github.com/april1989/origin-go-tools@v0.0.32/cmd/splitdwarf/splitdwarf.go (about)

     1  // Copyright 2018 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // +build !js,!nacl,!plan9,!solaris,!windows
     6  
     7  /*
     8  
     9  Splitdwarf uncompresses and copies the DWARF segment of a Mach-O
    10  executable into the "dSYM" file expected by lldb and ports of gdb
    11  on OSX.
    12  
    13  Usage: splitdwarf osxMachoFile [ osxDsymFile ]
    14  
    15  Unless a dSYM file name is provided on the command line,
    16  splitdwarf will place it where the OSX tools expect it, in
    17  "<osxMachoFile>.dSYM/Contents/Resources/DWARF/<osxMachoFile>",
    18  creating directories as necessary.
    19  
    20  */
    21  package main // import "github.com/april1989/origin-go-tools/cmd/splitdwarf"
    22  
    23  import (
    24  	"crypto/sha256"
    25  	"fmt"
    26  	"io"
    27  	"os"
    28  	"path/filepath"
    29  	"strings"
    30  	"syscall"
    31  
    32  	"github.com/april1989/origin-go-tools/cmd/splitdwarf/internal/macho"
    33  )
    34  
    35  const (
    36  	pageAlign = 12 // 4096 = 1 << 12
    37  )
    38  
    39  func note(format string, why ...interface{}) {
    40  	fmt.Fprintf(os.Stderr, format+"\n", why...)
    41  }
    42  
    43  func fail(format string, why ...interface{}) {
    44  	note(format, why...)
    45  	os.Exit(1)
    46  }
    47  
    48  // splitdwarf inputexe [ outputdwarf ]
    49  func main() {
    50  	if len(os.Args) < 2 || len(os.Args) > 3 {
    51  		fmt.Printf(`
    52  Usage: %s input_exe [ output_dsym ]
    53  Reads the executable input_exe, uncompresses and copies debugging
    54  information into output_dsym. If output_dsym is not specified,
    55  the path
    56        input_exe.dSYM/Contents/Resources/DWARF/input_exe
    57  is used instead.  That is the path that gdb and lldb expect
    58  on OSX.  Input_exe needs a UUID segment; if that is missing,
    59  then one is created and added.  In that case, the permissions
    60  for input_exe need to allow writing.
    61  `, os.Args[0])
    62  		return
    63  	}
    64  
    65  	// Read input, find DWARF, be sure it looks right
    66  	inputExe := os.Args[1]
    67  	exeFile, err := os.Open(inputExe)
    68  	if err != nil {
    69  		fail("%v", err)
    70  	}
    71  	exeMacho, err := macho.NewFile(exeFile)
    72  	if err != nil {
    73  		fail("(internal) Couldn't create macho, %v", err)
    74  	}
    75  	// Postpone dealing with output till input is known-good
    76  
    77  	// describe(&exeMacho.FileTOC)
    78  
    79  	// Offsets into __LINKEDIT:
    80  	//
    81  	// Command LC_SYMTAB =
    82  	//  (1) number of symbols at file offset (within link edit section) of 16-byte symbol table entries
    83  	// struct {
    84  	//  StringTableIndex uint32
    85  	//  Type, SectionIndex uint8
    86  	//  Description uint16
    87  	//  Value uint64
    88  	// }
    89  	//
    90  	// (2) string table offset and size.  Strings are zero-byte terminated.  First must be " ".
    91  	//
    92  	// Command LC_DYSYMTAB = indices within symtab (above), except for IndSym
    93  	//   IndSym Offset = file offset (within link edit section) of 4-byte indices within symtab.
    94  	//
    95  	// Section __TEXT.__symbol_stub1.
    96  	//   Offset and size (Reserved2) locate and describe a table for thios section.
    97  	//   Symbols beginning at IndirectSymIndex (Reserved1) (see LC_DYSYMTAB.IndSymOffset) refer to this table.
    98  	//   (These table entries are apparently PLTs [Procedure Linkage Table/Trampoline])
    99  	//
   100  	// Section __DATA.__nl_symbol_ptr.
