply 334 if len(input)%192 > 0 { 335 return nil, errBadPairingInput 336 } 337 // Convert the input into a set of coordinates 338 var ( 339 cs []*bn256.G1 340 ts []*bn256.G2 341 ) 342 for i := 0; i < len(input); i += 192 { 343 c, err := newCurvePoint(input[i : i+64]) 344 if err != nil { 345 return nil, err 346 } 347 t, err := newTwistPoint(input[i+64 : i+192]) 348 if err != nil { 349 return nil, err 350 } 351 cs = append(cs, c) 352 ts = append(ts, t) 353 } 354 // Execute the pairing checks and return the results 355 if bn256.PairingCheck(cs, ts) { 356 return true32Byte, nil 357 } 358 return false32Byte, nil 359 }