github.com/aquanetwork/aquachain@v1.7.8/core/vm/contracts.go (about) 1 // Copyright 2014 The aquachain Authors 2 // This file is part of the aquachain library. 3 // 4 // The aquachain library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The aquachain library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the aquachain library. If not, see <http://www.gnu.org/licenses/>. 16 17 package vm 18 19 import ( 20 "crypto/sha256" 21 "errors" 22 "math/big" 23 24 "gitlab.com/aquachain/aquachain/common" 25 "gitlab.com/aquachain/aquachain/common/math" 26 "gitlab.com/aquachain/aquachain/crypto" 27 "gitlab.com/aquachain/aquachain/crypto/bn256" 28 "gitlab.com/aquachain/aquachain/params" 29 "golang.org/x/crypto/ripemd160" 30 ) 31 32 // PrecompiledContract is the basic interface for native Go contracts. The implementation 33 // requires a deterministic gas count based on the input size of the Run method of the 34 // contract. 35 type PrecompiledContract interface { 36 RequiredGas(input []byte) uint64 // RequiredPrice calculates the contract gas use 37 Run(input []byte) ([]byte, error) // Run runs the precompiled contract 38 } 39 40 // PrecompiledContractsHomestead contains the default set of pre-compiled AquaChain 41 // contracts used in the Frontier and Homestead releases. 42 var PrecompiledContractsHomestead = map[common.Address]PrecompiledContract{ 43 common.BytesToAddress([]byte{1}): &ecrecover{}, 44 common.BytesToAddress([]byte{2}): &sha256hash{}, 45 common.BytesToAddress([]byte{3}): &ripemd160hash{}, 46 common.BytesToAddress([]byte{4}): &dataCopy{}, 47 } 48 49 // PrecompiledContractsByzantium contains the default set of pre-compiled AquaChain 50 // contracts used in the Byzantium release. 51 var PrecompiledContractsByzantium = map[common.Address]PrecompiledContract{ 52 common.BytesToAddress([]byte{1}): &ecrecover{}, 53 common.BytesToAddress([]byte{2}): &sha256hash{}, 54 common.BytesToAddress([]byte{3}): &ripemd160hash{}, 55 common.BytesToAddress([]byte{4}): &dataCopy{}, 56 common.BytesToAddress([]byte{5}): &bigModExp{}, 57 common.BytesToAddress([]byte{6}): &bn256Add{}, 58 common.BytesToAddress([]byte{7}): &bn256ScalarMul{}, 59 common.BytesToAddress([]byte{8}): &bn256Pairing{}, 60 } 61 62 // RunPrecompiledContract runs and evaluates the output of a precompiled contract. 63 func RunPrecompiledContract(p PrecompiledContract, input []byte, contract *Contract) (ret []byte, err error) { 64 gas := p.RequiredGas(input) 65 if contract.UseGas(gas) { 66 return p.Run(input) 67 } 68 return nil, ErrOutOfGas 69 } 70 71 // ECRECOVER implemented as a native contract. 72 type ecrecover struct{} 73 74 func (c *ecrecover) RequiredGas(input []byte) uint64 { 75 return params.EcrecoverGas 76 } 77 78 func (c *ecrecover) Run(input []byte) ([]byte, error) { 79 const ecRecoverInputLength = 128 80 81 input = common.RightPadBytes(input, ecRecoverInputLength) 82 // "input" is (hash, v, r, s), each 32 bytes 83 // but for ecrecover we want (r, s, v) 84 85 r := new(big.Int).SetBytes(input[64:96]) 86 s := new(big.Int).SetBytes(input[96:128]) 87 v := input[63] - 27 88 89 // tighter sig s values input homestead only apply to tx sigs 90 if !allZero(input[32:63]) || !crypto.ValidateSignatureValues(v, r, s, false) { 91 return nil, nil 92 } 93 // v needs to be at the end for libsecp256k1 94 pubKey, err := crypto.Ecrecover(input[:32], append(input[64:128], v)) 95 // make sure the public key is a valid one 96 if err != nil { 97 return nil, nil 98 } 99 100 // the first byte of pubkey is bitcoin heritage 101 return common.LeftPadBytes(crypto.Keccak256(pubKey[1:])[12:], 32), nil 102 } 103 104 // SHA256 implemented as a native contract. 105 type sha256hash struct{} 106 107 // RequiredGas returns the gas required to execute the pre-compiled contract. 108 // 109 // This method does not require any overflow checking as the input size gas costs 110 // required for anything significant is so high it's impossible to pay for. 111 func (c *sha256hash) RequiredGas(input []byte) uint64 { 112 return uint64(len(input)+31)/32*params.Sha256PerWordGas + params.Sha256BaseGas 113 } 114 func (c *sha256hash) Run(input []byte) ([]byte, error) { 115 h := sha256.Sum256(input) 116 return h[:], nil 117 } 118 119 // RIPMED160 implemented as a native contract. 