   101  	//   Reserved1 seems to be an index within the Indirect symbols (see LC_DYSYMTAB.IndSymOffset)
   102  	//   Some of these symbols appear to be duplicates of other indirect symbols appearing early
   103  	//
   104  	// Section __DATA.__la_symbol_ptr.
   105  	//   Reserved1 seems to be an index within the Indirect symbols (see LC_DYSYMTAB.IndSymOffset)
   106  	//   Some of these symbols appear to be duplicates of other indirect symbols appearing early
   107  	//
   108  
   109  	// Create a File for the output dwarf.
   110  	// Copy header, file type is MH_DSYM
   111  	// Copy the relevant load commands
   112  
   113  	// LoadCmdUuid
   114  	// Symtab -- very abbreviated (Use DYSYMTAB Iextdefsym, Nextdefsym to identify these).
   115  	// Segment __PAGEZERO
   116  	// Segment __TEXT (zero the size, zero the offset of each section)
   117  	// Segment __DATA (zero the size, zero the offset of each section)
   118  	// Segment __LINKEDIT (contains the symbols and strings from Symtab)
   119  	// Segment __DWARF (uncompressed)
   120  
   121  	var uuid *macho.Uuid
   122  	for _, l := range exeMacho.Loads {
   123  		switch l.Command() {
   124  		case macho.LcUuid:
   125  			uuid = l.(*macho.Uuid)
   126  		}
   127  	}
   128  
   129  	// Ensure a given load is not nil
   130  	nonnilC := func(l macho.Load, s string) {
   131  		if l == nil {
   132  			fail("input file %s lacks load command %s", inputExe, s)
   133  		}
   134  	}
   135  
   136  	// Find a segment by name and ensure it is not nil
   137  	nonnilS := func(s string) *macho.Segment {
   138  		l := exeMacho.Segment(s)
   139  		if l == nil {
   140  			fail("input file %s lacks segment %s", inputExe, s)
   141  		}
   142  		return l
   143  	}
   144  
   145  	newtoc := exeMacho.FileTOC.DerivedCopy(macho.MhDsym, 0)
   146  
   147  	symtab := exeMacho.Symtab
   148  	dysymtab := exeMacho.Dysymtab // Not appearing in output, but necessary to construct output
   149  	nonnilC(symtab, "symtab")
   150  	nonnilC(dysymtab, "dysymtab")
   151  	text := nonnilS("__TEXT")
   152  	data := nonnilS("__DATA")
   153  	linkedit := nonnilS("__LINKEDIT")
   154  	pagezero := nonnilS("__PAGEZERO")
   155  
   156  	newtext := text.CopyZeroed()
   157  	newdata := data.CopyZeroed()
   158  	newsymtab := symtab.Copy()
   159  
   160  	// Linkedit segment contain symbols and strings;
   161  	// Symtab refers to offsets into linkedit.
   162  	// This next bit initializes newsymtab and sets up data structures for the linkedit segment
   163  	linkeditsyms := []macho.Nlist64{}
   164  	linkeditstrings := []string{}
   165  
   166  	// Linkedit will begin at the second page, i.e., offset is one page from beginning
   167  	// Symbols come first
   168  	linkeditsymbase := uint32(1) << pageAlign
   169  
   170  	// Strings come second, offset by the number of symbols times their size.
   171  	// Only those symbols from dysymtab.defsym are written into the debugging information.
