github.com/aquanetwork/aquachain@v1.7.8/core/block_validator.go (about)

     1  // Copyright 2015 The aquachain Authors
     2  // This file is part of the aquachain library.
     3  //
     4  // The aquachain library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The aquachain library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the aquachain library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package core
    18  
    19  import (
    20  	"fmt"
    21  
    22  	"gitlab.com/aquachain/aquachain/consensus"
    23  	"gitlab.com/aquachain/aquachain/core/state"
    24  	"gitlab.com/aquachain/aquachain/core/types"
    25  	"gitlab.com/aquachain/aquachain/params"
    26  )
    27  
    28  // BlockValidator is responsible for validating block headers, uncles and
    29  // processed state.
    30  //
    31  // BlockValidator implements Validator.
    32  type BlockValidator struct {
    33  	config *params.ChainConfig // Chain configuration options
    34  	bc     *BlockChain         // Canonical block chain
    35  	engine consensus.Engine    // Consensus engine used for validating
    36  }
    37  
    38  // NewBlockValidator returns a new block validator which is safe for re-use
    39  func NewBlockValidator(config *params.ChainConfig, blockchain *BlockChain, engine consensus.Engine) *BlockValidator {
    40  	validator := &BlockValidator{
    41  		config: config,
    42  		engine: engine,
    43  		bc:     blockchain,
    44  	}
    45  	return validator
    46  }
    47  
    48  // ValidateBody validates the given block's uncles and verifies the the block
    49  // header's transaction and uncle roots. The headers are assumed to be already
    50  // validated at this point.
    51  func (v *BlockValidator) ValidateBody(block *types.Block) error {
    52  	// Check whether the block's known, and if not, that it's linkable
    53  	//block.SetVersion(v.config.GetBlockVersion(block.Number()))
    54  	if v.bc.HasBlockAndState(block.Hash(), block.NumberU64()) {
    55  		return ErrKnownBlock
    56  	}
    57  	if !v.bc.HasBlockAndState(block.ParentHash(), block.NumberU64()-1) {
    58  		if !v.bc.HasBlock(block.ParentHash(), block.NumberU64()-1) {
    59  			return consensus.ErrUnknownAncestor
    60  		}
    61  		return consensus.ErrPrunedAncestor
    62  	}
    63  	// Header validity is known at this point, check the uncles and transactions
    64  	header := block.Header()
    65  	if err := v.engine.VerifyUncles(v.bc, block); err != nil {
    66  		return err
    67  	}
    68  	if hash := types.CalcUncleHash(block.Uncles()); hash != header.UncleHash {
    69  		return fmt.Errorf("uncle root hash mismatch: have %x, want %x", hash, header.UncleHash)
    70  	}
    71  	if hash := types.DeriveSha(block.Transactions()); hash != header.TxHash {
    72  		return fmt.Errorf("transaction root hash mismatch: have %x, want %x", hash, header.TxHash)
    73  	}
    74  	return nil
    75  }
    76  
    77  // ValidateState validates the various changes that happen after a state
    78  // transition, such as amount of used gas, the receipt roots and the state root
    79  // itself. ValidateState returns a database batch if the validation was a success
    80  // otherwise nil and an error is returned.
    81  func (v *BlockValidator) ValidateState(block, parent *types.Block, statedb *state.StateDB, receipts types.Receipts, usedGas uint64) error {
    82  	header := block.Header()
    83  	if block.GasUsed() != usedGas {
    84  		return fmt.Errorf("invalid gas used (remote: %d local: %d)", block.GasUsed(), usedGas)
    85  	}
    86  	// Validate the received block's bloom with the one derived from the generated receipts.
    87  	// For valid blocks this should always validate to true.
    88  	rbloom := types.CreateBloom(receipts)
    89  	if rbloom != header.Bloom {
    90  		return fmt.Errorf("invalid bloom (remote: %x  local: %x)", header.Bloom, rbloom)
    91  	}
    92  	// Tre receipt Trie's root (R = (Tr [[H1, R1], ... [Hn, R1]]))
    93  	receiptSha := types.DeriveSha(receipts)
    94  	if receiptSha != header.ReceiptHash {
    95  		return fmt.Errorf("invalid receipt root hash (remote: %x local: %x)", header.ReceiptHash, receiptSha)
    96  	}
    97  	// Validate the state root against the received state root and throw
    98  	// an error if they don't match.
    99  	if root := statedb.IntermediateRoot(v.config.IsEIP158(header.Number)); header.Root != root {
   100  		return fmt.Errorf("invalid merkle root (remote: %x local: %x)", header.Root, root)
   101  	}
   102  	return nil
   103  }
   104  
   105  // CalcGasLimit computes the gas limit of the next block after parent.
   106  // This is miner strategy, not consensus protocol.
   107  func CalcGasLimit(parent *types.Block) uint64 {
   108  	// contrib = (parentGasUsed * 3 / 2) / 1024
   109  	contrib := (parent.GasUsed() + parent.GasUsed()/2) / params.GasLimitBoundDivisor
   110  
   111  	// decay = parentGasLimit / 1024 -1
   112  	decay := parent.GasLimit()/params.GasLimitBoundDivisor - 1
   113  
   114  	/*
   115  		strategy: gasLimit of block-to-mine is set based on parent's
   116  		gasUsed value.  if parentGasUsed > parentGasLimit * (2/3) then we
   117  		increase it, otherwise lower it (or leave it unchanged if it's right
   118  		at that usage) the amount increased/decreased depends on how far away
   119  		from parentGasLimit * (2/3) parentGasUsed is.
   120  	*/
   121  	limit := parent.GasLimit() - decay + contrib
   122  	if limit < params.MinGasLimit {
   123  		limit = params.MinGasLimit
   124  	}
   125  	// however, if we're now below the target (TargetGasLimit) we increase the
   126  	// limit as much as we can (parentGasLimit / 1024 -1)
   127  	if limit < params.TargetGasLimit {
   128  		limit = parent.GasLimit() + decay
   129  		if limit > params.TargetGasLimit {
   130  			limit = params.TargetGasLimit
   131  		}
   132  	}
   133  	return limit
   134  }