github.com/apache/beam/sdks/v2@v2.48.2/python/apache_beam/coders/coders_property_based_test.py (about) 1 # 2 # Licensed to the Apache Software Foundation (ASF) under one or more 3 # contributor license agreements. See the NOTICE file distributed with 4 # this work for additional information regarding copyright ownership. 5 # The ASF licenses this file to You under the Apache License, Version 2.0 6 # (the "License"); you may not use this file except in compliance with 7 # the License. You may obtain a copy of the License at 8 # 9 # http://www.apache.org/licenses/LICENSE-2.0 10 # 11 # Unless required by applicable law or agreed to in writing, software 12 # distributed under the License is distributed on an "AS IS" BASIS, 13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 # See the License for the specific language governing permissions and 15 # limitations under the License. 16 # 17 18 """Property tests for coders in the Python SDK. 19 20 The tests in this file utilize the hypothesis library to generate random test 21 cases and run them against Beam's coder implementations. 22 23 These tests are similar to fuzzing, except they test invariant properties 24 of code. 25 """ 26 27 import keyword 28 import math 29 import typing 30 import unittest 31 # TODO(pabloem): Include other categories of characters 32 from datetime import datetime 33 from string import ascii_letters 34 from string import digits 35 36 import numpy as np 37 from hypothesis import strategies as st 38 from hypothesis import assume 39 from hypothesis import given 40 from hypothesis import settings 41 from pytz import utc 42 43 from apache_beam.coders import FloatCoder 44 from apache_beam.coders import RowCoder 45 from apache_beam.coders import StrUtf8Coder 46 from apache_beam.coders.typecoders import registry as coders_registry 47 from apache_beam.typehints.schemas import PRIMITIVE_TO_ATOMIC_TYPE 48 from apache_beam.typehints.schemas import typing_to_runner_api 49 from apache_beam.utils.timestamp import Timestamp 50 51 SCHEMA_TYPES_TO_STRATEGY = { 52 str: st.text(), 53 bytes: st.binary(), 54 typing.ByteString: st.binary(), 55 # Maximum datetime on year 3000 to conform to Windows OS limits. 56 Timestamp: st.datetimes( 57 min_value=datetime(1970, 1, 1, 1, 1), 58 max_value=datetime( 59 3000, 1, 1, 0, 60 0)).map(lambda dt: Timestamp.from_utc_datetime(dt.astimezone(utc))), 61 int: st.integers(min_value=-(1 << 63 - 1), max_value=1 << 63 - 1), 62 # INT8/BYTE not yet supported by RowCoder. 63 # np.int8: st.binary(min_size=1, max_size=1), 64 # INT16 not yet supported by RowCoder. 65 # np.int16: st.integers(min_value=-(1 << 15 - 1), max_value=1 << 15 - 1), 66 np.int32: st.integers(min_value=-(1 << 31 - 1), max_value=1 << 31 - 1), 67 np.int64: st.integers(min_value=-(1 << 63 - 1), max_value=1 << 63 - 1), 68 np.uint32: st.integers(min_value=0, max_value=1 << 32 - 1), 69 np.uint64: st.integers(min_value=0, max_value=1 << 64 - 1), 70 np.float32: st.floats(width=32, allow_nan=False), 71 np.float64: st.floats(width=64, allow_nan=False), 72 float: st.floats(width=64, allow_nan=False), 73 bool: st.booleans() 74 } 75 76 # TODO(https://github.com/apache/beam/issues/23003): Support logical types. 77 SCHEMA_TYPES = list(SCHEMA_TYPES_TO_STRATEGY.keys()) 78 79 # A hypothesis strategy that generates schemas. 80 # A schema is a list containing tuples of strings (field names), types (field 81 # types) and boolean (nullable or not). 82 # This strategy currently generates rows with simple types (i.e. non-list, and 83 # non-map fields). 84 SCHEMA_GENERATOR_STRATEGY = st.lists( 85 st.tuples( 86 st.text(ascii_letters + digits + '_', min_size=1), 87 st.sampled_from(SCHEMA_TYPES), 88 st.booleans())) 89 90 TYPES_UNSUPPORTED_BY_ROW_CODER = {np.int8, np.int16} 91 92 93 class TypesAreAllTested(unittest.TestCase): 94 def test_all_types_are_tested(self): 95 # Verify that all types among Beam's defined types are being tested 96 self.assertEqual( 97 set(SCHEMA_TYPES).intersection(PRIMITIVE_TO_ATOMIC_TYPE.keys()), 98 set(PRIMITIVE_TO_ATOMIC_TYPE.keys()).difference( 99 TYPES_UNSUPPORTED_BY_ROW_CODER)) 100 101 102 class ProperyTestingCoders(unittest.TestCase): 103 @given(st.text()) 104 def test_string_coder(self, txt: str): 105 coder = StrUtf8Coder() 106 self.assertEqual(coder.decode(coder.encode(txt)), txt) 107 108 @given(st.floats()) 109 def test_float_coder(self, num: float): 110 coder = FloatCoder() 111 test_num = coder.decode(coder.encode(num)) 112 if math.isnan(num): 113 # nan != nan. 114 self.assertTrue(math.isnan(test_num)) 115 else: 116 self.assertEqual(coder.decode(coder.encode(num)), num) 117 118 @settings(deadline=None, print_blob=True) 119 @given(st.data()) 120 def test_row_coder(self, data: st.DataObject): 121 """Generate rows and schemas, and test their encoding/decoding. 122 123 The schemas are generated based on the SCHEMA_GENERATOR_STRATEGY. 124 """ 125 schema = data.draw(SCHEMA_GENERATOR_STRATEGY) 126 # Assume that the cardinality of the set of names is the same 127 # as the length of the schema. This means there's no duplicate 128 # names for fields. 129 # If this condition does not hold, then we must not continue the 130 # test. 131 assume(len({name for name, _, _ in schema}) == len(schema)) 132 assume(all(not keyword.iskeyword(name) for name, _, _ in schema)) 133 assume( 134 len({n[0] 135 for n, _, _ in schema}.intersection(set(digits + '_'))) == 0) 136 RowType = typing.NamedTuple( # type: ignore 137 'RandomRowType', 138 [(name, type_ if not nullable else typing.Optional[type_]) for name, 139 type_, 140 nullable in schema]) 141 coders_registry.register_coder(RowType, RowCoder) 142 143 # TODO(https://github.com/apache/beam/issues/23002): Apply nulls for these 144 row = RowType( # type: ignore 145 **{ 146 name: data.draw(SCHEMA_TYPES_TO_STRATEGY[type_]) 147 for name, 148 type_, 149 nullable in schema 150 }) 151 152 coder = RowCoder(typing_to_runner_api(RowType).row_type.schema) 153 self.assertEqual(coder.decode(coder.encode(row)), row) 154 155 156 if __name__ == "__main__": 157 unittest.main()