github.com/anthdm/go-ethereum@v1.8.4-0.20180412101906-60516c83b011/core/asm/compiler.go (about)

     1  // Copyright 2017 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package asm
    18  
    19  import (
    20  	"errors"
    21  	"fmt"
    22  	"math/big"
    23  	"os"
    24  	"strings"
    25  
    26  	"github.com/ethereum/go-ethereum/common/math"
    27  	"github.com/ethereum/go-ethereum/core/vm"
    28  )
    29  
    30  // Compiler contains information about the parsed source
    31  // and holds the tokens for the program.
    32  type Compiler struct {
    33  	tokens []token
    34  	binary []interface{}
    35  
    36  	labels map[string]int
    37  
    38  	pc, pos int
    39  
    40  	debug bool
    41  }
    42  
    43  // newCompiler returns a new allocated compiler.
    44  func NewCompiler(debug bool) *Compiler {
    45  	return &Compiler{
    46  		labels: make(map[string]int),
    47  		debug:  debug,
    48  	}
    49  }
    50  
    51  // Feed feeds tokens in to ch and are interpreted by
    52  // the compiler.
    53  //
    54  // feed is the first pass in the compile stage as it
    55  // collect the used labels in the program and keeps a
    56  // program counter which is used to determine the locations
    57  // of the jump dests. The labels can than be used in the
    58  // second stage to push labels and determine the right
    59  // position.
    60  func (c *Compiler) Feed(ch <-chan token) {
    61  	for i := range ch {
    62  		switch i.typ {
    63  		case number:
    64  			num := math.MustParseBig256(i.text).Bytes()
    65  			if len(num) == 0 {
    66  				num = []byte{0}
    67  			}
    68  			c.pc += len(num)
    69  		case stringValue:
    70  			c.pc += len(i.text) - 2
    71  		case element:
    72  			c.pc++
    73  		case labelDef:
    74  			c.labels[i.text] = c.pc
    75  			c.pc++
    76  		case label:
    77  			c.pc += 5
    78  		}
    79  
    80  		c.tokens = append(c.tokens, i)
    81  	}
    82  	if c.debug {
    83  		fmt.Fprintln(os.Stderr, "found", len(c.labels), "labels")
    84  	}
    85  }
    86  
    87  // Compile compiles the current tokens and returns a
    88  // binary string that can be interpreted by the EVM
    89  // and an error if it failed.
    90  //
    91  // compile is the second stage in the compile phase
    92  // which compiles the tokens to EVM instructions.
    93  func (c *Compiler) Compile() (string, []error) {
    94  	var errors []error
    95  	// continue looping over the tokens until
    96  	// the stack has been exhausted.
    97  	for c.pos < len(c.tokens) {
    98  		if err := c.compileLine(); err != nil {
    99  			errors = append(errors, err)
   100  		}
   101  	}
   102  
   103  	// turn the binary to hex
   104  	var bin string
   105  	for _, v := range c.binary {
   106  		switch v := v.(type) {
   107  		case vm.OpCode:
   108  			bin += fmt.Sprintf("%x", []byte{byte(v)})
   109  		case []byte:
   110  			bin += fmt.Sprintf("%x", v)
   111  		}
   112  	}
   113  	return bin, errors
   114  }
   115  
   116  // next returns the next token and increments the
   117  // position.
   118  func (c *Compiler) next() token {
   119  	token := c.tokens[c.pos]
   120  	c.pos++
   121  	return token
   122  }
   123  
   124  // compile line compiles a single line instruction e.g.
   125  // "push 1", "jump @label".
   126  func (c *Compiler) compileLine() error {
   127  	n := c.next()
   128  	if n.typ != lineStart {
   129  		return compileErr(n, n.typ.String(), lineStart.String())
   130  	}
   131  
   132  	lvalue := c.next()
   133  	switch lvalue.typ {
   134  	case eof:
   135  		return nil
   136  	case element:
   137  		if err := c.compileElement(lvalue); err != nil {
   138  			return err
   139  		}
   140  	case labelDef:
   141  		c.compileLabel()
   142  	case lineEnd:
   143  		return nil
   144  	default:
   145  		return compileErr(lvalue, lvalue.text, fmt.Sprintf("%v or %v", labelDef, element))
   146  	}
   147  
   148  	if n := c.next(); n.typ != lineEnd {
   149  		return compileErr(n, n.text, lineEnd.String())
   150  	}
   151  
   152  	return nil
   153  }
   154  
   155  // compileNumber compiles the number to bytes
   156  func (c *Compiler) compileNumber(element token) (int, error) {
   157  	num := math.MustParseBig256(element.text).Bytes()
   158  	if len(num) == 0 {
   159  		num = []byte{0}
   160  	}
   161  	c.pushBin(num)
   162  	return len(num), nil
   163  }
   164  
   165  // compileElement compiles the element (push & label or both)
   166  // to a binary representation and may error if incorrect statements
   167  // where fed.