120 type ripemd160hash struct{} 121 122 // RequiredGas returns the gas required to execute the pre-compiled contract. 123 // 124 // This method does not require any overflow checking as the input size gas costs 125 // required for anything significant is so high it's impossible to pay for. 126 func (c *ripemd160hash) RequiredGas(input []byte) uint64 { 127 return uint64(len(input)+31)/32*params.Ripemd160PerWordGas + params.Ripemd160BaseGas 128 } 129 func (c *ripemd160hash) Run(input []byte) ([]byte, error) { 130 ripemd := ripemd160.New() 131 ripemd.Write(input) 132 return common.LeftPadBytes(ripemd.Sum(nil), 32), nil 133 } 134 135 // data copy implemented as a native contract. 136 type dataCopy struct{} 137 138 // RequiredGas returns the gas required to execute the pre-compiled contract. 139 // 140 // This method does not require any overflow checking as the input size gas costs 141 // required for anything significant is so high it's impossible to pay for. 142 func (c *dataCopy) RequiredGas(input []byte) uint64 { 143 return uint64(len(input)+31)/32*params.IdentityPerWordGas + params.IdentityBaseGas 144 } 145 func (c *dataCopy) Run(in []byte) ([]byte, error) { 146 return in, nil 147 } 148 149 // bigModExp implements a native big integer exponential modular operation. 150 type bigModExp struct{} 151 152 var ( 153 big1 = big.NewInt(1) 154 big4 = big.NewInt(4) 155 big8 = big.NewInt(8) 156 big16 = big.NewInt(16) 157 big32 = big.NewInt(32) 158 big64 = big.NewInt(64) 159 big96 = big.NewInt(96) 160 big480 = big.NewInt(480) 161 big1024 = big.NewInt(1024) 162 big3072 = big.NewInt(3072) 163 big199680 = big.NewInt(199680) 164 ) 165 166 // RequiredGas returns the gas required to execute the pre-compiled contract. 167 func (c *bigModExp) RequiredGas(input []byte) uint64 { 168 var ( 169 baseLen = new(big.Int).SetBytes(getData(input, 0, 32)) 170 expLen = new(big.Int).SetBytes(getData(input, 32, 32)) 171 modLen = new(big.Int).SetBytes(getData(input, 64, 32)) 172 ) 173 if len(input) > 96 { 174 input = input[96:] 175 } else { 176 input = input[:0] 177 } 178 // Retrieve the head 32 bytes of exp for the adjusted exponent length 179 var expHead *big.Int 180 if big.NewInt(int64(len(input))).Cmp(baseLen) <= 0 { 181 expHead = new(big.Int) 182 } else { 183 if expLen.Cmp(big32) > 0 { 184 expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), 32)) 185 } else { 186 expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), expLen.Uint64())) 187 } 188 } 189 // Calculate the adjusted exponent length 190 var msb int 191 if bitlen := expHead.BitLen(); bitlen > 0 { 192 msb = bitlen - 1 193 } 194 adjExpLen := new(big.Int) 195 if expLen.Cmp(big32) > 0 { 196 adjExpLen.Sub(expLen, big32) 197 adjExpLen.Mul(big8, adjExpLen) 198 } 199 adjExpLen.Add(adjExpLen, big.NewInt(int64(msb))) 200 201 // Calculate the gas cost of the operation 202 gas := new(big.Int).Set(math.BigMax(modLen, baseLen)) 203 switch { 204 case gas.Cmp(big64) <= 0: 205 gas.Mul(gas, gas) 206 case gas.Cmp(big1024) <= 0: 207 gas = new(big.Int).Add( 208 new(big.Int).Div(new(big.Int).Mul(gas, gas), big4), 209 new(big.Int).Sub(new(big.Int).Mul(big96, gas), big3072), 210 ) 211 default: 212 gas = new(big.Int).Add( 213 new(big.Int).Div(new(big.Int).Mul(gas, gas), big16), 214 new(big.Int).Sub(new(big.Int).Mul(big480, gas), big199680), 215 ) 216 } 217 gas.Mul(gas, math.BigMax(adjExpLen, big1)) 218 gas.Div(gas, new(big.Int).SetUint64(params.ModExpQuadCoeffDiv)) 219 220 if gas.BitLen() > 64 { 221 return math.MaxUint64 222 } 223 return gas.Uint64() 224 } 225 226 func (c *bigModExp) Run(input []byte) ([]byte, error) { 227 var ( 228 baseLen = new(big.Int).SetBytes(getData(input, 0, 32)).Uint64() 229 expLen = new(big.Int).SetBytes(getData(input, 32, 32)).Uint64() 230 modLen = new(big.Int).SetBytes(getData(input, 64, 32)).Uint64() 231 ) 232 if len(input) > 96 { 233 input = input[96:] 234 } else { 235 input = input[:0] 236 } 237 // Handle a special case when both the base and mod length is zero 238 if baseLen == 0 && modLen == 0 { 239 return []byte{}, nil 240 } 241 // Retrieve the operands and execute the exponentiation 242 var ( 243 base = new(big.Int).SetBytes(getData(input, 0, baseLen)) 244 exp = new(big.Int).SetBytes(getData(input, baseLen, expLen)) 245 mod = new(big.Int).SetBytes(getData(input, baseLen+expLen, modLen)) 246 ) 247 if mod.BitLen() == 0 { 248 // Modulo 0 is undefined, return zero 249 return common.LeftPadBytes([]byte{}, int(modLen)), nil 250 } 251 return common.LeftPadBytes(base.Exp(base, exp, mod).Bytes(), int(modLen)), nil 252 } 253 254 var ( 255 // errNotOnCurve is returned if a point being unmarshalled as a bn256 elliptic 256 // curve point is not on the curve. 