github.com/apache/beam/sdks/v2@v2.48.2/python/apache_beam/ml/inference/onnx_inference_it_test.py (about) 1 # 2 # Licensed to the Apache Software Foundation (ASF) under one or more 3 # contributor license agreements. See the NOTICE file distributed with 4 # this work for additional information regarding copyright ownership. 5 # The ASF licenses this file to You under the Apache License, Version 2.0 6 # (the "License"); you may not use this file except in compliance with 7 # the License. You may obtain a copy of the License at 8 # 9 # http://www.apache.org/licenses/LICENSE-2.0 10 # 11 # Unless required by applicable law or agreed to in writing, software 12 # distributed under the License is distributed on an "AS IS" BASIS, 13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 # See the License for the specific language governing permissions and 15 # limitations under the License. 16 # 17 18 """End-to-End test for Onnx Inference""" 19 20 import logging 21 import os 22 import unittest 23 import uuid 24 25 import pytest 26 27 from apache_beam.io.filesystems import FileSystems 28 from apache_beam.testing.test_pipeline import TestPipeline 29 30 # pylint: disable=ungrouped-imports 31 try: 32 import onnx 33 from apache_beam.examples.inference import onnx_sentiment_classification 34 except ImportError as e: 35 onnx = None 36 37 38 def process_outputs(filepath): 39 with FileSystems().open(filepath) as f: 40 lines = f.readlines() 41 lines = [l.decode('utf-8').strip('\n') for l in lines] 42 return lines 43 44 45 @unittest.skipIf( 46 os.getenv('FORCE_ONNX_IT') is None and onnx is None, 47 'Missing dependencies. ' 48 'Test depends on onnx and transformers') 49 class OnnxInference(unittest.TestCase): 50 @pytest.mark.uses_onnx 51 @pytest.mark.it_postcommit 52 def test_onnx_run_inference_roberta_sentiment_classification(self): 53 test_pipeline = TestPipeline(is_integration_test=True) 54 # Path to text file containing some sentences 55 file_of_sentences = ( 56 'gs://apache-beam-ml/testing/inputs/onnx/' 57 'sentiment_classification_input.txt') 58 output_file_dir = 'local/sentiment_classification/output' 59 output_file = '/'.join([output_file_dir, str(uuid.uuid4()), 'result.txt']) 60 61 model_uri = ( 62 'gs://apache-beam-ml/models/' 63 'roberta_sentiment_classification.onnx') 64 extra_opts = { 65 'input': file_of_sentences, 66 'output': output_file, 67 'model_uri': model_uri, 68 } 69 onnx_sentiment_classification.run( 70 test_pipeline.get_full_options_as_args(**extra_opts), 71 save_main_session=False) 72 73 self.assertEqual(FileSystems().exists(output_file), True) 74 predictions = process_outputs(filepath=output_file) 75 actuals_file = ( 76 'gs://apache-beam-ml/testing/expected_outputs/' 77 'test_onnx_run_inference_roberta_sentiment' 78 '_classification_actuals.txt') 79 actuals = process_outputs(filepath=actuals_file) 80 81 predictions_dict = {} 82 for prediction in predictions: 83 text, predicted_text = prediction.split(';') 84 predictions_dict[text] = predicted_text 85 86 for actual in actuals: 87 text, actual_predicted_text = actual.split(';') 88 predicted_predicted_text = predictions_dict[text] 89 self.assertEqual(actual_predicted_text, predicted_predicted_text) 90 91 92 if __name__ == '__main__': 93 logging.getLogger().setLevel(logging.DEBUG) 94 unittest.main()