github.com/apache/beam/sdks/v2@v2.48.2/python/apache_beam/examples/cookbook/custom_ptransform.py (about) 1 # 2 # Licensed to the Apache Software Foundation (ASF) under one or more 3 # contributor license agreements. See the NOTICE file distributed with 4 # this work for additional information regarding copyright ownership. 5 # The ASF licenses this file to You under the Apache License, Version 2.0 6 # (the "License"); you may not use this file except in compliance with 7 # the License. You may obtain a copy of the License at 8 # 9 # http://www.apache.org/licenses/LICENSE-2.0 10 # 11 # Unless required by applicable law or agreed to in writing, software 12 # distributed under the License is distributed on an "AS IS" BASIS, 13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 # See the License for the specific language governing permissions and 15 # limitations under the License. 16 # 17 18 """Various implementations of a Count custom PTransform. 19 20 These example show the different ways you can write custom PTransforms. 21 """ 22 23 # pytype: skip-file 24 25 import argparse 26 import logging 27 28 import apache_beam as beam 29 from apache_beam.io import ReadFromText 30 from apache_beam.io import WriteToText 31 from apache_beam.options.pipeline_options import PipelineOptions 32 33 # pylint doesn't understand our pipeline syntax: 34 # pylint:disable=expression-not-assigned 35 36 37 class Count1(beam.PTransform): 38 """Count as a subclass of PTransform, with an apply method.""" 39 def expand(self, pcoll): 40 return ( 41 pcoll 42 | 'ParWithOne' >> beam.Map(lambda v: (v, 1)) 43 | beam.CombinePerKey(sum)) 44 45 46 def run_count1(known_args, options): 47 """Runs the first example pipeline.""" 48 logging.info('Running first pipeline') 49 with beam.Pipeline(options=options) as p: 50 ( 51 p | beam.io.ReadFromText(known_args.input) 52 | Count1() 53 | beam.io.WriteToText(known_args.output)) 54 55 56 @beam.ptransform_fn 57 def Count2(pcoll): # pylint: disable=invalid-name 58 """Count as a decorated function.""" 59 return ( 60 pcoll 61 | 'PairWithOne' >> beam.Map(lambda v: (v, 1)) 62 | beam.CombinePerKey(sum)) 63 64 65 def run_count2(known_args, options): 66 """Runs the second example pipeline.""" 67 logging.info('Running second pipeline') 68 with beam.Pipeline(options=options) as p: 69 ( 70 p | ReadFromText(known_args.input) 71 | Count2() # pylint: disable=no-value-for-parameter 72 | WriteToText(known_args.output)) 73 74 75 @beam.ptransform_fn 76 def Count3(pcoll, factor=1): # pylint: disable=invalid-name 77 """Count as a decorated function with a side input. 78 79 Args: 80 pcoll: the PCollection passed in from the previous transform 81 factor: the amount by which to count 82 83 Returns: 84 A PCollection counting the number of times each unique element occurs. 85 """ 86 return ( 87 pcoll 88 | 'PairWithOne' >> beam.Map(lambda v: (v, factor)) 89 | beam.CombinePerKey(sum)) 90 91 92 def run_count3(known_args, options): 93 """Runs the third example pipeline.""" 94 logging.info('Running third pipeline') 95 with beam.Pipeline(options=options) as p: 96 ( 97 p | ReadFromText(known_args.input) 98 | Count3(2) # pylint: disable=no-value-for-parameter 99 | WriteToText(known_args.output)) 100 101 102 def get_args(argv): 103 """Determines user specified arguments from the given list of arguments. 104 105 Args: 106 argv: all arguments. 107 108 Returns: 109 A pair of argument lists containing known and remaining arguments. 110 """ 111 112 parser = argparse.ArgumentParser() 113 parser.add_argument('--input', required=True, help='Input file to process.') 114 parser.add_argument( 115 '--output', required=True, help='Output file to write results to.') 116 return parser.parse_known_args(argv) 117 118 119 def run(argv=None): 120 known_args, pipeline_args = get_args(argv) 121 122 # pipeline initialization may modify PipelineOptions object. 123 # Create instances for each. 124 run_count1(known_args, PipelineOptions(pipeline_args)) 125 run_count2(known_args, PipelineOptions(pipeline_args)) 126 run_count3(known_args, PipelineOptions(pipeline_args)) 127 128 129 if __name__ == '__main__': 130 logging.getLogger().setLevel(logging.INFO) 131 run()