257 //errNotOnCurve = errors.New("point not on elliptic curve") 258 259 // errInvalidCurvePoint is returned if a point being unmarshalled as a bn256 260 // elliptic curve point is invalid. 261 //errInvalidCurvePoint = errors.New("invalid elliptic curve point") 262 ) 263 264 // newCurvePoint unmarshals a binary blob into a bn256 elliptic curve point, 265 // returning it, or an error if the point is invalid. 266 func newCurvePoint(blob []byte) (*bn256.G1, error) { 267 p := new(bn256.G1) 268 if _, err := p.Unmarshal(blob); err != nil { 269 return nil, err 270 } 271 return p, nil 272 } 273 274 // newTwistPoint unmarshals a binary blob into a bn256 elliptic curve point, 275 // returning it, or an error if the point is invalid. 276 func newTwistPoint(blob []byte) (*bn256.G2, error) { 277 p := new(bn256.G2) 278 if _, err := p.Unmarshal(blob); err != nil { 279 return nil, err 280 } 281 return p, nil 282 } 283 284 // bn256Add implements a native elliptic curve point addition. 285 type bn256Add struct{} 286 287 // RequiredGas returns the gas required to execute the pre-compiled contract. 288 func (c *bn256Add) RequiredGas(input []byte) uint64 { 289 return params.Bn256AddGas 290 } 291 292 func (c *bn256Add) Run(input []byte) ([]byte, error) { 293 x, err := newCurvePoint(getData(input, 0, 64)) 294 if err != nil { 295 return nil, err 296 } 297 y, err := newCurvePoint(getData(input, 64, 64)) 298 if err != nil { 299 return nil, err 300 } 301 res := new(bn256.G1) 302 res.Add(x, y) 303 return res.Marshal(), nil 304 } 305 306 // bn256ScalarMul implements a native elliptic curve scalar multiplication. 307 type bn256ScalarMul struct{} 308 309 // RequiredGas returns the gas required to execute the pre-compiled contract. 310 func (c *bn256ScalarMul) RequiredGas(input []byte) uint64 { 311 return params.Bn256ScalarMulGas 312 } 313 314 func (c *bn256ScalarMul) Run(input []byte) ([]byte, error) { 315 p, err := newCurvePoint(getData(input, 0, 64)) 316 if err != nil { 317 return nil, err 318 } 319 res := new(bn256.G1) 320 res.ScalarMult(p, new(big.Int).SetBytes(getData(input, 64, 32))) 321 return res.Marshal(), nil 322 } 323 324 var ( 325 // true32Byte is returned if the bn256 pairing check succeeds. 326 true32Byte = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1} 327 328 // false32Byte is returned if the bn256 pairing check fails. 329 false32Byte = make([]byte, 32) 330 331 // errBadPairingInput is returned if the bn256 pairing input is invalid. 332 errBadPairingInput = errors.New("bad elliptic curve pairing size") 333 ) 334 335 // bn256Pairing implements a pairing pre-compile for the bn256 curve 336 type bn256Pairing struct{} 337 338 // RequiredGas returns the gas required to execute the pre-compiled contract. 339 func (c *bn256Pairing) RequiredGas(input []byte) uint64 { 340 return params.Bn256PairingBaseGas + uint64(len(input)/192)*params.Bn256PairingPerPointGas 341 } 342 343 func (c *bn256Pairing) Run(input []byte) ([]byte, error) { 344 // Handle some corner cases cheaply 345 if len(input)%192 > 0 { 346 return nil, errBadPairingInput 347 } 348 // Convert the input into a set of coordinates 349 var ( 350 cs []*bn256.G1 351 ts []*bn256.G2 352 ) 353 for i := 0; i < len(input); i += 192 { 354 c, err := newCurvePoint(input[i : i+64]) 355 if err != nil { 356 return nil, err 357 } 358 t, err := newTwistPoint(input[i+64 : i+192]) 359 if err != nil { 360 return nil, err 361 } 362 cs = append(cs, c) 363 ts = append(ts, t) 364 } 365 // Execute the pairing checks and return the results 366 if bn256.PairingCheck(cs, ts) { 367 return true32Byte, nil 368 } 369 return false32Byte, nil 370 }