   168  func (c *Compiler) compileElement(element token) error {
   169  	// check for a jump. jumps must be read and compiled
   170  	// from right to left.
   171  	if isJump(element.text) {
   172  		rvalue := c.next()
   173  		switch rvalue.typ {
   174  		case number:
   175  			// TODO figure out how to return the error properly
   176  			c.compileNumber(rvalue)
   177  		case stringValue:
   178  			// strings are quoted, remove them.
   179  			c.pushBin(rvalue.text[1 : len(rvalue.text)-2])
   180  		case label:
   181  			c.pushBin(vm.PUSH4)
   182  			pos := big.NewInt(int64(c.labels[rvalue.text])).Bytes()
   183  			pos = append(make([]byte, 4-len(pos)), pos...)
   184  			c.pushBin(pos)
   185  		default:
   186  			return compileErr(rvalue, rvalue.text, "number, string or label")
   187  		}
   188  		// push the operation
   189  		c.pushBin(toBinary(element.text))
   190  		return nil
   191  	} else if isPush(element.text) {
   192  		// handle pushes. pushes are read from left to right.
   193  		var value []byte
   194  
   195  		rvalue := c.next()
   196  		switch rvalue.typ {
   197  		case number:
   198  			value = math.MustParseBig256(rvalue.text).Bytes()
   199  			if len(value) == 0 {
   200  				value = []byte{0}
   201  			}
   202  		case stringValue:
   203  			value = []byte(rvalue.text[1 : len(rvalue.text)-1])
   204  		case label:
   205  			value = make([]byte, 4)
   206  			copy(value, big.NewInt(int64(c.labels[rvalue.text])).Bytes())
   207  		default:
   208  			return compileErr(rvalue, rvalue.text, "number, string or label")
   209  		}
   210  
   211  		if len(value) > 32 {
   212  			return fmt.Errorf("%d type error: unsupported string or number with size > 32", rvalue.lineno)
   213  		}
   214  
   215  		c.pushBin(vm.OpCode(int(vm.PUSH1) - 1 + len(value)))
   216  		c.pushBin(value)
   217  	} else {
   218  		c.pushBin(toBinary(element.text))
   219  	}
   220  
   221  	return nil
   222  }
   223  
   224  // compileLabel pushes a jumpdest to the binary slice.
   225  func (c *Compiler) compileLabel() {
   226  	c.pushBin(vm.JUMPDEST)
   227  }
   228  
   229  // pushBin pushes the value v to the binary stack.
   230  func (c *Compiler) pushBin(v interface{}) {
   231  	if c.debug {
   232  		fmt.Printf("%d: %v\n", len(c.binary), v)
   233  	}
   234  	c.binary = append(c.binary, v)
   235  }
   236  
   237  // isPush returns whether the string op is either any of
   238  // push(N).
   239  func isPush(op string) bool {
   240  	return op == "push"
   241  }
   242  
   243  // isJump returns whether the string op is jump(i)
   244  func isJump(op string) bool {
   245  	return op == "jumpi" || op == "jump"
   246  }
   247  
   248  // toBinary converts text to a vm.OpCode
   249  func toBinary(text string) vm.OpCode {
   250  	if isPush(text) {
   251  		text = "push1"
   252  	}
   253  	return vm.StringToOp(strings.ToUpper(text))
   254  }
   255  
   256  type compileError struct {
   257  	got  string
   258  	want string
   259  
   260  	lineno int
   261  }
   262  
   263  func (err compileError) Error() string {
   264  	return fmt.Sprintf("%d syntax error: unexpected %v, expected %v", err.lineno, err.got, err.want)
   265  }
   266  
   267  var (
   268  	errExpBol            = errors.New("expected beginning of line")
   269  	errExpElementOrLabel = errors.New("expected beginning of line")
   270  )
   271  
   272  func compileErr(c token, got, want string) error {
   273  	return compileError{
   274  		got:    got,
   275  		want:   want,
   276  		lineno: c.lineno,
   277  	}
   278  }