   172  	linkeditstringbase := linkeditsymbase + exeMacho.FileTOC.SymbolSize()*dysymtab.Nextdefsym
   173  
   174  	// The first two bytes of the strings are reserved for space, null (' ', \000)
   175  	linkeditstringcur := uint32(2)
   176  
   177  	newsymtab.Syms = newsymtab.Syms[:0]
   178  	newsymtab.Symoff = linkeditsymbase
   179  	newsymtab.Stroff = linkeditstringbase
   180  	newsymtab.Nsyms = dysymtab.Nextdefsym
   181  	for i := uint32(0); i < dysymtab.Nextdefsym; i++ {
   182  		ii := i + dysymtab.Iextdefsym
   183  		oldsym := symtab.Syms[ii]
   184  		newsymtab.Syms = append(newsymtab.Syms, oldsym)
   185  
   186  		linkeditsyms = append(linkeditsyms, macho.Nlist64{Name: uint32(linkeditstringcur),
   187  			Type: oldsym.Type, Sect: oldsym.Sect, Desc: oldsym.Desc, Value: oldsym.Value})
   188  		linkeditstringcur += uint32(len(oldsym.Name)) + 1
   189  		linkeditstrings = append(linkeditstrings, oldsym.Name)
   190  	}
   191  	newsymtab.Strsize = linkeditstringcur
   192  
   193  	exeNeedsUuid := uuid == nil
   194  	if exeNeedsUuid {
   195  		uuid = &macho.Uuid{macho.UuidCmd{LoadCmd: macho.LcUuid}}
   196  		uuid.Len = uuid.LoadSize(newtoc)
   197  		copy(uuid.Id[0:], contentuuid(&exeMacho.FileTOC)[0:16])
   198  		uuid.Id[6] = uuid.Id[6]&^0xf0 | 0x40 // version 4 (pseudo-random); see section 4.1.3
   199  		uuid.Id[8] = uuid.Id[8]&^0xc0 | 0x80 // variant bits; see section 4.1.1
   200  	}
   201  	newtoc.AddLoad(uuid)
   202  
   203  	// For the specified segment (assumed to be in exeMacho) make a copy of its
   204  	// sections with appropriate fields zeroed out, and append them to the
   205  	// currently-last segment in newtoc.
   206  	copyZOdSections := func(g *macho.Segment) {
   207  		for i := g.Firstsect; i < g.Firstsect+g.Nsect; i++ {
   208  			s := exeMacho.Sections[i].Copy()
   209  			s.Offset = 0
   210  			s.Reloff = 0
   211  			s.Nreloc = 0
   212  			newtoc.AddSection(s)
   213  		}
   214  	}
   215  
   216  	newtoc.AddLoad(newsymtab)
   217  	newtoc.AddSegment(pagezero)
   218  	newtoc.AddSegment(newtext)
   219  	copyZOdSections(text)
   220  	newtoc.AddSegment(newdata)
   221  	copyZOdSections(data)
   222  
   223  	newlinkedit := linkedit.Copy()
   224  	newlinkedit.Offset = uint64(linkeditsymbase)
   225  	newlinkedit.Filesz = uint64(linkeditstringcur)
   226  	newlinkedit.Addr = macho.RoundUp(newdata.Addr+newdata.Memsz, 1<<pageAlign) // Follows data sections in file
   227  	newlinkedit.Memsz = macho.RoundUp(newlinkedit.Filesz, 1<<pageAlign)
   228  	// The rest should copy over fine.
   229  	newtoc.AddSegment(newlinkedit)
   230  
   231  	dwarf := nonnilS("__DWARF")
   232  	newdwarf := dwarf.CopyZeroed()
   233  	newdwarf.Offset = macho.RoundUp(newlinkedit.Offset+newlinkedit.Filesz, 1<<pageAlign)
   234  	newdwarf.Filesz = dwarf.UncompressedSize(&exeMacho.FileTOC, 1)
   235  	newdwarf.Addr = newlinkedit.Addr + newlinkedit.Memsz // Follows linkedit sections in file.
   236  	newdwarf.Memsz = macho.RoundUp(newdwarf.Filesz, 1<<pageAlign)
   237  	newtoc.AddSegment(newdwarf)
   238  
   239  	// Map out Dwarf sections (that is, this is section descriptors, not their contents).
   240  	offset := uint32(newdwarf.Offset)
   241  	for i := dwarf.Firstsect; i < dwarf.Firstsect+dwarf.Nsect; i++ {
   242  		o := exeMacho.Sections[i]
   243  		s := o.Copy()
   244  		s.Offset = offset
   245  		us := o.UncompressedSize()
   246  		if s.Size < us {
   247  			s.Size = uint64(us)
   248  			s.Align = 0 // This is apparently true for debugging sections; not sure if it generalizes.
   249  		}
   250  		offset += uint32(us)
   251  		if strings.HasPrefix(s.Name, "__z") {
   252  			s.Name = "__" + s.Name[3:] // remove "z"
   253  		}
   254  		s.Reloff = 0
   255  		s.Nreloc = 0
   256  		newtoc.AddSection(s)
   257  	}
   258  
   259  	// Write segments/sections.
   260  	// Only dwarf and linkedit contain anything interesting.
   261  
   262  	// Memory map the output file to get the buffer directly.
   263  	outDwarf := inputExe + ".dSYM/Contents/Resources/DWARF"
   264  	if len(os.Args) > 2 {
   265  		outDwarf = os.Args[2]
   266  	} else {
   267  		err := os.MkdirAll(outDwarf, 0755)
   268  		if err != nil {
   269  			fail("%v", err)
   270  		}
   271  		outDwarf = filepath.Join(outDwarf, filepath.Base(inputExe))
   272  	}
   273  	dwarfFile, buffer := CreateMmapFile(outDwarf, int64(newtoc.FileSize()))
   274  
   275  	// (1) Linkedit segment
   276  	// Symbol table
   277  	offset = uint32(newlinkedit.Offset)
   278  	for i := range linkeditsyms {
   279  		if exeMacho.Magic == macho.Magic64 {
   280  			offset += linkeditsyms[i].Put64(buffer[offset:], newtoc.ByteOrder)
   281  		} else {
   282  			offset += linkeditsyms[i].Put32(buffer[offset:], newtoc.ByteOrder)
   283  		}
   284  	}
   285  
   286  	// Initial two bytes of string table, followed by actual zero-terminated strings.
   287  	buffer[linkeditstringbase] = ' '
   288  	buffer[linkeditstringbase+1] = 0
   289  	offset = linkeditstringbase + 2
   290  	for _, str := range linkeditstrings {
   291  		for i := 0; i < len(str); i++ {
   292  			buffer[offset] = str[i]
   293  			offset++
   294  		}
   295  		buffer[offset] = 0
   296  		offset++
   297  	}
   298  
   299  	// (2) DWARF segment
   300  	ioff := newdwarf.Firstsect - dwarf.Firstsect
   301  	for i := dwarf.Firstsect; i < dwarf.Firstsect+dwarf.Nsect; i++ {
   302  		s := exeMacho.Sections[i]
   303  		j := i + ioff
   304  		s.PutUncompressedData(buffer[newtoc.Sections[j].Offset:])
   305  	}
   306  
   307  	// Because "text" overlaps the header and the loads, write them afterwards, just in case.
   308  	// Write header.
   309  	newtoc.Put(buffer)
   310  
   311  	err = syscall.Munmap(buffer)
   312  	if err != nil {
   313  		fail("Munmap %s for dwarf output failed, %v", outDwarf, err)
   314  	}
   315  	err = dwarfFile.Close()
   316  	if err != nil {
   317  		fail("Close %s for dwarf output after mmap/munmap failed, %v", outDwarf, err)
   318  	}
   319  
   320  	if exeNeedsUuid { // Map the original exe, modify the header, and write the UUID command
   321  		hdr := exeMacho.FileTOC.FileHeader
   322  		oldCommandEnd := hdr.SizeCommands + newtoc.HdrSize()
   323  		hdr.NCommands += 1
   324  		hdr.SizeCommands += uuid.LoadSize(newtoc)
   325  
   326  		mapf, err := os.OpenFile(inputExe, os.O_RDWR, 0)
   327  		if err != nil {
   328  			fail("Updating UUID in binary failed, %v", err)
   329  		}
   330  		exebuf, err := syscall.Mmap(int(mapf.Fd()), 0, int(macho.RoundUp(uint64(hdr.SizeCommands), 1<<pageAlign)),
   331  			syscall.PROT_READ|syscall.PROT_WRITE, syscall.MAP_FILE|syscall.MAP_SHARED)
   332  		if err != nil {
   333  			fail("Mmap of %s for UUID update failed, %v", inputExe, err)
   334  		}
   335  		_ = hdr.Put(exebuf, newtoc.ByteOrder)
   336  		_ = uuid.Put(exebuf[oldCommandEnd:], newtoc.ByteOrder)
   337  		err = syscall.Munmap(exebuf)
   338  		if err != nil {
   339  			fail("Munmap of %s for UUID update failed, %v", inputExe, err)
   340  		}
   341  	}
   342  }
   343  
   344  // CreateMmapFile creates the file 'outDwarf' of the specified size, mmaps that file,
   345  // and returns the file descriptor and mapped buffer.
   346  func CreateMmapFile(outDwarf string, size int64) (*os.File, []byte) {
   347  	dwarfFile, err := os.OpenFile(outDwarf, os.O_RDWR|os.O_CREATE|os.O_TRUNC, 0666)
   348  	if err != nil {
   349  		fail("Open for mmap failed, %v", err)
   350  	}
   351  	err = os.Truncate(outDwarf, size)
   352  	if err != nil {
   353  		fail("Truncate/extend of %s to %d bytes failed, %v", dwarfFile, size, err)
   354  	}
   355  	buffer, err := syscall.Mmap(int(dwarfFile.Fd()), 0, int(size), syscall.PROT_READ|syscall.PROT_WRITE, syscall.MAP_FILE|syscall.MAP_SHARED)
   356  	if err != nil {
   357  		fail("Mmap %s for dwarf output update failed, %v", outDwarf, err)
   358  	}
   359  	return dwarfFile, buffer
   360  }
   361  
   362  func describe(exem *macho.FileTOC) {
   363  	note("Type = %s, Flags=0x%x", exem.Type, uint32(exem.Flags))
   364  	for i, l := range exem.Loads {
   365  		if s, ok := l.(*macho.Segment); ok {
   366  			fmt.Printf("Load %d is Segment %s, offset=0x%x, filesz=%d, addr=0x%x, memsz=%d, nsect=%d\n", i, s.Name,
   367  				s.Offset, s.Filesz, s.Addr, s.Memsz, s.Nsect)
   368  			for j := uint32(0); j < s.Nsect; j++ {
   369  				c := exem.Sections[j+s.Firstsect]
   370  				fmt.Printf("   Section %s, offset=0x%x, size=%d, addr=0x%x, flags=0x%x, nreloc=%d, res1=%d, res2=%d, res3=%d\n", c.Name, c.Offset, c.Size, c.Addr, c.Flags, c.Nreloc, c.Reserved1, c.Reserved2, c.Reserved3)
   371  			}
   372  		} else {
   373  			fmt.Printf("Load %d is %v\n", i, l)
   374  		}
   375  	}
   376  	if exem.SizeCommands != exem.LoadSize() {
   377  		fail("recorded command size %d does not equal computed command size %d", exem.SizeCommands, exem.LoadSize())
   378  	} else {
   379  		note("recorded command size %d, computed command size %d", exem.SizeCommands, exem.LoadSize())
   380  	}
   381  	note("File size is %d", exem.FileSize())
   382  }
   383  
   384  // contentuuid returns a UUID derived from (some of) the content of an executable.
   385  // specifically included are the non-DWARF sections, specifically excluded are things
   386  // that surely depend on the presence or absence of DWARF sections (e.g., section
   387  // numbers, positions with file, number of load commands).
   388  // (It was considered desirable if this was insensitive to the presence of the
   389  // __DWARF segment, however because it is not last, it moves other segments,
   390  // whose contents appear to contain file offset references.)
   391  func contentuuid(exem *macho.FileTOC) []byte {
   392  	h := sha256.New()
   393  	for _, l := range exem.Loads {
   394  		if l.Command() == macho.LcUuid {
   395  			continue
   396  		}
   397  		if s, ok := l.(*macho.Segment); ok {
   398  			if s.Name == "__DWARF" || s.Name == "__PAGEZERO" {
   399  				continue
   400  			}
   401  			for j := uint32(0); j < s.Nsect; j++ {
   402  				c := exem.Sections[j+s.Firstsect]
   403  				io.Copy(h, c.Open())
   404  			}
   405  		} // Getting dependence on other load commands right is fiddly.
   406  	}
   407  	return h.Sum(nil)
   408  }